package htlcswitch import ( "bytes" "sync" "sync/atomic" "time" "io" "crypto/sha256" "github.com/go-errors/errors" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwire" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" ) const ( // expiryGraceDelta is a grace period that the timeout of incoming // HTLC's that pay directly to us (i.e we're the "exit node") must up // hold. We'll reject any HTLC's who's timeout minus this value is less // that or equal to the current block height. We require this in order // to ensure that if the extending party goes to the chain, then we'll // be able to claim the HTLC still. // // TODO(roasbeef): must be < default delta expiryGraceDelta = 2 ) // ForwardingPolicy describes the set of constraints that a given ChannelLink // is to adhere to when forwarding HTLC's. For each incoming HTLC, this set of // constraints will be consulted in order to ensure that adequate fees are // paid, and our time-lock parameters are respected. In the event that an // incoming HTLC violates any of these constraints, it is to be _rejected_ with // the error possibly carrying along a ChannelUpdate message that includes the // latest policy. type ForwardingPolicy struct { // MinHTLC is the smallest HTLC that is to be forwarded. MinHTLC lnwire.MilliSatoshi // BaseFee is the base fee, expressed in milli-satoshi that must be // paid for each incoming HTLC. This field, combined with FeeRate is // used to compute the required fee for a given HTLC. BaseFee lnwire.MilliSatoshi // FeeRate is the fee rate, expressed in milli-satoshi that must be // paid for each incoming HTLC. This field combined with BaseFee is // used to compute the required fee for a given HTLC. FeeRate lnwire.MilliSatoshi // TimeLockDelta is the absolute time-lock value, expressed in blocks, // that will be subtracted from an incoming HTLC's timelock value to // create the time-lock value for the forwarded outgoing HTLC. The // following constraint MUST hold for an HTLC to be forwarded: // // * incomingHtlc.timeLock - timeLockDelta = fwdInfo.OutgoingCTLV // // where fwdInfo is the forwarding information extracted from the // per-hop payload of the incoming HTLC's onion packet. TimeLockDelta uint32 // TODO(roasbeef): add fee module inside of switch } // ExpectedFee computes the expected fee for a given htlc amount. The value // returned from this function is to be used as a sanity check when forwarding // HTLC's to ensure that an incoming HTLC properly adheres to our propagated // forwarding policy. // // TODO(roasbeef): also add in current available channel bandwidth, inverse // func func ExpectedFee(f ForwardingPolicy, htlcAmt lnwire.MilliSatoshi) lnwire.MilliSatoshi { // TODO(roasbeef): write some basic table driven tests return f.BaseFee + (htlcAmt*f.FeeRate)/1000000 } // ChannelLinkConfig defines the configuration for the channel link. ALL // elements within the configuration MUST be non-nil for channel link to carry // out its duties. type ChannelLinkConfig struct { // FwrdingPolicy is the initial forwarding policy to be used when // deciding whether to forwarding incoming HTLC's or not. This value // can be updated with subsequent calls to UpdateForwardingPolicy // targeted at a given ChannelLink concrete interface implementation. FwrdingPolicy ForwardingPolicy // Switch is a subsystem which is used to forward the incoming HTLC // packets according to the encoded hop forwarding information // contained in the forwarding blob within each HTLC. Switch *Switch // DecodeHopIterator function is responsible for decoding HTLC Sphinx // onion blob, and creating hop iterator which will give us next // destination of HTLC. DecodeHopIterator func(r io.Reader, rHash []byte) (HopIterator, lnwire.FailCode) // DecodeOnionObfuscator function is responsible for decoding HTLC // Sphinx onion blob, and creating onion failure obfuscator. DecodeOnionObfuscator func(r io.Reader) (Obfuscator, lnwire.FailCode) // GetLastChannelUpdate retrieves the latest routing policy for this // particular channel. This will be used to provide payment senders our // latest policy when sending encrypted error messages. GetLastChannelUpdate func() (*lnwire.ChannelUpdate, error) // Peer is a lightning network node with which we have the channel link // opened. Peer Peer // Registry is a sub-system which responsible for managing the invoices // in thread-safe manner. Registry InvoiceDatabase // BlockEpochs is an active block epoch event stream backed by an // active ChainNotifier instance. The ChannelLink will use new block // notifications sent over this channel to decide when a _new_ HTLC is // too close to expiry, and also when any active HTLC's have expired // (or are close to expiry). BlockEpochs *chainntnfs.BlockEpochEvent // SettledContracts is used to notify that a channel has peacefully // been closed. Once a channel has been closed the other subsystem no // longer needs to watch for breach closes. SettledContracts chan *wire.OutPoint // DebugHTLC should be turned on if you want all HTLCs sent to a node // with the debug htlc R-Hash are immediately settled in the next // available state transition. DebugHTLC bool } // channelLink is the service which drives a channel's commitment update // state-machine. In the event that an htlc needs to be propagated to another // link, the forward handler from config is used which sends htlc to the // switch. Additionally, the link encapsulate logic of commitment protocol // message ordering and updates. type channelLink struct { // The following fields are only meant to be used *atomically* started int32 shutdown int32 // cancelReasons stores the reason why a particular HTLC was cancelled. // The index of the HTLC within the log is mapped to the cancellation // reason. This value is used to thread the proper error through to the // htlcSwitch, or subsystem that initiated the HTLC. // // TODO(andrew.shvv) remove after payment descriptor start store // htlc cancel reasons. cancelReasons map[uint64]lnwire.OpaqueReason // clearedOnionBlobs tracks the remote log index of the incoming // htlc's, mapped to the htlc onion blob which encapsulates the next // hop. HTLC's are added to this map once the HTLC has been cleared, // meaning the commitment state reflects the update encoded within this // HTLC. // // TODO(andrew.shvv) remove after payment descriptor start store // htlc onion blobs. clearedOnionBlobs map[uint64][lnwire.OnionPacketSize]byte // batchCounter is the number of updates which we received from remote // side, but not include in commitment transaction yet and plus the // current number of settles that have been sent, but not yet committed // to the commitment. // // TODO(andrew.shvv) remove after we add additional // BatchNumber() method in state machine. batchCounter uint32 // bestHeight is the best known height of the main chain. The link will // use this information to govern decisions based on HTLC timeouts. bestHeight uint32 // channel is a lightning network channel to which we apply htlc // updates. channel *lnwallet.LightningChannel // cfg is a structure which carries all dependable fields/handlers // which may affect behaviour of the service. cfg ChannelLinkConfig // overflowQueue is used to store the htlc add updates which haven't // been processed because of the commitment transaction overflow. overflowQueue *packetQueue // upstream is a channel that new messages sent from the remote peer to // the local peer will be sent across. upstream chan lnwire.Message // downstream is a channel in which new multi-hop HTLC's to be // forwarded will be sent across. Messages from this channel are sent // by the HTLC switch. downstream chan *htlcPacket // linkControl is a channel which is used to query the state of the // link, or update various policies used which govern if an HTLC is to // be forwarded and/or accepted. linkControl chan interface{} // logCommitTimer is a timer which is sent upon if we go an interval // without receiving/sending a commitment update. It's role is to // ensure both chains converge to identical state in a timely manner. // // TODO(roasbeef): timer should be >> then RTT logCommitTimer *time.Timer logCommitTick <-chan time.Time wg sync.WaitGroup quit chan struct{} } // NewChannelLink creates a new instance of a ChannelLink given a configuration // and active channel that will be used to verify/apply updates to. func NewChannelLink(cfg ChannelLinkConfig, channel *lnwallet.LightningChannel, currentHeight uint32) ChannelLink { return &channelLink{ cfg: cfg, channel: channel, clearedOnionBlobs: make(map[uint64][lnwire.OnionPacketSize]byte), upstream: make(chan lnwire.Message), downstream: make(chan *htlcPacket), linkControl: make(chan interface{}), cancelReasons: make(map[uint64]lnwire.OpaqueReason), logCommitTimer: time.NewTimer(300 * time.Millisecond), overflowQueue: newWaitingQueue(), bestHeight: currentHeight, quit: make(chan struct{}), } } // A compile time check to ensure channelLink implements the ChannelLink // interface. var _ ChannelLink = (*channelLink)(nil) // Start starts all helper goroutines required for the operation of the channel // link. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) Start() error { if !atomic.CompareAndSwapInt32(&l.started, 0, 1) { log.Warnf("channel link(%v): already started", l) return nil } log.Infof("ChannelLink(%v) is starting", l) l.wg.Add(1) go l.htlcManager() return nil } // Stop gracefully stops all active helper goroutines, then waits until they've // exited. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) Stop() { if !atomic.CompareAndSwapInt32(&l.shutdown, 0, 1) { log.Warnf("channel link(%v): already stopped", l) return } log.Infof("ChannelLink(%v) is stopping", l) close(l.quit) l.wg.Wait() l.cfg.BlockEpochs.Cancel() } // htlcManager is the primary goroutine which drives a channel's commitment // update state-machine in response to messages received via several channels. // This goroutine reads messages from the upstream (remote) peer, and also from // downstream channel managed by the channel link. In the event that an htlc // needs to be forwarded, then send-only forward handler is used which sends // htlc packets to the switch. Additionally, the this goroutine handles acting // upon all timeouts for any active HTLCs, manages the channel's revocation // window, and also the htlc trickle queue+timer for this active channels. // // NOTE: This MUST be run as a goroutine. func (l *channelLink) htlcManager() { defer l.wg.Done() log.Infof("HTLC manager for ChannelPoint(%v) started, "+ "bandwidth=%v", l.channel.ChannelPoint(), l.getBandwidth()) // TODO(roasbeef): check to see if able to settle any currently pending // HTLCs // * also need signals when new invoices are added by the // invoiceRegistry batchTimer := time.NewTicker(50 * time.Millisecond) defer batchTimer.Stop() // TODO(roasbeef): fail chan in case of protocol violation // TODO(roasbeef): resend funding locked if state zero out: for { select { // A new block has arrived, we'll examine all the active HTLC's // to see if any of them have expired, and also update our // track of the best current height. case blockEpoch, ok := <-l.cfg.BlockEpochs.Epochs: if !ok { break out } log.Debugf("ChannelPoint(%v): new block(height=%v, "+ "hash=%v) examining active HTLC's", l.channel.ChannelPoint(), blockEpoch.Height, blockEpoch.Hash) // TODO(roasbeef): check HTLC's for expiry l.bestHeight = uint32(blockEpoch.Height) // The underlying channel has notified us of a unilateral close // carried out by the remote peer. In the case of such an // event, we'll wipe the channel state from the peer, and mark // the contract as fully settled. Afterwards we can exit. case <-l.channel.UnilateralCloseSignal: log.Warnf("Remote peer has closed ChannelPoint(%v) on-chain", l.channel.ChannelPoint()) if err := l.cfg.Peer.WipeChannel(l.channel); err != nil { log.Errorf("unable to wipe channel %v", err) } // TODO(roasbeef): need to send HTLC outputs to nursery // TODO(roasbeef): or let the arb sweep? l.cfg.SettledContracts <- l.channel.ChannelPoint() break out // A local sub-system has initiated a force close of the active // channel. In this case we can exit immediately as no further // updates should be processed for the channel. case <-l.channel.ForceCloseSignal: // TODO(roasbeef): path never taken now that server // force closes's directly? log.Warnf("ChannelPoint(%v) has been force "+ "closed, disconnecting from peer(%x)", l.channel.ChannelPoint(), l.cfg.Peer.PubKey()) break out case <-l.logCommitTick: // If we haven't sent or received a new commitment // update in some time, check to see if we have any // pending updates we need to commit due to our // commitment chains being desynchronized. if l.channel.FullySynced() { continue } if err := l.updateCommitTx(); err != nil { l.fail("unable to update commitment: %v", err) break out } case <-batchTimer.C: // If the current batch is empty, then we have no work // here. if l.batchCounter == 0 { continue } // Otherwise, attempt to extend the remote commitment // chain including all the currently pending entries. // If the send was unsuccessful, then abandon the // update, waiting for the revocation window to open // up. if err := l.updateCommitTx(); err != nil { l.fail("unable to update commitment: %v", err) break out } // A packet that previously overflowed the commitment // transaction is now eligible for processing once again. So // we'll attempt to re-process the packet in order to allow it // to continue propagating within the network. case packet := <-l.overflowQueue.pending: msg := packet.htlc.(*lnwire.UpdateAddHTLC) log.Tracef("Reprocessing downstream add update "+ "with payment hash(%x)", msg.PaymentHash[:]) l.handleDownStreamPkt(packet) // A message from the switch was just received. This indicates // that the link is an intermediate hop in a multi-hop HTLC // circuit. case pkt := <-l.downstream: // If we have non empty processing queue then we'll add // this to the overflow rather than processing it // directly. Once an active HTLC is either settled or // failed, then we'll free up a new slot. htlc, ok := pkt.htlc.(*lnwire.UpdateAddHTLC) if ok && l.overflowQueue.length() != 0 { log.Infof("Downstream htlc add update with "+ "payment hash(%x) have been added to "+ "reprocessing queue, batch: %v", htlc.PaymentHash[:], l.batchCounter) l.overflowQueue.consume(pkt) continue } l.handleDownStreamPkt(pkt) // A message from the connected peer was just received. This // indicates that we have a new incoming HTLC, either directly // for us, or part of a multi-hop HTLC circuit. case msg := <-l.upstream: l.handleUpstreamMsg(msg) case cmd := <-l.linkControl: switch req := cmd.(type) { case *getBandwidthCmd: req.resp <- l.getBandwidth() case *policyUpdate: l.cfg.FwrdingPolicy = req.policy if req.done != nil { close(req.done) } } case <-l.quit: break out } } log.Infof("ChannelLink(%v) has exited", l) } // handleDownStreamPkt processes an HTLC packet sent from the downstream HTLC // Switch. Possible messages sent by the switch include requests to forward new // HTLCs, timeout previously cleared HTLCs, and finally to settle currently // cleared HTLCs with the upstream peer. func (l *channelLink) handleDownStreamPkt(pkt *htlcPacket) { var isSettle bool switch htlc := pkt.htlc.(type) { case *lnwire.UpdateAddHTLC: // A new payment has been initiated via the downstream channel, // so we add the new HTLC to our local log, then update the // commitment chains. htlc.ChanID = l.ChanID() index, err := l.channel.AddHTLC(htlc) if err != nil { switch err { // The channels spare bandwidth is fully allocated, so // we'll put this HTLC into the overflow queue. case lnwallet.ErrMaxHTLCNumber: log.Infof("Downstream htlc add update with "+ "payment hash(%x) have been added to "+ "reprocessing queue, batch: %v", htlc.PaymentHash[:], l.batchCounter) l.overflowQueue.consume(pkt) return // The HTLC was unable to be added to the state // machine, as a result, we'll signal the switch to // cancel the pending payment. default: var ( isObfuscated bool reason lnwire.OpaqueReason ) // We'll parse the sphinx packet enclosed so we // can obtain the shared secret required to // encrypt the error back to the source. failure := lnwire.NewTemporaryChannelFailure(nil) onionReader := bytes.NewReader(htlc.OnionBlob[:]) obfuscator, failCode := l.cfg.DecodeOnionObfuscator(onionReader) switch { // If we were unable to parse the onion blob, // then we'll send an error back to the source. case failCode != lnwire.CodeNone: var b bytes.Buffer err := lnwire.EncodeFailure(&b, failure, 0) if err != nil { log.Errorf("unable to encode failure: %v", err) return } reason = lnwire.OpaqueReason(b.Bytes()) isObfuscated = false // Otherwise, we'll send back a proper failure // message. default: reason, err = obfuscator.InitialObfuscate(failure) if err != nil { log.Errorf("unable to obfuscate error: %v", err) return } isObfuscated = true } upddateFail := &lnwire.UpdateFailHTLC{ Reason: reason, } failPkt := newFailPacket( l.ShortChanID(), upddateFail, htlc.PaymentHash, htlc.Amount, isObfuscated, ) go l.cfg.Switch.forward(failPkt) log.Infof("Unable to handle downstream add HTLC: %v", err) return } } log.Tracef("Received downstream htlc: payment_hash=%x, "+ "local_log_index=%v, batch_size=%v", htlc.PaymentHash[:], index, l.batchCounter+1) htlc.ID = index l.cfg.Peer.SendMessage(htlc) case *lnwire.UpdateFufillHTLC: // An HTLC we forward to the switch has just settled somewhere // upstream. Therefore we settle the HTLC within the our local // state machine. pre := htlc.PaymentPreimage logIndex, err := l.channel.SettleHTLC(pre) if err != nil { // TODO(roasbeef): broadcast on-chain l.fail("unable to settle incoming HTLC: %v", err) return } // With the HTLC settled, we'll need to populate the wire // message to target the specific channel and HTLC to be // cancelled. htlc.ChanID = l.ChanID() htlc.ID = logIndex // Then we send the HTLC settle message to the connected peer // so we can continue the propagation of the settle message. l.cfg.Peer.SendMessage(htlc) isSettle = true case *lnwire.UpdateFailHTLC: // An HTLC cancellation has been triggered somewhere upstream, // we'll remove then HTLC from our local state machine. logIndex, err := l.channel.FailHTLC(pkt.payHash) if err != nil { log.Errorf("unable to cancel HTLC: %v", err) return } // With the HTLC removed, we'll need to populate the wire // message to target the specific channel and HTLC to be // cancelled. The "Reason" field will have already been set // within the switch. htlc.ChanID = l.ChanID() htlc.ID = logIndex // Finally, we send the HTLC message to the peer which // initially created the HTLC. l.cfg.Peer.SendMessage(htlc) isSettle = true } l.batchCounter++ // If this newly added update exceeds the min batch size for adds, or // this is a settle request, then initiate an update. if l.batchCounter >= 10 || isSettle { if err := l.updateCommitTx(); err != nil { l.fail("unable to update commitment: %v", err) return } } } // handleUpstreamMsg processes wire messages related to commitment state // updates from the upstream peer. The upstream peer is the peer whom we have a // direct channel with, updating our respective commitment chains. func (l *channelLink) handleUpstreamMsg(msg lnwire.Message) { switch msg := msg.(type) { case *lnwire.UpdateAddHTLC: // We just received an add request from an upstream peer, so we // add it to our state machine, then add the HTLC to our // "settle" list in the event that we know the preimage. index, err := l.channel.ReceiveHTLC(msg) if err != nil { l.fail("unable to handle upstream add HTLC: %v", err) return } log.Tracef("Receive upstream htlc with payment hash(%x), "+ "assigning index: %v", msg.PaymentHash[:], index) // Store the onion blob which encapsulate the htlc route and // use in on stage of HTLC inclusion to retrieve the next hop // and propagate the HTLC along the remaining route. l.clearedOnionBlobs[index] = msg.OnionBlob case *lnwire.UpdateFufillHTLC: pre := msg.PaymentPreimage idx := msg.ID if err := l.channel.ReceiveHTLCSettle(pre, idx); err != nil { // TODO(roasbeef): broadcast on-chain l.fail("unable to handle upstream settle HTLC: %v", err) return } // TODO(roasbeef): add preimage to DB in order to swipe // repeated r-values case *lnwire.UpdateFailMalformedHTLC: // If remote side have been unable to parse the onion blob we // have sent to it, than we should transform the malformed HTLC // message to the usual HTLC fail message. idx := msg.ID if err := l.channel.ReceiveFailHTLC(idx); err != nil { l.fail("unable to handle upstream fail HTLC: %v", err) return } // Convert the failure type encoded within the HTLC fail // message to the proper generic lnwire error code. var failure lnwire.FailureMessage switch msg.FailureCode { case lnwire.CodeInvalidOnionVersion: failure = &lnwire.FailInvalidOnionVersion{ OnionSHA256: msg.ShaOnionBlob, } case lnwire.CodeInvalidOnionHmac: failure = &lnwire.FailInvalidOnionHmac{ OnionSHA256: msg.ShaOnionBlob, } case lnwire.CodeInvalidOnionKey: failure = &lnwire.FailInvalidOnionKey{ OnionSHA256: msg.ShaOnionBlob, } default: // TODO(roasbeef): fail channel here? log.Errorf("unable to understand code of received " + "malformed error") return } // With the error parsed, we'll convert the into it's opaque // form. var b bytes.Buffer if err := lnwire.EncodeFailure(&b, failure, 0); err != nil { log.Errorf("unable to encode malformed error: %v", err) return } l.cancelReasons[idx] = lnwire.OpaqueReason(b.Bytes()) case *lnwire.UpdateFailHTLC: idx := msg.ID if err := l.channel.ReceiveFailHTLC(idx); err != nil { l.fail("unable to handle upstream fail HTLC: %v", err) return } l.cancelReasons[idx] = msg.Reason case *lnwire.CommitSig: // We just received a new update to our local commitment chain, // validate this new commitment, closing the link if invalid. err := l.channel.ReceiveNewCommitment(msg.CommitSig, msg.HtlcSigs) if err != nil { l.fail("unable to accept new commitment: %v", err) return } // As we've just just accepted a new state, we'll now // immediately send the remote peer a revocation for our prior // state. nextRevocation, err := l.channel.RevokeCurrentCommitment() if err != nil { log.Errorf("unable to revoke commitment: %v", err) return } l.cfg.Peer.SendMessage(nextRevocation) // As we've just received a commitment signature, we'll // re-start the log commit timer to wake up the main processing // loop to check if we need to send a commitment signature as // we owe one. // // TODO(roasbeef): instead after revocation? if !l.logCommitTimer.Stop() { select { case <-l.logCommitTimer.C: default: } } l.logCommitTimer.Reset(300 * time.Millisecond) l.logCommitTick = l.logCommitTimer.C // If both commitment chains are fully synced from our PoV, // then we don't need to reply with a signature as both sides // already have a commitment with the latest accepted l. if l.channel.FullySynced() { return } // Otherwise, the remote party initiated the state transition, // so we'll reply with a signature to provide them with their // version of the latest commitment l. if err := l.updateCommitTx(); err != nil { l.fail("unable to update commitment: %v", err) return } case *lnwire.RevokeAndAck: // We've received a revocation from the remote chain, if valid, // this moves the remote chain forward, and expands our // revocation window. htlcs, err := l.channel.ReceiveRevocation(msg) if err != nil { l.fail("unable to accept revocation: %v", err) return } // After we treat HTLCs as included in both remote/local // commitment transactions they might be safely propagated over // htlc switch or settled if our node was last node in htlc // path. htlcsToForward := l.processLockedInHtlcs(htlcs) go func() { log.Debugf("ChannelPoint(%v) forwarding %v HTLC's", l.channel.ChannelPoint(), len(htlcsToForward)) for _, packet := range htlcsToForward { if err := l.cfg.Switch.forward(packet); err != nil { log.Errorf("channel link(%v): "+ "unhandled error while forwarding "+ "htlc packet over htlc "+ "switch: %v", l, err) } } }() case *lnwire.UpdateFee: // We received fee update from peer. If we are the initator we // will fail the channel, if not we will apply the update. fee := msg.FeePerKw if err := l.channel.ReceiveUpdateFee(fee); err != nil { l.fail("error receiving fee update: %v", err) return } } } // updateCommitTx signs, then sends an update to the remote peer adding a new // commitment to their commitment chain which includes all the latest updates // we've received+processed up to this point. func (l *channelLink) updateCommitTx() error { theirCommitSig, htlcSigs, err := l.channel.SignNextCommitment() if err == lnwallet.ErrNoWindow { log.Tracef("revocation window exhausted, unable to send %v", l.batchCounter) return nil } else if err != nil { return err } commitSig := &lnwire.CommitSig{ ChanID: l.ChanID(), CommitSig: theirCommitSig, HtlcSigs: htlcSigs, } l.cfg.Peer.SendMessage(commitSig) // We've just initiated a state transition, attempt to stop the // logCommitTimer. If the timer already ticked, then we'll consume the // value, dropping if l.logCommitTimer != nil && !l.logCommitTimer.Stop() { select { case <-l.logCommitTimer.C: default: } } l.logCommitTick = nil // Finally, clear our the current batch, so we can accurately make // further batch flushing decisions. l.batchCounter = 0 return nil } // Peer returns the representation of remote peer with which we have the // channel link opened. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) Peer() Peer { return l.cfg.Peer } // ShortChanID returns the short channel ID for the channel link. The short // channel ID encodes the exact location in the main chain that the original // funding output can be found. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) ShortChanID() lnwire.ShortChannelID { return l.channel.ShortChanID() } // ChanID returns the channel ID for the channel link. The channel ID is a more // compact representation of a channel's full outpoint. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) ChanID() lnwire.ChannelID { return lnwire.NewChanIDFromOutPoint(l.channel.ChannelPoint()) } // getBandwidthCmd is a wrapper for get bandwidth handler. type getBandwidthCmd struct { resp chan lnwire.MilliSatoshi } // Bandwidth returns the amount which current link might pass through channel // link. Execution through control channel gives as confidence that bandwidth // will not be changed during function execution. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) Bandwidth() lnwire.MilliSatoshi { command := &getBandwidthCmd{ resp: make(chan lnwire.MilliSatoshi, 1), } select { case l.linkControl <- command: return <-command.resp case <-l.quit: return 0 } } // getBandwidth returns the amount which current link might pass through // channel link. // // NOTE: Should be used inside main goroutine only, otherwise the result might // not be accurate. func (l *channelLink) getBandwidth() lnwire.MilliSatoshi { return l.channel.LocalAvailableBalance() - l.overflowQueue.pendingAmount() } // policyUpdate is a message sent to a channel link when an outside sub-system // wishes to update the current forwarding policy. type policyUpdate struct { policy ForwardingPolicy done chan struct{} } // UpdateForwardingPolicy updates the forwarding policy for the target // ChannelLink. Once updated, the link will use the new forwarding policy to // govern if it an incoming HTLC should be forwarded or not. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) UpdateForwardingPolicy(newPolicy ForwardingPolicy) { cmd := &policyUpdate{ policy: newPolicy, done: make(chan struct{}), } select { case l.linkControl <- cmd: case <-l.quit: } select { case <-cmd.done: case <-l.quit: } } // Stats returns the statistics of channel link. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) Stats() (uint64, lnwire.MilliSatoshi, lnwire.MilliSatoshi) { snapshot := l.channel.StateSnapshot() return snapshot.NumUpdates, snapshot.TotalMilliSatoshisSent, snapshot.TotalMilliSatoshisReceived } // String returns the string representation of channel link. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) String() string { return l.channel.ChannelPoint().String() } // HandleSwitchPacket handles the switch packets. This packets which might be // forwarded to us from another channel link in case the htlc update came from // another peer or if the update was created by user // // NOTE: Part of the ChannelLink interface. func (l *channelLink) HandleSwitchPacket(packet *htlcPacket) { select { case l.downstream <- packet: case <-l.quit: } } // HandleChannelUpdate handles the htlc requests as settle/add/fail which sent // to us from remote peer we have a channel with. // // NOTE: Part of the ChannelLink interface. func (l *channelLink) HandleChannelUpdate(message lnwire.Message) { select { case l.upstream <- message: case <-l.quit: } } // updateChannelFee updates the commitment fee-per-kw on this channel by // committing to an update_fee message. func (l *channelLink) updateChannelFee(feePerKw btcutil.Amount) error { // Update local fee. if err := l.channel.UpdateFee(feePerKw); err != nil { return err } // Send fee update to remote. msg := lnwire.NewUpdateFee(l.ChanID(), feePerKw) return l.cfg.Peer.SendMessage(msg) } // processLockedInHtlcs serially processes each of the log updates which have // been "locked-in". An HTLC is considered locked-in once it has been fully // committed to in both the remote and local commitment state. Once a channel // updates is locked-in, then it can be acted upon, meaning: settling htlc's, // cancelling them, or forwarding new HTLC's to the next hop. func (l *channelLink) processLockedInHtlcs( paymentDescriptors []*lnwallet.PaymentDescriptor) []*htlcPacket { var ( needUpdate bool packetsToForward []*htlcPacket ) for _, pd := range paymentDescriptors { // TODO(roasbeef): rework log entries to a shared // interface. switch pd.EntryType { // A settle for an HTLC we previously forwarded HTLC has been // received. So we'll forward the HTLC to the switch which // will handle propagating the settle to the prior hop. case lnwallet.Settle: settleUpdate := &lnwire.UpdateFufillHTLC{ PaymentPreimage: pd.RPreimage, } settlePacket := newSettlePacket(l.ShortChanID(), settleUpdate, pd.RHash, pd.Amount) // Add the packet to the batch to be forwarded, and // notify the overflow queue that a spare spot has been // freed up within the commitment state. packetsToForward = append(packetsToForward, settlePacket) l.overflowQueue.release() // A failureCode message for a previously forwarded HTLC has been // received. As a result a new slot will be freed up in our // commitment state, so we'll forward this to the switch so the // backwards undo can continue. case lnwallet.Fail: // Fetch the reason the HTLC was cancelled so we can // continue to propagate it. opaqueReason := l.cancelReasons[pd.ParentIndex] failUpdate := &lnwire.UpdateFailHTLC{ Reason: opaqueReason, ChanID: l.ChanID(), } failPacket := newFailPacket(l.ShortChanID(), failUpdate, pd.RHash, pd.Amount, false) // Add the packet to the batch to be forwarded, and // notify the overflow queue that a spare spot has been // freed up within the commitment state. packetsToForward = append(packetsToForward, failPacket) l.overflowQueue.release() // An incoming HTLC add has been full-locked in. As a result we // can no examine the forwarding details of the HTLC, and the // HTLC itself to decide if: we should forward it, cancel it, // or are able to settle it (and it adheres to our fee related // constraints). case lnwallet.Add: // Fetch the onion blob that was included within this // processed payment descriptor. onionBlob := l.clearedOnionBlobs[pd.Index] delete(l.clearedOnionBlobs, pd.Index) // Retrieve onion obfuscator from onion blob in order // to produce initial obfuscation of the onion // failureCode. onionReader := bytes.NewReader(onionBlob[:]) obfuscator, failureCode := l.cfg.DecodeOnionObfuscator(onionReader) if failureCode != lnwire.CodeNone { // If we unable to process the onion blob than // we should send the malformed htlc error to // payment sender. l.sendMalformedHTLCError(pd.RHash, failureCode, onionBlob[:]) needUpdate = true log.Error("unable to decode onion obfuscator") continue } // Before adding the new htlc to the state machine, // parse the onion object in order to obtain the // routing information with DecodeHopIterator function // which process the Sphinx packet. // // We include the payment hash of the htlc as it's // authenticated within the Sphinx packet itself as // associated data in order to thwart attempts a replay // attacks. In the case of a replay, an attacker is // *forced* to use the same payment hash twice, thereby // losing their money entirely. onionReader = bytes.NewReader(onionBlob[:]) chanIterator, failureCode := l.cfg.DecodeHopIterator( onionReader, pd.RHash[:], ) if failureCode != lnwire.CodeNone { // If we unable to process the onion blob than // we should send the malformed htlc error to // payment sender. l.sendMalformedHTLCError(pd.RHash, failureCode, onionBlob[:]) needUpdate = true log.Error("unable to decode onion hop iterator") continue } heightNow := l.bestHeight fwdInfo := chanIterator.ForwardingInstructions() switch fwdInfo.NextHop { case exitHop: // First, we'll check the expiry of the HTLC // itself against, the current block height. If // the timeout is too soon, then we'll reject // the HTLC. if pd.Timeout-expiryGraceDelta <= heightNow { log.Errorf("htlc(%x) has an expiry "+ "that's too soon: expiry=%v, "+ "best_height=%v", pd.RHash[:], pd.Timeout, heightNow) failure := lnwire.FailFinalIncorrectCltvExpiry{} l.sendHTLCError(pd.RHash, &failure, obfuscator) needUpdate = true continue } // We're the designated payment destination. // Therefore we attempt to see if we have an // invoice locally which'll allow us to settle // this htlc. invoiceHash := chainhash.Hash(pd.RHash) invoice, err := l.cfg.Registry.LookupInvoice(invoiceHash) if err != nil { log.Errorf("unable to query invoice registry: "+ " %v", err) failure := lnwire.FailUnknownPaymentHash{} l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // As we're the exit hop, we'll double check // the hop-payload included in the HTLC to // ensure that it was crafted correctly by the // sender and matches the HTLC we were // extended. if !l.cfg.DebugHTLC && fwdInfo.AmountToForward != invoice.Terms.Value { log.Errorf("Onion payload of incoming "+ "htlc(%x) has incorrect value: "+ "expected %v, got %v", pd.RHash, invoice.Terms.Value, fwdInfo.AmountToForward) failure := lnwire.FailIncorrectPaymentAmount{} l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // We'll also ensure that our time-lock value // has been computed correctly. if !l.cfg.DebugHTLC && fwdInfo.OutgoingCTLV != l.cfg.FwrdingPolicy.TimeLockDelta { log.Errorf("Onion payload of incoming "+ "htlc(%x) has incorrect time-lock: "+ "expected %v, got %v", pd.RHash[:], l.cfg.FwrdingPolicy.TimeLockDelta, fwdInfo.OutgoingCTLV) failure := lnwire.NewFinalIncorrectCltvExpiry(fwdInfo.OutgoingCTLV) l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // If we're not currently in debug mode, and // the extended htlc doesn't meet the value // requested, then we'll fail the htlc. // Otherwise, we settle this htlc within our // local state update log, then send the update // entry to the remote party. if !l.cfg.DebugHTLC && pd.Amount < invoice.Terms.Value { log.Errorf("rejecting htlc due to incorrect "+ "amount: expected %v, received %v", invoice.Terms.Value, pd.Amount) failure := lnwire.FailIncorrectPaymentAmount{} l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } preimage := invoice.Terms.PaymentPreimage logIndex, err := l.channel.SettleHTLC(preimage) if err != nil { l.fail("unable to settle htlc: %v", err) return nil } // Notify the invoiceRegistry of the invoices // we just settled with this latest commitment // update. err = l.cfg.Registry.SettleInvoice(invoiceHash) if err != nil { l.fail("unable to settle invoice: %v", err) return nil } // HTLC was successfully settled locally send // notification about it remote peer. l.cfg.Peer.SendMessage(&lnwire.UpdateFufillHTLC{ ChanID: l.ChanID(), ID: logIndex, PaymentPreimage: preimage, }) needUpdate = true // There are additional channels left within this // route. So we'll verify that our forwarding // constraints have been properly met by by this // incoming HTLC. default: // We want to avoid forwarding an HTLC which // will expire in the near future, so we'll // reject an HTLC if its expiration time is too // close to the current height. timeDelta := l.cfg.FwrdingPolicy.TimeLockDelta if pd.Timeout-timeDelta <= heightNow { log.Errorf("htlc(%x) has an expiry "+ "that's too soon: expiry=%v, "+ "best_height=%v", pd.RHash[:], pd.Timeout, heightNow) var failure lnwire.FailureMessage update, err := l.cfg.GetLastChannelUpdate() if err != nil { failure = lnwire.NewTemporaryChannelFailure(nil) } else { failure = lnwire.NewExpiryTooSoon(*update) } l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // As our second sanity check, we'll ensure that // the passed HTLC isn't too small. If so, then // we'll cancel the HTLC directly. if pd.Amount < l.cfg.FwrdingPolicy.MinHTLC { log.Errorf("Incoming htlc(%x) is too "+ "small: min_htlc=%v, hltc_value=%v", pd.RHash[:], l.cfg.FwrdingPolicy.MinHTLC, pd.Amount) // As part of the returned error, we'll // send our latest routing policy so // the sending node obtains the most up // to date data. var failure lnwire.FailureMessage update, err := l.cfg.GetLastChannelUpdate() if err != nil { failure = lnwire.NewTemporaryChannelFailure(nil) } else { failure = lnwire.NewAmountBelowMinimum( pd.Amount, *update) } l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // Next, using the amount of the incoming HTLC, // we'll calculate the expected fee this // incoming HTLC must carry in order to be // accepted. expectedFee := ExpectedFee( l.cfg.FwrdingPolicy, fwdInfo.AmountToForward, ) // If the amount of the incoming HTLC, minus // our expected fee isn't equal to the // forwarding instructions, then either the // values have been tampered with, or the send // used incorrect/dated information to // construct the forwarding information for // this hop. In any case, we'll cancel this // HTLC. if pd.Amount-expectedFee != fwdInfo.AmountToForward { log.Errorf("Incoming htlc(%x) has "+ "insufficient fee: expected "+ "%v, got %v", pd.RHash[:], int64(expectedFee), int64(pd.Amount-fwdInfo.AmountToForward)) // As part of the returned error, we'll // send our latest routing policy so // the sending node obtains the most up // to date data. var failure lnwire.FailureMessage update, err := l.cfg.GetLastChannelUpdate() if err != nil { failure = lnwire.NewTemporaryChannelFailure(nil) } else { failure = lnwire.NewFeeInsufficient(pd.Amount, *update) } l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // Finally, we'll ensure that the time-lock on // the outgoing HTLC meets the following // constraint: the incoming time-lock minus our // time-lock delta should equal the outgoing // time lock. Otherwise, whether the sender // messed up, or an intermediate node tampered // with the HTLC. if pd.Timeout-timeDelta != fwdInfo.OutgoingCTLV { log.Errorf("Incoming htlc(%x) has "+ "incorrect time-lock value: expected "+ "%v blocks, got %v blocks", pd.RHash[:], pd.Timeout-timeDelta, fwdInfo.OutgoingCTLV) // Grab the latest routing policy so // the sending node is up to date with // our current policy. update, err := l.cfg.GetLastChannelUpdate() if err != nil { l.fail("unable to create channel update "+ "while handling the error: %v", err) return nil } failure := lnwire.NewIncorrectCltvExpiry( pd.Timeout, *update) l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } // With all our forwarding constraints met, // we'll create the outgoing HTLC using the // parameters as specified in the forwarding // info. addMsg := &lnwire.UpdateAddHTLC{ Expiry: fwdInfo.OutgoingCTLV, Amount: fwdInfo.AmountToForward, PaymentHash: pd.RHash, } // Finally, we'll encode the onion packet for // the _next_ hop using the hop iterator // decoded for the current hop. buf := bytes.NewBuffer(addMsg.OnionBlob[0:0]) err := chanIterator.EncodeNextHop(buf) if err != nil { log.Errorf("unable to encode the "+ "remaining route %v", err) failure := lnwire.NewTemporaryChannelFailure(nil) l.sendHTLCError(pd.RHash, failure, obfuscator) needUpdate = true continue } updatePacket := newAddPacket(l.ShortChanID(), fwdInfo.NextHop, addMsg, obfuscator) packetsToForward = append(packetsToForward, updatePacket) } } } if needUpdate { // With all the settle/cancel updates added to the local and // remote HTLC logs, initiate a state transition by updating // the remote commitment chain. if err := l.updateCommitTx(); err != nil { l.fail("unable to update commitment: %v", err) return nil } } return packetsToForward } // sendHTLCError functions cancels HTLC and send cancel message back to the // peer from which HTLC was received. func (l *channelLink) sendHTLCError(rHash [32]byte, failure lnwire.FailureMessage, obfuscator Obfuscator) { reason, err := obfuscator.InitialObfuscate(failure) if err != nil { log.Errorf("unable to obfuscate error: %v", err) return } index, err := l.channel.FailHTLC(rHash) if err != nil { log.Errorf("unable cancel htlc: %v", err) return } l.cfg.Peer.SendMessage(&lnwire.UpdateFailHTLC{ ChanID: l.ChanID(), ID: index, Reason: reason, }) } // sendMalformedHTLCError helper function which sends the malformed HTLC update // to the payment sender. func (l *channelLink) sendMalformedHTLCError(rHash [32]byte, code lnwire.FailCode, onionBlob []byte) { index, err := l.channel.FailHTLC(rHash) if err != nil { log.Errorf("unable cancel htlc: %v", err) return } l.cfg.Peer.SendMessage(&lnwire.UpdateFailMalformedHTLC{ ChanID: l.ChanID(), ID: index, ShaOnionBlob: sha256.Sum256(onionBlob), FailureCode: code, }) } // fail helper function which is used to encapsulate the action necessary for // proper disconnect. func (l *channelLink) fail(format string, a ...interface{}) { reason := errors.Errorf(format, a...) log.Error(reason) l.cfg.Peer.Disconnect(reason) }