package lnwallet_test import ( "bytes" "encoding/hex" "fmt" "io/ioutil" "math/rand" "net" "os" "os/exec" "path/filepath" "reflect" "runtime" "strings" "testing" "time" "github.com/coreos/bbolt" "github.com/davecgh/go-spew/spew" "github.com/lightninglabs/neutrino" "github.com/roasbeef/btcwallet/chain" "github.com/roasbeef/btcwallet/walletdb" _ "github.com/roasbeef/btcwallet/walletdb/bdb" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/chainntnfs/btcdnotify" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/keychain" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwallet/btcwallet" "github.com/lightningnetwork/lnd/lnwire" "github.com/roasbeef/btcd/btcjson" "github.com/roasbeef/btcd/chaincfg" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/rpcclient" "github.com/roasbeef/btcd/btcec" "github.com/roasbeef/btcd/integration/rpctest" "github.com/roasbeef/btcd/txscript" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" ) var ( privPass = []byte("private-test") // For simplicity a single priv key controls all of our test outputs. testWalletPrivKey = []byte{ 0x2b, 0xd8, 0x06, 0xc9, 0x7f, 0x0e, 0x00, 0xaf, 0x1a, 0x1f, 0xc3, 0x32, 0x8f, 0xa7, 0x63, 0xa9, 0x26, 0x97, 0x23, 0xc8, 0xdb, 0x8f, 0xac, 0x4f, 0x93, 0xaf, 0x71, 0xdb, 0x18, 0x6d, 0x6e, 0x90, } bobsPrivKey = []byte{ 0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda, 0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, 0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9, } // Use a hard-coded HD seed. testHdSeed = chainhash.Hash{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9, 0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } aliceHDSeed = chainhash.Hash{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x18, 0xa3, 0xef, 0xb9, 0x64, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } bobHDSeed = chainhash.Hash{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x98, 0xa3, 0xef, 0xb9, 0x69, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } netParams = &chaincfg.RegressionNetParams chainHash = netParams.GenesisHash _, alicePub = btcec.PrivKeyFromBytes(btcec.S256(), testHdSeed[:]) _, bobPub = btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey) // The number of confirmations required to consider any created channel // open. numReqConfs uint16 = 1 csvDelay uint16 = 4 bobAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000") aliceAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.3:9000") ) // assertProperBalance asserts than the total value of the unspent outputs // within the wallet are *exactly* amount. If unable to retrieve the current // balance, or the assertion fails, the test will halt with a fatal error. func assertProperBalance(t *testing.T, lw *lnwallet.LightningWallet, numConfirms int32, amount int64) { balance, err := lw.ConfirmedBalance(numConfirms) if err != nil { t.Fatalf("unable to query for balance: %v", err) } if balance != btcutil.Amount(amount*1e8) { t.Fatalf("wallet credits not properly loaded, should have 40BTC, "+ "instead have %v", balance) } } func assertChannelOpen(t *testing.T, miner *rpctest.Harness, numConfs uint32, c <-chan *lnwallet.LightningChannel) *lnwallet.LightningChannel { // Mine a single block. After this block is mined, the channel should // be considered fully open. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } select { case lnc := <-c: return lnc case <-time.After(time.Second * 5): t.Fatalf("channel never opened") return nil } } func assertReservationDeleted(res *lnwallet.ChannelReservation, t *testing.T) { if err := res.Cancel(); err == nil { t.Fatalf("reservation wasn't deleted from wallet") } } // calcStaticFee calculates appropriate fees for commitment transactions. This // function provides a simple way to allow test balance assertions to take fee // calculations into account. // TODO(bvu): Refactor when dynamic fee estimation is added. func calcStaticFee(numHTLCs int) btcutil.Amount { const ( commitWeight = btcutil.Amount(724) htlcWeight = 172 feePerKw = btcutil.Amount(250/4) * 1000 ) return feePerKw * (commitWeight + btcutil.Amount(htlcWeight*numHTLCs)) / 1000 } func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet, numOutputs, btcPerOutput int) error { // For initial neutrino connection, wait a second. // TODO(aakselrod): Eliminate the need for this. switch w.BackEnd() { case "neutrino": time.Sleep(time.Second) } // Using the mining node, spend from a coinbase output numOutputs to // give us btcPerOutput with each output. satoshiPerOutput := int64(btcPerOutput * 1e8) expectedBalance, err := w.ConfirmedBalance(1) if err != nil { return err } expectedBalance += btcutil.Amount(satoshiPerOutput * int64(numOutputs)) addrs := make([]btcutil.Address, 0, numOutputs) for i := 0; i < numOutputs; i++ { // Grab a fresh address from the wallet to house this output. walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { return err } script, err := txscript.PayToAddrScript(walletAddr) if err != nil { return err } addrs = append(addrs, walletAddr) output := &wire.TxOut{ Value: satoshiPerOutput, PkScript: script, } if _, err := miner.SendOutputs([]*wire.TxOut{output}, 10); err != nil { return err } } // TODO(roasbeef): shouldn't hardcode 10, use config param that dictates // how many confs we wait before opening a channel. // Generate 10 blocks with the mining node, this should mine all // numOutputs transactions created above. We generate 10 blocks here // in order to give all the outputs a "sufficient" number of confirmations. if _, err := miner.Node.Generate(10); err != nil { return err } // Wait until the wallet has finished syncing up to the main chain. ticker := time.NewTicker(100 * time.Millisecond) timeout := time.After(30 * time.Second) for range ticker.C { balance, err := w.ConfirmedBalance(1) if err != nil { return err } if balance == expectedBalance { break } select { case <-timeout: synced, _, err := w.IsSynced() if err != nil { return err } return fmt.Errorf("timed out after 30 seconds "+ "waiting for balance %v, current balance %v, "+ "synced: %t", expectedBalance, balance, synced) default: } } ticker.Stop() return nil } // createTestWallet creates a test LightningWallet will a total of 20BTC // available for funding channels. func createTestWallet(tempTestDir string, miningNode *rpctest.Harness, netParams *chaincfg.Params, notifier chainntnfs.ChainNotifier, wc lnwallet.WalletController, keyRing keychain.SecretKeyRing, signer lnwallet.Signer, bio lnwallet.BlockChainIO) (*lnwallet.LightningWallet, error) { dbDir := filepath.Join(tempTestDir, "cdb") cdb, err := channeldb.Open(dbDir) if err != nil { return nil, err } cfg := lnwallet.Config{ Database: cdb, Notifier: notifier, SecretKeyRing: keyRing, WalletController: wc, Signer: signer, ChainIO: bio, FeeEstimator: lnwallet.StaticFeeEstimator{FeeRate: 10}, DefaultConstraints: channeldb.ChannelConstraints{ DustLimit: 500, MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100, ChanReserve: 100, MinHTLC: 400, MaxAcceptedHtlcs: 900, }, NetParams: *netParams, } wallet, err := lnwallet.NewLightningWallet(cfg) if err != nil { return nil, err } if err := wallet.Startup(); err != nil { return nil, err } // Load our test wallet with 20 outputs each holding 4BTC. if err := loadTestCredits(miningNode, wallet, 20, 4); err != nil { return nil, err } return wallet, nil } func testDualFundingReservationWorkflow(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet, t *testing.T) { const fundingAmount = btcutil.Amount(5 * 1e8) // In this scenario, we'll test a dual funder reservation, with each // side putting in 10 BTC. // Alice initiates a channel funded with 5 BTC for each side, so 10 BTC // total. She also generates 2 BTC in change. feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feeRate.FeePerKWeight() aliceChanReservation, err := alice.InitChannelReservation( fundingAmount*2, fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } aliceChanReservation.SetNumConfsRequired(numReqConfs) aliceChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmount), 1, 10) // The channel reservation should now be populated with a multi-sig key // from our HD chain, a change output with 3 BTC, and 2 outputs // selected of 4 BTC each. Additionally, the rest of the items needed // to fulfill a funding contribution should also have been filled in. aliceContribution := aliceChanReservation.OurContribution() if len(aliceContribution.Inputs) != 2 { t.Fatalf("outputs for funding tx not properly selected, have %v "+ "outputs should have 2", len(aliceContribution.Inputs)) } assertContributionInitPopulated(t, aliceContribution) // Bob does the same, generating his own contribution. He then also // receives' Alice's contribution, and consumes that so we can continue // the funding process. bobChanReservation, err := bob.InitChannelReservation(fundingAmount*2, fundingAmount, 0, feePerKw, feeRate, alicePub, aliceAddr, chainHash, lnwire.FFAnnounceChannel) if err != nil { t.Fatalf("bob unable to init channel reservation: %v", err) } bobChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmount), 1, 10) bobChanReservation.SetNumConfsRequired(numReqConfs) assertContributionInitPopulated(t, bobChanReservation.OurContribution()) err = bobChanReservation.ProcessContribution(aliceContribution) if err != nil { t.Fatalf("bob unable to process alice's contribution: %v", err) } assertContributionInitPopulated(t, bobChanReservation.TheirContribution()) bobContribution := bobChanReservation.OurContribution() // Bob then sends over his contribution, which will be consumed by // Alice. After this phase, Alice should have all the necessary // material required to craft the funding transaction and commitment // transactions. err = aliceChanReservation.ProcessContribution(bobContribution) if err != nil { t.Fatalf("alice unable to process bob's contribution: %v", err) } assertContributionInitPopulated(t, aliceChanReservation.TheirContribution()) // At this point, all Alice's signatures should be fully populated. aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures() if aliceFundingSigs == nil { t.Fatalf("alice's funding signatures not populated") } if aliceCommitSig == nil { t.Fatalf("alice's commit signatures not populated") } // Additionally, Bob's signatures should also be fully populated. bobFundingSigs, bobCommitSig := bobChanReservation.OurSignatures() if bobFundingSigs == nil { t.Fatalf("bob's funding signatures not populated") } if bobCommitSig == nil { t.Fatalf("bob's commit signatures not populated") } // To conclude, we'll consume first Alice's signatures with Bob, and // then the other way around. _, err = aliceChanReservation.CompleteReservation( bobFundingSigs, bobCommitSig, ) if err != nil { for _, in := range aliceChanReservation.FinalFundingTx().TxIn { fmt.Println(in.PreviousOutPoint.String()) } t.Fatalf("unable to consume alice's sigs: %v", err) } _, err = bobChanReservation.CompleteReservation( aliceFundingSigs, aliceCommitSig, ) if err != nil { t.Fatalf("unable to consume bob's sigs: %v", err) } // At this point, the funding tx should have been populated. fundingTx := aliceChanReservation.FinalFundingTx() if fundingTx == nil { t.Fatalf("funding transaction never created!") } // The resulting active channel state should have been persisted to the // DB. fundingSha := fundingTx.TxHash() aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved") } if aliceChannels[0].ChanType != channeldb.DualFunder { t.Fatalf("channel not detected as dual funder") } bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved") } if bobChannels[0].ChanType != channeldb.DualFunder { t.Fatalf("channel not detected as dual funder") } // Mine a single block, the funding transaction should be included // within this block. err = waitForMempoolTx(miner, &fundingSha) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } blockHashes, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate block: %v", err) } block, err := miner.Node.GetBlock(blockHashes[0]) if err != nil { t.Fatalf("unable to find block: %v", err) } if len(block.Transactions) != 2 { t.Fatalf("funding transaction wasn't mined: %v", err) } blockTx := block.Transactions[1] if blockTx.TxHash() != fundingSha { t.Fatalf("incorrect transaction was mined") } assertReservationDeleted(aliceChanReservation, t) assertReservationDeleted(bobChanReservation, t) // Wait for wallets to catch up to prevent issues in subsequent tests. err = waitForWalletSync(miner, alice) if err != nil { t.Fatalf("unable to sync alice: %v", err) } err = waitForWalletSync(miner, bob) if err != nil { t.Fatalf("unable to sync bob: %v", err) } } func testFundingTransactionLockedOutputs(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // Create a single channel asking for 16 BTC total. fundingAmount := btcutil.Amount(8 * 1e8) feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feeRate.FeePerKWeight() _, err = alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel, ) if err != nil { t.Fatalf("unable to initialize funding reservation 1: %v", err) } // Now attempt to reserve funds for another channel, this time // requesting 900 BTC. We only have around 64BTC worth of outpoints // that aren't locked, so this should fail. amt := btcutil.Amount(900 * 1e8) failedReservation, err := alice.InitChannelReservation(amt, amt, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel) if err == nil { t.Fatalf("not error returned, should fail on coin selection") } if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok { t.Fatalf("error not coinselect error: %v", err) } if failedReservation != nil { t.Fatalf("reservation should be nil") } } func testFundingCancellationNotEnoughFunds(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feeRate.FeePerKWeight() // Create a reservation for 44 BTC. fundingAmount := btcutil.Amount(44 * 1e8) chanReservation, err := alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } // Attempt to create another channel with 44 BTC, this should fail. _, err = alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel, ) if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok { t.Fatalf("coin selection succeeded should have insufficient funds: %v", err) } // Now cancel that old reservation. if err := chanReservation.Cancel(); err != nil { t.Fatalf("unable to cancel reservation: %v", err) } // Those outpoints should no longer be locked. lockedOutPoints := alice.LockedOutpoints() if len(lockedOutPoints) != 0 { t.Fatalf("outpoints still locked") } // Reservation ID should no longer be tracked. numReservations := alice.ActiveReservations() if len(alice.ActiveReservations()) != 0 { t.Fatalf("should have 0 reservations, instead have %v", numReservations) } // TODO(roasbeef): create method like Balance that ignores locked // outpoints, will let us fail early/fast instead of querying and // attempting coin selection. // Request to fund a new channel should now succeed. _, err = alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } } func testCancelNonExistentReservation(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } // Create our own reservation, give it some ID. res, err := lnwallet.NewChannelReservation( 10000, 10000, feeRate.FeePerKWeight(), alice, 22, 10, &testHdSeed, lnwire.FFAnnounceChannel, ) if err != nil { t.Fatalf("unable to create res: %v", err) } // Attempt to cancel this reservation. This should fail, we know // nothing of it. if err := res.Cancel(); err == nil { t.Fatalf("cancelled non-existent reservation") } } func testReservationInitiatorBalanceBelowDustCancel(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // We'll attempt to create a new reservation with an extremely high fee // rate. This should push our balance into the negative and result in a // failure to create the reservation. fundingAmount := btcutil.Amount(4 * 1e8) feePerVSize := lnwallet.SatPerVByte(btcutil.SatoshiPerBitcoin * 4 / 100) feePerKw := feePerVSize.FeePerKWeight() _, err := alice.InitChannelReservation( fundingAmount, fundingAmount, 0, feePerKw, feePerVSize, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel, ) switch { case err == nil: t.Fatalf("initialization should have failed due to " + "insufficient local amount") case !strings.Contains(err.Error(), "Funder balance too small"): t.Fatalf("incorrect error: %v", err) } } func assertContributionInitPopulated(t *testing.T, c *lnwallet.ChannelContribution) { _, _, line, _ := runtime.Caller(1) if c.FirstCommitmentPoint == nil { t.Fatalf("line #%v: commitment point not fond", line) } if c.CsvDelay == 0 { t.Fatalf("line #%v: csv delay not set", line) } if c.MultiSigKey.PubKey == nil { t.Fatalf("line #%v: multi-sig key not set", line) } if c.RevocationBasePoint.PubKey == nil { t.Fatalf("line #%v: revocation key not set", line) } if c.PaymentBasePoint.PubKey == nil { t.Fatalf("line #%v: payment key not set", line) } if c.DelayBasePoint.PubKey == nil { t.Fatalf("line #%v: delay key not set", line) } if c.DustLimit == 0 { t.Fatalf("line #%v: dust limit not set", line) } if c.MaxPendingAmount == 0 { t.Fatalf("line #%v: max pending amt not set", line) } if c.ChanReserve == 0 { t.Fatalf("line #%v: chan reserve not set", line) } if c.MinHTLC == 0 { t.Fatalf("line #%v: min htlc not set", line) } if c.MaxAcceptedHtlcs == 0 { t.Fatalf("line #%v: max accepted htlc's not set", line) } } func testSingleFunderReservationWorkflow(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet, t *testing.T) { // For this scenario, Alice will be the channel initiator while bob // will act as the responder to the workflow. // First, Alice will Initialize a reservation for a channel with 4 BTC // funded solely by us. We'll also initially push 1 BTC of the channel // towards Bob's side. fundingAmt := btcutil.Amount(4 * 1e8) pushAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerVSize(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feeRate.FeePerKWeight() aliceChanReservation, err := alice.InitChannelReservation(fundingAmt, fundingAmt, pushAmt, feePerKw, feeRate, bobPub, bobAddr, chainHash, lnwire.FFAnnounceChannel) if err != nil { t.Fatalf("unable to init channel reservation: %v", err) } aliceChanReservation.SetNumConfsRequired(numReqConfs) aliceChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmt), 1, 10) // Verify all contribution fields have been set properly. aliceContribution := aliceChanReservation.OurContribution() if len(aliceContribution.Inputs) < 1 { t.Fatalf("outputs for funding tx not properly selected, have %v "+ "outputs should at least 1", len(aliceContribution.Inputs)) } if len(aliceContribution.ChangeOutputs) != 1 { t.Fatalf("coin selection failed, should have one change outputs, "+ "instead have: %v", len(aliceContribution.ChangeOutputs)) } assertContributionInitPopulated(t, aliceContribution) // Next, Bob receives the initial request, generates a corresponding // reservation initiation, then consume Alice's contribution. bobChanReservation, err := bob.InitChannelReservation(fundingAmt, 0, pushAmt, feePerKw, feeRate, alicePub, aliceAddr, chainHash, lnwire.FFAnnounceChannel) if err != nil { t.Fatalf("unable to create bob reservation: %v", err) } bobChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmt), 1, 10) bobChanReservation.SetNumConfsRequired(numReqConfs) // We'll ensure that Bob's contribution also gets generated properly. bobContribution := bobChanReservation.OurContribution() assertContributionInitPopulated(t, bobContribution) // With his contribution generated, he can now process Alice's // contribution. err = bobChanReservation.ProcessSingleContribution(aliceContribution) if err != nil { t.Fatalf("bob unable to process alice's contribution: %v", err) } assertContributionInitPopulated(t, bobChanReservation.TheirContribution()) // Bob will next send over his contribution to Alice, we simulate this // by having Alice immediately process his contribution. err = aliceChanReservation.ProcessContribution(bobContribution) if err != nil { t.Fatalf("alice unable to process bob's contribution") } assertContributionInitPopulated(t, bobChanReservation.TheirContribution()) // At this point, Alice should have generated all the signatures // required for the funding transaction, as well as Alice's commitment // signature to bob. aliceRemoteContribution := aliceChanReservation.TheirContribution() aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures() if aliceFundingSigs == nil { t.Fatalf("funding sigs not found") } if aliceCommitSig == nil { t.Fatalf("commitment sig not found") } // Additionally, the funding tx and the funding outpoint should have // been populated. if aliceChanReservation.FinalFundingTx() == nil { t.Fatalf("funding transaction never created!") } if aliceChanReservation.FundingOutpoint() == nil { t.Fatalf("funding outpoint never created!") } // Their funds should also be filled in. if len(aliceRemoteContribution.Inputs) != 0 { t.Fatalf("bob shouldn't have any inputs, instead has %v", len(aliceRemoteContribution.Inputs)) } if len(aliceRemoteContribution.ChangeOutputs) != 0 { t.Fatalf("bob shouldn't have any change outputs, instead "+ "has %v", aliceRemoteContribution.ChangeOutputs[0].Value) } // Next, Alice will send over her signature for Bob's commitment // transaction, as well as the funding outpoint. fundingPoint := aliceChanReservation.FundingOutpoint() _, err = bobChanReservation.CompleteReservationSingle( fundingPoint, aliceCommitSig, ) if err != nil { t.Fatalf("bob unable to consume single reservation: %v", err) } // Finally, we'll conclude the reservation process by sending over // Bob's commitment signature, which is the final thing Alice needs to // be able to safely broadcast the funding transaction. _, bobCommitSig := bobChanReservation.OurSignatures() if bobCommitSig == nil { t.Fatalf("bob failed to generate commitment signature: %v", err) } _, err = aliceChanReservation.CompleteReservation( nil, bobCommitSig, ) if err != nil { t.Fatalf("alice unable to complete reservation: %v", err) } // The resulting active channel state should have been persisted to the // DB for both Alice and Bob. fundingTx := aliceChanReservation.FinalFundingTx() fundingSha := fundingTx.TxHash() aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if len(aliceChannels) != 1 { t.Fatalf("alice didn't save channel state: %v", err) } if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved: %v vs %v", hex.EncodeToString(aliceChannels[0].FundingOutpoint.Hash[:]), hex.EncodeToString(fundingSha[:])) } if !aliceChannels[0].IsInitiator { t.Fatalf("alice not detected as channel initiator") } if aliceChannels[0].ChanType != channeldb.SingleFunder { t.Fatalf("channel type is incorrect, expected %v instead got %v", channeldb.SingleFunder, aliceChannels[0].ChanType) } bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if len(bobChannels) != 1 { t.Fatalf("bob didn't save channel state: %v", err) } if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved: %v vs %v", hex.EncodeToString(bobChannels[0].FundingOutpoint.Hash[:]), hex.EncodeToString(fundingSha[:])) } if bobChannels[0].IsInitiator { t.Fatalf("bob not detected as channel responder") } if bobChannels[0].ChanType != channeldb.SingleFunder { t.Fatalf("channel type is incorrect, expected %v instead got %v", channeldb.SingleFunder, bobChannels[0].ChanType) } // Mine a single block, the funding transaction should be included // within this block. err = waitForMempoolTx(miner, &fundingSha) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } blockHashes, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate block: %v", err) } block, err := miner.Node.GetBlock(blockHashes[0]) if err != nil { t.Fatalf("unable to find block: %v", err) } if len(block.Transactions) != 2 { t.Fatalf("funding transaction wasn't mined: %d", len(block.Transactions)) } blockTx := block.Transactions[1] if blockTx.TxHash() != fundingSha { t.Fatalf("incorrect transaction was mined") } assertReservationDeleted(aliceChanReservation, t) assertReservationDeleted(bobChanReservation, t) } func testListTransactionDetails(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // Create 5 new outputs spendable by the wallet. const numTxns = 5 const outputAmt = btcutil.SatoshiPerBitcoin txids := make(map[chainhash.Hash]struct{}) for i := 0; i < numTxns; i++ { addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { t.Fatalf("unable to create new address: %v", err) } script, err := txscript.PayToAddrScript(addr) if err != nil { t.Fatalf("unable to create output script: %v", err) } output := &wire.TxOut{ Value: outputAmt, PkScript: script, } txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10) if err != nil { t.Fatalf("unable to send coinbase: %v", err) } txids[*txid] = struct{}{} } // Generate 10 blocks to mine all the transactions created above. const numBlocksMined = 10 blocks, err := miner.Node.Generate(numBlocksMined) if err != nil { t.Fatalf("unable to mine blocks: %v", err) } // Next, fetch all the current transaction details. err = waitForWalletSync(miner, alice) if err != nil { t.Fatalf("Couldn't sync Alice's wallet: %v", err) } txDetails, err := alice.ListTransactionDetails() if err != nil { t.Fatalf("unable to fetch tx details: %v", err) } // This is a mapping from: // blockHash -> transactionHash -> transactionOutputs blockTxOuts := make(map[chainhash.Hash]map[chainhash.Hash][]*wire.TxOut) // Each of the transactions created above should be found with the // proper details populated. for _, txDetail := range txDetails { if _, ok := txids[txDetail.Hash]; !ok { continue } if txDetail.NumConfirmations != numBlocksMined { t.Fatalf("num confs incorrect, got %v expected %v", txDetail.NumConfirmations, numBlocksMined) } if txDetail.Value != outputAmt { t.Fatalf("tx value incorrect, got %v expected %v", txDetail.Value, outputAmt) } if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) { t.Fatalf("block hash mismatch, got %v expected %v", txDetail.BlockHash, blocks[0]) } // This fetches the transactions in a block so that we can compare the // txouts stored in the mined transaction against the ones in the transaction // details if _, ok := blockTxOuts[*txDetail.BlockHash]; !ok { fetchedBlock, err := alice.Cfg.ChainIO.GetBlock(txDetail.BlockHash) if err != nil { t.Fatalf("err fetching block: %s", err) } transactions := make(map[chainhash.Hash][]*wire.TxOut, len(fetchedBlock.Transactions)) for _, tx := range fetchedBlock.Transactions { transactions[tx.TxHash()] = tx.TxOut } blockTxOuts[fetchedBlock.BlockHash()] = transactions } if txOuts, ok := blockTxOuts[*txDetail.BlockHash][txDetail.Hash]; !ok { t.Fatalf("tx (%v) not found in block (%v)", txDetail.Hash, txDetail.BlockHash) } else { var destinationAddresses []btcutil.Address for _, txOut := range txOuts { _, addrs, _, err := txscript.ExtractPkScriptAddrs(txOut.PkScript, &alice.Cfg.NetParams) if err != nil { t.Fatalf("err extract script addresses: %s", err) } destinationAddresses = append(destinationAddresses, addrs...) } if !reflect.DeepEqual(txDetail.DestAddresses, destinationAddresses) { t.Fatalf("destination addresses mismatch, got %v expected %v", txDetail.DestAddresses, destinationAddresses) } } delete(txids, txDetail.Hash) } if len(txids) != 0 { t.Fatalf("all transactions not found in details!") } // Next create a transaction paying to an output which isn't under the // wallet's control. b := txscript.NewScriptBuilder() b.AddOp(txscript.OP_0) outputScript, err := b.Script() if err != nil { t.Fatalf("unable to make output script: %v", err) } burnOutput := wire.NewTxOut(outputAmt, outputScript) burnTXID, err := alice.SendOutputs([]*wire.TxOut{burnOutput}, 10) if err != nil { t.Fatalf("unable to create burn tx: %v", err) } err = waitForMempoolTx(miner, burnTXID) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } burnBlock, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to mine block: %v", err) } // Fetch the transaction details again, the new transaction should be // shown as debiting from the wallet's balance. err = waitForWalletSync(miner, alice) if err != nil { t.Fatalf("Couldn't sync Alice's wallet: %v", err) } txDetails, err = alice.ListTransactionDetails() if err != nil { t.Fatalf("unable to fetch tx details: %v", err) } var burnTxFound bool for _, txDetail := range txDetails { if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) { continue } burnTxFound = true if txDetail.NumConfirmations != 1 { t.Fatalf("num confs incorrect, got %v expected %v", txDetail.NumConfirmations, 1) } // We assert that the value is greater than the amount we // attempted to send, as the wallet should have paid some amount // of network fees. if txDetail.Value >= -outputAmt { fmt.Println(spew.Sdump(txDetail)) t.Fatalf("tx value incorrect, got %v expected %v", int64(txDetail.Value), -int64(outputAmt)) } if !bytes.Equal(txDetail.BlockHash[:], burnBlock[0][:]) { t.Fatalf("block hash mismatch, got %v expected %v", txDetail.BlockHash, burnBlock[0]) } } if !burnTxFound { t.Fatal("tx burning btc not found") } } func testTransactionSubscriptions(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // First, check to see if this wallet meets the TransactionNotifier // interface, if not then we'll skip this test for this particular // implementation of the WalletController. txClient, err := alice.SubscribeTransactions() if err != nil { t.Skipf("unable to generate tx subscription: %v", err) } defer txClient.Cancel() const ( outputAmt = btcutil.SatoshiPerBitcoin numTxns = 3 ) unconfirmedNtfns := make(chan struct{}) switch alice.BackEnd() { case "neutrino": // Neutrino doesn't listen for unconfirmed transactions. default: go func() { for i := 0; i < numTxns; i++ { txDetail := <-txClient.UnconfirmedTransactions() if txDetail.NumConfirmations != 0 { t.Fatalf("incorrect number of confs, "+ "expected %v got %v", 0, txDetail.NumConfirmations) } if txDetail.Value != outputAmt { t.Fatalf("incorrect output amt, "+ "expected %v got %v", outputAmt, txDetail.Value) } if txDetail.BlockHash != nil { t.Fatalf("block hash should be nil, "+ "is instead %v", txDetail.BlockHash) } } close(unconfirmedNtfns) }() } // Next, fetch a fresh address from the wallet, create 3 new outputs // with the pkScript. for i := 0; i < numTxns; i++ { addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { t.Fatalf("unable to create new address: %v", err) } script, err := txscript.PayToAddrScript(addr) if err != nil { t.Fatalf("unable to create output script: %v", err) } output := &wire.TxOut{ Value: outputAmt, PkScript: script, } txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10) if err != nil { t.Fatalf("unable to send coinbase: %v", err) } err = waitForMempoolTx(miner, txid) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } } switch alice.BackEnd() { case "neutrino": // Neutrino doesn't listen for on unconfirmed transactions. default: // We should receive a notification for all three transactions // generated above. select { case <-time.After(time.Second * 10): t.Fatalf("transactions not received after 10 seconds") case <-unconfirmedNtfns: // Fall through on successs } } confirmedNtfns := make(chan struct{}) go func() { for i := 0; i < numTxns; i++ { txDetail := <-txClient.ConfirmedTransactions() if txDetail.NumConfirmations != 1 { t.Fatalf("incorrect number of confs for %s, expected %v got %v", txDetail.Hash, 1, txDetail.NumConfirmations) } if txDetail.Value != outputAmt { t.Fatalf("incorrect output amt, expected %v got %v in txid %s", outputAmt, txDetail.Value, txDetail.Hash) } } close(confirmedNtfns) }() // Next mine a single block, all the transactions generated above // should be included. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } // We should receive a notification for all three transactions // since they should be mined in the next block. select { case <-time.After(time.Second * 5): t.Fatalf("transactions not received after 5 seconds") case <-confirmedNtfns: // Fall through on success } } // testPublishTransaction checks that PublishTransaction returns the // expected error types in case the transaction being published // conflicts with the current mempool or chain. func testPublishTransaction(r *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // mineAndAssert mines a block and ensures the passed TX // is part of that block. mineAndAssert := func(tx *wire.MsgTx) error { blockHashes, err := r.Node.Generate(1) if err != nil { return fmt.Errorf("unable to generate block: %v", err) } block, err := r.Node.GetBlock(blockHashes[0]) if err != nil { return fmt.Errorf("unable to find block: %v", err) } if len(block.Transactions) != 2 { return fmt.Errorf("expected 2 txs in block, got %d", len(block.Transactions)) } blockTx := block.Transactions[1] if blockTx.TxHash() != tx.TxHash() { return fmt.Errorf("incorrect transaction was mined") } // Sleep for a second before returning, to make sure the // block has propagated. time.Sleep(1 * time.Second) return nil } // Generate a pubkey, and pay-to-addr script. pubKey, err := alice.DeriveNextKey( keychain.KeyFamilyMultiSig, ) if err != nil { t.Fatalf("unable to obtain public key: %v", err) } pubkeyHash := btcutil.Hash160(pubKey.PubKey.SerializeCompressed()) keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash, &chaincfg.RegressionNetParams) if err != nil { t.Fatalf("unable to create addr: %v", err) } keyScript, err := txscript.PayToAddrScript(keyAddr) if err != nil { t.Fatalf("unable to generate script: %v", err) } // txFromOutput takes a tx, and creates a new tx that spends // the output from this tx, to an address derived from payToPubKey. // NB: assumes that the output from tx is paid to pubKey. txFromOutput := func(tx *wire.MsgTx, payToPubKey *btcec.PublicKey, txFee btcutil.Amount) *wire.MsgTx { // Create a script to pay to. payToPubkeyHash := btcutil.Hash160(payToPubKey.SerializeCompressed()) payToKeyAddr, err := btcutil.NewAddressWitnessPubKeyHash(payToPubkeyHash, &chaincfg.RegressionNetParams) if err != nil { t.Fatalf("unable to create addr: %v", err) } payToScript, err := txscript.PayToAddrScript(payToKeyAddr) if err != nil { t.Fatalf("unable to generate script: %v", err) } // We assume the output was paid to the keyScript made earlier. var outputIndex uint32 if len(tx.TxOut) == 1 || bytes.Equal(tx.TxOut[0].PkScript, keyScript) { outputIndex = 0 } else { outputIndex = 1 } outputValue := tx.TxOut[outputIndex].Value // With the index located, we can create a transaction spending // the referenced output. tx1 := wire.NewMsgTx(2) tx1.AddTxIn(&wire.TxIn{ PreviousOutPoint: wire.OutPoint{ Hash: tx.TxHash(), Index: outputIndex, }, // We don't support RBF, so set sequence to max. Sequence: wire.MaxTxInSequenceNum, }) tx1.AddTxOut(&wire.TxOut{ Value: outputValue - int64(txFee), PkScript: payToScript, }) // Now we can populate the sign descriptor which we'll use to // generate the signature. signDesc := &lnwallet.SignDescriptor{ KeyDesc: keychain.KeyDescriptor{ PubKey: pubKey.PubKey, }, WitnessScript: keyScript, Output: tx.TxOut[outputIndex], HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(tx1), InputIndex: 0, // Has only one input. } // With the descriptor created, we use it to generate a // signature, then manually create a valid witness stack we'll // use for signing. spendSig, err := alice.Cfg.Signer.SignOutputRaw(tx1, signDesc) if err != nil { t.Fatalf("unable to generate signature: %v", err) } witness := make([][]byte, 2) witness[0] = append(spendSig, byte(txscript.SigHashAll)) witness[1] = pubKey.PubKey.SerializeCompressed() tx1.TxIn[0].Witness = witness // Finally, attempt to validate the completed transaction. This // should succeed if the wallet was able to properly generate // the proper private key. vm, err := txscript.NewEngine(keyScript, tx1, 0, txscript.StandardVerifyFlags, nil, nil, outputValue) if err != nil { t.Fatalf("unable to create engine: %v", err) } if err := vm.Execute(); err != nil { t.Fatalf("spend is invalid: %v", err) } return tx1 } // newTx sends coins from Alice's wallet, mines this transaction, // and creates a new, unconfirmed tx that spends this output to // pubKey. newTx := func() *wire.MsgTx { // With the script fully assembled, instruct the wallet to fund // the output with a newly created transaction. newOutput := &wire.TxOut{ Value: btcutil.SatoshiPerBitcoin, PkScript: keyScript, } txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10) if err != nil { t.Fatalf("unable to create output: %v", err) } // Query for the transaction generated above so we can located // the index of our output. err = waitForMempoolTx(r, txid) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } tx, err := r.Node.GetRawTransaction(txid) if err != nil { t.Fatalf("unable to query for tx: %v", err) } if err := mineAndAssert(tx.MsgTx()); err != nil { t.Fatalf("unable to mine tx: %v", err) } txFee := btcutil.Amount(0.1 * btcutil.SatoshiPerBitcoin) tx1 := txFromOutput(tx.MsgTx(), pubKey.PubKey, txFee) return tx1 } // We will first check that publishing a transaction already // in the mempool does NOT return an error. Create the tx. tx1 := newTx() // Publish the transaction. if err := alice.PublishTransaction(tx1); err != nil { t.Fatalf("unable to publish: %v", err) } txid1 := tx1.TxHash() err = waitForMempoolTx(r, &txid1) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Publish the exact same transaction again. This should // not return an error, even though the transaction is // already in the mempool. if err := alice.PublishTransaction(tx1); err != nil { t.Fatalf("unable to publish: %v", err) } // Mine the transaction. if _, err := r.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } // We'll now test that we don't get an error if we try // to publish a transaction that is already mined. // // Create a new transaction. We must do this to properly // test the reject messages from our peers. They might // only send us a reject message for a given tx once, // so we create a new to make sure it is not just // immediately rejected. tx2 := newTx() // Publish this tx. if err := alice.PublishTransaction(tx2); err != nil { t.Fatalf("unable to publish: %v", err) } txid2 := tx2.TxHash() err = waitForMempoolTx(r, &txid2) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Mine the transaction. if err := mineAndAssert(tx2); err != nil { t.Fatalf("unable to mine tx: %v", err) } // Publish the transaction again. It is already mined, // and we don't expect this to return an error. if err := alice.PublishTransaction(tx2); err != nil { t.Fatalf("unable to publish: %v", err) } // Now we'll try to double spend an output with a different // transaction. Create a new tx and publish it. This is // the output we'll try to double spend. tx3 := newTx() if err := alice.PublishTransaction(tx3); err != nil { t.Fatalf("unable to publish: %v", err) } txid3 := tx3.TxHash() err = waitForMempoolTx(r, &txid3) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Mine the transaction. if err := mineAndAssert(tx3); err != nil { t.Fatalf("unable to mine tx: %v", err) } // Now we create a transaction that spends the output // from the tx just mined. This should be accepted // into the mempool. txFee := btcutil.Amount(0.05 * btcutil.SatoshiPerBitcoin) tx4 := txFromOutput(tx3, pubKey.PubKey, txFee) if err := alice.PublishTransaction(tx4); err != nil { t.Fatalf("unable to publish: %v", err) } txid4 := tx4.TxHash() err = waitForMempoolTx(r, &txid4) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Create a new key we'll pay to, to ensure we create // a unique transaction. pubKey2, err := alice.DeriveNextKey( keychain.KeyFamilyMultiSig, ) if err != nil { t.Fatalf("unable to obtain public key: %v", err) } // Create a new transaction that spends the output from // tx3, and that pays to a different address. We expect // this to be rejected because it is a double spend. tx5 := txFromOutput(tx3, pubKey2.PubKey, txFee) if err := alice.PublishTransaction(tx5); err != lnwallet.ErrDoubleSpend { t.Fatalf("expected ErrDoubleSpend, got: %v", err) } // Create another transaction that spends the same output, // but has a higher fee. We expect also this tx to be // rejected, since the sequence number of tx3 is set to Max, // indicating it is not replacable. pubKey3, err := alice.DeriveNextKey( keychain.KeyFamilyMultiSig, ) if err != nil { t.Fatalf("unable to obtain public key: %v", err) } tx6 := txFromOutput(tx3, pubKey3.PubKey, 3*txFee) // Expect rejection. if err := alice.PublishTransaction(tx6); err != lnwallet.ErrDoubleSpend { t.Fatalf("expected ErrDoubleSpend, got: %v", err) } // At last we try to spend an output already spent by a // confirmed transaction. // TODO(halseth): we currently skip this test for neutrino, // as the backing btcd node will consider the tx being an // orphan, and will accept it. Should look into if this is // the behavior also for bitcoind, and update test // accordingly. if alice.BackEnd() != "neutrino" { // Mine the tx spending tx3. if err := mineAndAssert(tx4); err != nil { t.Fatalf("unable to mine tx: %v", err) } // Create another tx spending tx3. pubKey4, err := alice.DeriveNextKey( keychain.KeyFamilyMultiSig, ) if err != nil { t.Fatalf("unable to obtain public key: %v", err) } tx7 := txFromOutput(tx3, pubKey4.PubKey, txFee) // Expect rejection. if err := alice.PublishTransaction(tx7); err != lnwallet.ErrDoubleSpend { t.Fatalf("expected ErrDoubleSpend, got: %v", err) } } // TODO(halseth): test replaceable transactions when btcd // gets RBF support. } func testSignOutputUsingTweaks(r *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // We'd like to test the ability of the wallet's Signer implementation // to be able to sign with a private key derived from tweaking the // specific public key. This scenario exercises the case when the // wallet needs to sign for a sweep of a revoked output, or just claim // any output that pays to a tweaked key. // First, generate a new public key under the control of the wallet, // then generate a revocation key using it. pubKey, err := alice.DeriveNextKey( keychain.KeyFamilyMultiSig, ) if err != nil { t.Fatalf("unable to obtain public key: %v", err) } // As we'd like to test both single tweak, and double tweak spends, // we'll generate a commitment pre-image, then derive a revocation key // and single tweak from that. commitPreimage := bytes.Repeat([]byte{2}, 32) commitSecret, commitPoint := btcec.PrivKeyFromBytes(btcec.S256(), commitPreimage) revocationKey := lnwallet.DeriveRevocationPubkey(pubKey.PubKey, commitPoint) commitTweak := lnwallet.SingleTweakBytes(commitPoint, pubKey.PubKey) tweakedPub := lnwallet.TweakPubKey(pubKey.PubKey, commitPoint) // As we'd like to test both single and double tweaks, we'll repeat // the same set up twice. The first will use a regular single tweak, // and the second will use a double tweak. baseKey := pubKey for i := 0; i < 2; i++ { var tweakedKey *btcec.PublicKey if i == 0 { tweakedKey = tweakedPub } else { tweakedKey = revocationKey } // Using the given key for the current iteration, we'll // generate a regular p2wkh from that. pubkeyHash := btcutil.Hash160(tweakedKey.SerializeCompressed()) keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash, &chaincfg.RegressionNetParams) if err != nil { t.Fatalf("unable to create addr: %v", err) } keyScript, err := txscript.PayToAddrScript(keyAddr) if err != nil { t.Fatalf("unable to generate script: %v", err) } // With the script fully assembled, instruct the wallet to fund // the output with a newly created transaction. newOutput := &wire.TxOut{ Value: btcutil.SatoshiPerBitcoin, PkScript: keyScript, } txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10) if err != nil { t.Fatalf("unable to create output: %v", err) } // Query for the transaction generated above so we can located // the index of our output. err = waitForMempoolTx(r, txid) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } tx, err := r.Node.GetRawTransaction(txid) if err != nil { t.Fatalf("unable to query for tx: %v", err) } var outputIndex uint32 if bytes.Equal(tx.MsgTx().TxOut[0].PkScript, keyScript) { outputIndex = 0 } else { outputIndex = 1 } // With the index located, we can create a transaction spending // the referenced output. sweepTx := wire.NewMsgTx(2) sweepTx.AddTxIn(&wire.TxIn{ PreviousOutPoint: wire.OutPoint{ Hash: tx.MsgTx().TxHash(), Index: outputIndex, }, }) sweepTx.AddTxOut(&wire.TxOut{ Value: 1000, PkScript: keyScript, }) // Now we can populate the sign descriptor which we'll use to // generate the signature. Within the descriptor we set the // private tweak value as the key in the script is derived // based on this tweak value and the key we originally // generated above. signDesc := &lnwallet.SignDescriptor{ KeyDesc: keychain.KeyDescriptor{ PubKey: baseKey.PubKey, }, WitnessScript: keyScript, Output: newOutput, HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(sweepTx), InputIndex: 0, } // If this is the first, loop, we'll use the generated single // tweak, otherwise, we'll use the double tweak. if i == 0 { signDesc.SingleTweak = commitTweak } else { signDesc.DoubleTweak = commitSecret } // With the descriptor created, we use it to generate a // signature, then manually create a valid witness stack we'll // use for signing. spendSig, err := alice.Cfg.Signer.SignOutputRaw(sweepTx, signDesc) if err != nil { t.Fatalf("unable to generate signature: %v", err) } witness := make([][]byte, 2) witness[0] = append(spendSig, byte(txscript.SigHashAll)) witness[1] = tweakedKey.SerializeCompressed() sweepTx.TxIn[0].Witness = witness // Finally, attempt to validate the completed transaction. This // should succeed if the wallet was able to properly generate // the proper private key. vm, err := txscript.NewEngine(keyScript, sweepTx, 0, txscript.StandardVerifyFlags, nil, nil, int64(btcutil.SatoshiPerBitcoin)) if err != nil { t.Fatalf("unable to create engine: %v", err) } if err := vm.Execute(); err != nil { t.Fatalf("spend #%v is invalid: %v", i, err) } } } func testReorgWalletBalance(r *rpctest.Harness, w *lnwallet.LightningWallet, _ *lnwallet.LightningWallet, t *testing.T) { // We first mine a few blocks to ensure any transactions still in the // mempool confirm, and then get the original balance, before a // reorganization that doesn't invalidate any existing transactions or // create any new non-coinbase transactions. We'll then check if it's // the same after the empty reorg. _, err := r.Node.Generate(5) if err != nil { t.Fatalf("unable to generate blocks on passed node: %v", err) } // Give wallet time to catch up. err = waitForWalletSync(r, w) if err != nil { t.Fatalf("unable to sync wallet: %v", err) } // Send some money from the miner to the wallet err = loadTestCredits(r, w, 20, 4) if err != nil { t.Fatalf("unable to send money to lnwallet: %v", err) } // Send some money from the wallet back to the miner. // Grab a fresh address from the miner to house this output. minerAddr, err := r.NewAddress() if err != nil { t.Fatalf("unable to generate address for miner: %v", err) } script, err := txscript.PayToAddrScript(minerAddr) if err != nil { t.Fatalf("unable to create pay to addr script: %v", err) } output := &wire.TxOut{ Value: 1e8, PkScript: script, } txid, err := w.SendOutputs([]*wire.TxOut{output}, 10) if err != nil { t.Fatalf("unable to send outputs: %v", err) } err = waitForMempoolTx(r, txid) if err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, err = r.Node.Generate(50) if err != nil { t.Fatalf("unable to generate blocks on passed node: %v", err) } // Give wallet time to catch up. err = waitForWalletSync(r, w) if err != nil { t.Fatalf("unable to sync wallet: %v", err) } // Get the original balance. origBalance, err := w.ConfirmedBalance(1) if err != nil { t.Fatalf("unable to query for balance: %v", err) } // Now we cause a reorganization as follows. // Step 1: create a new miner and start it. r2, err := rpctest.New(r.ActiveNet, nil, nil) if err != nil { t.Fatalf("unable to create mining node: %v", err) } err = r2.SetUp(false, 0) if err != nil { t.Fatalf("unable to set up mining node: %v", err) } defer r2.TearDown() newBalance, err := w.ConfirmedBalance(1) if err != nil { t.Fatalf("unable to query for balance: %v", err) } if origBalance != newBalance { t.Fatalf("wallet balance incorrect, should have %v, "+ "instead have %v", origBalance, newBalance) } // Step 2: connect the miner to the passed miner and wait for // synchronization. err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd) if err != nil { t.Fatalf("unable to connect mining nodes together: %v", err) } err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks) if err != nil { t.Fatalf("unable to synchronize mining nodes: %v", err) } // Step 3: Do a set of reorgs by disconecting the two miners, mining // one block on the passed miner and two on the created miner, // connecting them, and waiting for them to sync. for i := 0; i < 5; i++ { // Wait for disconnection timeout := time.After(30 * time.Second) stillConnected := true var peers []btcjson.GetPeerInfoResult for stillConnected { // Allow for timeout time.Sleep(100 * time.Millisecond) select { case <-timeout: t.Fatalf("timeout waiting for miner disconnect") default: } err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANRemove) if err != nil { t.Fatalf("unable to disconnect mining nodes: %v", err) } peers, err = r2.Node.GetPeerInfo() if err != nil { t.Fatalf("unable to get peer info: %v", err) } stillConnected = false for _, peer := range peers { if peer.Addr == r.P2PAddress() { stillConnected = true break } } } _, err = r.Node.Generate(2) if err != nil { t.Fatalf("unable to generate blocks on passed node: %v", err) } _, err = r2.Node.Generate(3) if err != nil { t.Fatalf("unable to generate blocks on created node: %v", err) } // Step 5: Reconnect the miners and wait for them to synchronize. err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd) if err != nil { switch err := err.(type) { case *btcjson.RPCError: if err.Code != -8 { t.Fatalf("unable to connect mining "+ "nodes together: %v", err) } default: t.Fatalf("unable to connect mining nodes "+ "together: %v", err) } } err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks) if err != nil { t.Fatalf("unable to synchronize mining nodes: %v", err) } // Give wallet time to catch up. err = waitForWalletSync(r, w) if err != nil { t.Fatalf("unable to sync wallet: %v", err) } } // Now we check that the wallet balance stays the same. newBalance, err = w.ConfirmedBalance(1) if err != nil { t.Fatalf("unable to query for balance: %v", err) } if origBalance != newBalance { t.Fatalf("wallet balance incorrect, should have %v, "+ "instead have %v", origBalance, newBalance) } } type walletTestCase struct { name string test func(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet, test *testing.T) } var walletTests = []walletTestCase{ { name: "insane fee reject", test: testReservationInitiatorBalanceBelowDustCancel, }, { name: "single funding workflow", test: testSingleFunderReservationWorkflow, }, { name: "dual funder workflow", test: testDualFundingReservationWorkflow, }, { name: "output locking", test: testFundingTransactionLockedOutputs, }, { name: "reservation insufficient funds", test: testFundingCancellationNotEnoughFunds, }, { name: "transaction subscriptions", test: testTransactionSubscriptions, }, { name: "transaction details", test: testListTransactionDetails, }, { name: "publish transaction", test: testPublishTransaction, }, { name: "signed with tweaked pubkeys", test: testSignOutputUsingTweaks, }, { name: "test cancel non-existent reservation", test: testCancelNonExistentReservation, }, { name: "reorg wallet balance", test: testReorgWalletBalance, }, } func clearWalletStates(a, b *lnwallet.LightningWallet) error { a.ResetReservations() b.ResetReservations() if err := a.Cfg.Database.Wipe(); err != nil { return err } return b.Cfg.Database.Wipe() } func waitForMempoolTx(r *rpctest.Harness, txid *chainhash.Hash) error { var found bool var tx *btcutil.Tx var err error timeout := time.After(10 * time.Second) for !found { // Do a short wait select { case <-timeout: return fmt.Errorf("timeout after 10s") default: } time.Sleep(100 * time.Millisecond) // Check for the harness' knowledge of the txid tx, err = r.Node.GetRawTransaction(txid) if err != nil { switch e := err.(type) { case *btcjson.RPCError: if e.Code == btcjson.ErrRPCNoTxInfo { continue } default: } return err } if tx != nil && tx.MsgTx().TxHash() == *txid { found = true } } return nil } func waitForWalletSync(r *rpctest.Harness, w *lnwallet.LightningWallet) error { var synced bool var err error var bestHash, knownHash *chainhash.Hash var bestHeight, knownHeight int32 timeout := time.After(10 * time.Second) for !synced { // Do a short wait select { case <-timeout: return fmt.Errorf("timeout after 10s") default: } time.Sleep(100 * time.Millisecond) // Check whether the chain source of the wallet is caught up to // the harness it's supposed to be catching up to. bestHash, bestHeight, err = r.Node.GetBestBlock() if err != nil { return err } knownHash, knownHeight, err = w.Cfg.ChainIO.GetBestBlock() if err != nil { return err } if knownHeight != bestHeight { continue } if *knownHash != *bestHash { return fmt.Errorf("hash at height %d doesn't match: "+ "expected %s, got %s", bestHeight, bestHash, knownHash) } // Check for synchronization. synced, _, err = w.IsSynced() if err != nil { return err } } return nil } // TestInterfaces tests all registered interfaces with a unified set of tests // which exercise each of the required methods found within the WalletController // interface. // // NOTE: In the future, when additional implementations of the WalletController // interface have been implemented, in order to ensure the new concrete // implementation is automatically tested, two steps must be undertaken. First, // one needs add a "non-captured" (_) import from the new sub-package. This // import should trigger an init() method within the package which registers // the interface. Second, an additional case in the switch within the main loop // below needs to be added which properly initializes the interface. // // TODO(roasbeef): purge bobNode in favor of dual lnwallet's func TestLightningWallet(t *testing.T) { t.Parallel() // Initialize the harness around a btcd node which will serve as our // dedicated miner to generate blocks, cause re-orgs, etc. We'll set // up this node with a chain length of 125, so we have plenty of BTC // to play around with. miningNode, err := rpctest.New(netParams, nil, nil) if err != nil { t.Fatalf("unable to create mining node: %v", err) } defer miningNode.TearDown() if err := miningNode.SetUp(true, 25); err != nil { t.Fatalf("unable to set up mining node: %v", err) } // Next mine enough blocks in order for segwit and the CSV package // soft-fork to activate on RegNet. numBlocks := netParams.MinerConfirmationWindow * 2 if _, err := miningNode.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate blocks: %v", err) } rpcConfig := miningNode.RPCConfig() chainNotifier, err := btcdnotify.New(&rpcConfig) if err != nil { t.Fatalf("unable to create notifier: %v", err) } if err := chainNotifier.Start(); err != nil { t.Fatalf("unable to start notifier: %v", err) } for _, walletDriver := range lnwallet.RegisteredWallets() { for _, backEnd := range walletDriver.BackEnds() { runTests(t, walletDriver, backEnd, miningNode, rpcConfig, chainNotifier) } } } // runTests runs all of the tests for a single interface implementation and // chain back-end combination. This makes it easier to use `defer` as well as // factoring out the test logic from the loop which cycles through the // interface implementations. func runTests(t *testing.T, walletDriver *lnwallet.WalletDriver, backEnd string, miningNode *rpctest.Harness, rpcConfig rpcclient.ConnConfig, chainNotifier *btcdnotify.BtcdNotifier) { var ( bio lnwallet.BlockChainIO aliceSigner lnwallet.Signer bobSigner lnwallet.Signer aliceKeyRing keychain.SecretKeyRing bobKeyRing keychain.SecretKeyRing aliceWalletController lnwallet.WalletController bobWalletController lnwallet.WalletController feeEstimator lnwallet.FeeEstimator ) tempTestDirAlice, err := ioutil.TempDir("", "lnwallet") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } defer os.RemoveAll(tempTestDirAlice) tempTestDirBob, err := ioutil.TempDir("", "lnwallet") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } defer os.RemoveAll(tempTestDirBob) walletType := walletDriver.WalletType switch walletType { case "btcwallet": var aliceClient, bobClient chain.Interface switch backEnd { case "btcd": feeEstimator, err = lnwallet.NewBtcdFeeEstimator( rpcConfig, 250) if err != nil { t.Fatalf("unable to create btcd fee estimator: %v", err) } aliceClient, err = chain.NewRPCClient(netParams, rpcConfig.Host, rpcConfig.User, rpcConfig.Pass, rpcConfig.Certificates, false, 20) if err != nil { t.Fatalf("unable to make chain rpc: %v", err) } bobClient, err = chain.NewRPCClient(netParams, rpcConfig.Host, rpcConfig.User, rpcConfig.Pass, rpcConfig.Certificates, false, 20) if err != nil { t.Fatalf("unable to make chain rpc: %v", err) } case "neutrino": feeEstimator = lnwallet.StaticFeeEstimator{FeeRate: 250} // Set some package-level variable to speed up // operation for tests. neutrino.WaitForMoreCFHeaders = time.Millisecond * 100 neutrino.BanDuration = time.Millisecond * 100 neutrino.QueryTimeout = time.Millisecond * 500 neutrino.QueryNumRetries = 2 // Start Alice - open a database, start a neutrino // instance, and initialize a btcwallet driver for it. aliceDB, err := walletdb.Create("bdb", tempTestDirAlice+"/neutrino.db") if err != nil { t.Fatalf("unable to create DB: %v", err) } defer aliceDB.Close() aliceChain, err := neutrino.NewChainService( neutrino.Config{ DataDir: tempTestDirAlice, Database: aliceDB, ChainParams: *netParams, ConnectPeers: []string{ miningNode.P2PAddress(), }, }, ) if err != nil { t.Fatalf("unable to make neutrino: %v", err) } aliceChain.Start() defer aliceChain.Stop() aliceClient = chain.NewNeutrinoClient(aliceChain) // Start Bob - open a database, start a neutrino // instance, and initialize a btcwallet driver for it. bobDB, err := walletdb.Create("bdb", tempTestDirBob+"/neutrino.db") if err != nil { t.Fatalf("unable to create DB: %v", err) } defer bobDB.Close() bobChain, err := neutrino.NewChainService( neutrino.Config{ DataDir: tempTestDirBob, Database: bobDB, ChainParams: *netParams, ConnectPeers: []string{ miningNode.P2PAddress(), }, }, ) if err != nil { t.Fatalf("unable to make neutrino: %v", err) } bobChain.Start() defer bobChain.Stop() bobClient = chain.NewNeutrinoClient(bobChain) case "bitcoind": feeEstimator, err = lnwallet.NewBitcoindFeeEstimator( rpcConfig, 250) if err != nil { t.Fatalf("unable to create bitcoind fee estimator: %v", err) } // Start a bitcoind instance. tempBitcoindDir, err := ioutil.TempDir("", "bitcoind") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } zmqPath := "ipc:///" + tempBitcoindDir + "/weks.socket" defer os.RemoveAll(tempBitcoindDir) rpcPort := rand.Int()%(65536-1024) + 1024 bitcoind := exec.Command( "bitcoind", "-datadir="+tempBitcoindDir, "-regtest", "-connect="+miningNode.P2PAddress(), "-txindex", "-rpcauth=weks:469e9bb14ab2360f8e226efed5ca6f"+ "d$507c670e800a95284294edb5773b05544b"+ "220110063096c221be9933c82d38e1", fmt.Sprintf("-rpcport=%d", rpcPort), "-disablewallet", "-zmqpubrawblock="+zmqPath, "-zmqpubrawtx="+zmqPath, ) err = bitcoind.Start() if err != nil { t.Fatalf("couldn't start bitcoind: %v", err) } defer bitcoind.Wait() defer bitcoind.Process.Kill() // Start an Alice btcwallet bitcoind back end instance. aliceClient, err = chain.NewBitcoindClient(netParams, fmt.Sprintf("127.0.0.1:%d", rpcPort), "weks", "weks", zmqPath, 100*time.Millisecond) if err != nil { t.Fatalf("couldn't start alice client: %v", err) } // Start a Bob btcwallet bitcoind back end instance. bobClient, err = chain.NewBitcoindClient(netParams, fmt.Sprintf("127.0.0.1:%d", rpcPort), "weks", "weks", zmqPath, 100*time.Millisecond) if err != nil { t.Fatalf("couldn't start bob client: %v", err) } default: t.Fatalf("unknown chain driver: %v", backEnd) } aliceWalletConfig := &btcwallet.Config{ PrivatePass: []byte("alice-pass"), HdSeed: aliceHDSeed[:], DataDir: tempTestDirAlice, NetParams: netParams, ChainSource: aliceClient, FeeEstimator: feeEstimator, } aliceWalletController, err = walletDriver.New(aliceWalletConfig) if err != nil { t.Fatalf("unable to create btcwallet: %v", err) } aliceSigner = aliceWalletController.(*btcwallet.BtcWallet) aliceKeyRing = keychain.NewBtcWalletKeyRing( aliceWalletController.(*btcwallet.BtcWallet).InternalWallet(), ) bobWalletConfig := &btcwallet.Config{ PrivatePass: []byte("bob-pass"), HdSeed: bobHDSeed[:], DataDir: tempTestDirBob, NetParams: netParams, ChainSource: bobClient, FeeEstimator: feeEstimator, } bobWalletController, err = walletDriver.New(bobWalletConfig) if err != nil { t.Fatalf("unable to create btcwallet: %v", err) } bobSigner = bobWalletController.(*btcwallet.BtcWallet) bobKeyRing = keychain.NewBtcWalletKeyRing( bobWalletController.(*btcwallet.BtcWallet).InternalWallet(), ) bio = bobWalletController.(*btcwallet.BtcWallet) default: t.Fatalf("unknown wallet driver: %v", walletType) } // Funding via 20 outputs with 4BTC each. alice, err := createTestWallet( tempTestDirAlice, miningNode, netParams, chainNotifier, aliceWalletController, aliceKeyRing, aliceSigner, bio, ) if err != nil { t.Fatalf("unable to create test ln wallet: %v", err) } defer alice.Shutdown() bob, err := createTestWallet( tempTestDirBob, miningNode, netParams, chainNotifier, bobWalletController, bobKeyRing, bobSigner, bio, ) if err != nil { t.Fatalf("unable to create test ln wallet: %v", err) } defer bob.Shutdown() // Both wallets should now have 80BTC available for // spending. assertProperBalance(t, alice, 1, 80) assertProperBalance(t, bob, 1, 80) // Execute every test, clearing possibly mutated // wallet state after each step. for _, walletTest := range walletTests { testName := fmt.Sprintf("%v/%v:%v", walletType, backEnd, walletTest.name) success := t.Run(testName, func(t *testing.T) { walletTest.test(miningNode, alice, bob, t) }) if !success { break } // TODO(roasbeef): possible reset mining // node's chainstate to initial level, cleanly // wipe buckets if err := clearWalletStates(alice, bob); err != nil && err != bolt.ErrBucketNotFound { t.Fatalf("unable to wipe wallet state: %v", err) } } }