package channeldb import ( "bytes" "fmt" "image/color" "math/big" prand "math/rand" "net" "reflect" "runtime" "testing" "time" "github.com/btcsuite/fastsha256" "github.com/davecgh/go-spew/spew" "github.com/roasbeef/btcd/btcec" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" ) var ( testAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.1:9000") randSource = prand.NewSource(time.Now().Unix()) randInts = prand.New(randSource) testSig = &btcec.Signature{ R: new(big.Int), S: new(big.Int), } _, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10) _, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10) ) func createTestVertex(db *DB) (*LightningNode, error) { updateTime := prand.Int63() priv, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { return nil, err } pub := priv.PubKey().SerializeCompressed() return &LightningNode{ LastUpdate: time.Unix(updateTime, 0), Address: testAddr, PubKey: priv.PubKey(), Color: color.RGBA{1, 2, 3, 0}, Alias: "kek" + string(pub[:]), db: db, }, nil } func TestNodeInsertionAndDeletion(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test basic insertion/deletion for vertexes from the // graph, so we'll create a test vertex to start with. _, testPub := btcec.PrivKeyFromBytes(btcec.S256(), key[:]) node := &LightningNode{ LastUpdate: time.Unix(1232342, 0), Address: testAddr, PubKey: testPub, Color: color.RGBA{1, 2, 3, 0}, Alias: "kek", db: db, } // First, insert the node into the graph DB. This should succeed // without any errors. if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } // Next, fetch the node from the database to ensure everything was // serialized properly. dbNode, err := graph.FetchLightningNode(testPub) if err != nil { t.Fatalf("unable to locate node: %v", err) } if _, exists, err := graph.HasLightningNode(testPub); err != nil { t.Fatalf("unable to query for node: %v", err) } else if !exists { t.Fatalf("node should be found but wasn't") } // The two nodes should match exactly! if !reflect.DeepEqual(node, dbNode) { t.Fatalf("retrieved node doesn't match: expected %#v\n, got %#v\n", node, dbNode) } // Next, delete the node from the graph, this should purge all data // related to the node. if err := graph.DeleteLightningNode(testPub); err != nil { t.Fatalf("unable to delete node; %v", err) } // Finally, attempt to fetch the node again. This should fail as the // node should've been deleted from the database. _, err = graph.FetchLightningNode(testPub) if err != ErrGraphNodeNotFound { t.Fatalf("fetch after delete should fail!") } } func TestAliasLookup(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the alias index within the database, so first // create a new test node. testNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // Add the node to the graph's database, this should also insert an // entry into the alias index for this node. if err := graph.AddLightningNode(testNode); err != nil { t.Fatalf("unable to add node: %v", err) } // Next, attempt to lookup the alias. The alias should exactly match // the one which the test node was assigned. dbAlias, err := graph.LookupAlias(testNode.PubKey) if err != nil { t.Fatalf("unable to find alias: %v", err) } if dbAlias != testNode.Alias { t.Fatalf("aliases don't match, expected %v got %v", testNode.Alias, dbAlias) } // Ensure that looking up a non-existent alias results in an error. node, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } _, err = graph.LookupAlias(node.PubKey) if err != ErrNodeAliasNotFound { t.Fatalf("alias lookup should fail for non-existent pubkey") } } func TestSourceNode(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the setting/getting of the source node, so we // first create a fake node to use within the test. testNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // Attempt to fetch the source node, this should return an error as the // source node hasn't yet been set. if _, err := graph.SourceNode(); err != ErrSourceNodeNotSet { t.Fatalf("source node shouldn't be set in new graph") } // Set the source the source node, this should insert the node into the // database in a special way indicating it's the source node. if err := graph.SetSourceNode(testNode); err != nil { t.Fatalf("unable to set source node: %v", err) } // Retrieve the source node from the database, it should exactly match // the one we set above. sourceNode, err := graph.SourceNode() if err != nil { t.Fatalf("unable to fetch source node: %v", err) } if !reflect.DeepEqual(testNode, sourceNode) { t.Fatalf("nodes don't match, expected %#v \n got %#v", testNode, sourceNode) } } func TestEdgeInsertionDeletion(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the insertion/deletion of edges, so we create two // vertexes to connect. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // In in addition to the fake vertexes we create some fake channel // identifiers. chanID := uint64(prand.Int63()) outpoint := wire.OutPoint{ Hash: rev, Index: 9, } // Add the new edge to the database, this should proceed without any // errors. edgeInfo := ChannelEdgeInfo{ ChannelID: chanID, NodeKey1: node1.PubKey, NodeKey2: node2.PubKey, BitcoinKey1: node1.PubKey, BitcoinKey2: node2.PubKey, AuthProof: &ChannelAuthProof{ NodeSig1: testSig, NodeSig2: testSig, BitcoinSig1: testSig, BitcoinSig2: testSig, }, ChannelPoint: outpoint, Capacity: 9000, } if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Next, attempt to delete the edge from the database, again this // should proceed without any issues. if err := graph.DeleteChannelEdge(&outpoint); err != nil { t.Fatalf("unable to delete edge: %v", err) } // Ensure that any query attempts to lookup the delete channel edge are // properly deleted. if _, _, _, err := graph.FetchChannelEdgesByOutpoint(&outpoint); err == nil { t.Fatalf("channel edge not deleted") } if _, _, _, err := graph.FetchChannelEdgesByID(chanID); err == nil { t.Fatalf("channel edge not deleted") } // Finally, attempt to delete a (now) non-existent edge within the // database, this should result in an error. err = graph.DeleteChannelEdge(&outpoint) if err != ErrEdgeNotFound { t.Fatalf("deleting a non-existent edge should fail!") } } func assertEdgeInfoEqual(t *testing.T, e1 *ChannelEdgeInfo, e2 *ChannelEdgeInfo) { if e1.ChannelID != e2.ChannelID { t.Fatalf("chan id's don't match: %v vs %v", e1.ChannelID, e2.ChannelID) } if !e1.NodeKey1.IsEqual(e2.NodeKey1) { t.Fatalf("nodekey1 doesn't match") } if !e1.NodeKey2.IsEqual(e2.NodeKey2) { t.Fatalf("nodekey2 doesn't match") } if !e1.BitcoinKey1.IsEqual(e2.BitcoinKey1) { t.Fatalf("bitcoinkey1 doesn't match") } if !e1.BitcoinKey2.IsEqual(e2.BitcoinKey2) { t.Fatalf("bitcoinkey2 doesn't match") } if !bytes.Equal(e1.Features, e2.Features) { t.Fatalf("features doesn't match: %x vs %x", e1.Features, e2.Features) } if !e1.AuthProof.NodeSig1.IsEqual(e2.AuthProof.NodeSig1) { t.Fatalf("nodesig1 doesn't match: %v vs %v", spew.Sdump(e1.AuthProof.NodeSig1), spew.Sdump(e2.AuthProof.NodeSig1)) } if !e1.AuthProof.NodeSig2.IsEqual(e2.AuthProof.NodeSig2) { t.Fatalf("nodesig2 doesn't match") } if !e1.AuthProof.BitcoinSig1.IsEqual(e2.AuthProof.BitcoinSig1) { t.Fatalf("bitcoinsig1 doesn't match") } if !e1.AuthProof.BitcoinSig2.IsEqual(e2.AuthProof.BitcoinSig2) { t.Fatalf("bitcoinsig2 doesn't match") } if e1.ChannelPoint != e2.ChannelPoint { t.Fatalf("channel point match: %v vs %v", e1.ChannelPoint, e2.ChannelPoint) } if e1.Capacity != e2.Capacity { t.Fatalf("capacity doesn't match: %v vs %v", e1.Capacity, e2.Capacity) } } func TestEdgeInfoUpdates(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the update of edges inserted into the database, so // we create two vertexes to connect. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } var ( firstNode *LightningNode secondNode *LightningNode ) node1Bytes := node1.PubKey.SerializeCompressed() node2Bytes := node2.PubKey.SerializeCompressed() if bytes.Compare(node1Bytes, node2Bytes) == -1 { firstNode = node1 secondNode = node2 } else { firstNode = node2 secondNode = node1 } // In in addition to the fake vertexes we create some fake channel // identifiers. chanID := uint64(prand.Int63()) outpoint := wire.OutPoint{ Hash: rev, Index: 9, } // Add the new edge to the database, this should proceed without any // errors. edgeInfo := &ChannelEdgeInfo{ ChannelID: chanID, NodeKey1: firstNode.PubKey, NodeKey2: secondNode.PubKey, BitcoinKey1: firstNode.PubKey, BitcoinKey2: secondNode.PubKey, AuthProof: &ChannelAuthProof{ NodeSig1: testSig, NodeSig2: testSig, BitcoinSig1: testSig, BitcoinSig2: testSig, }, ChannelPoint: outpoint, Capacity: 1000, } if err := graph.AddChannelEdge(edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // With the edge added, we can now create some fake edge information to // update for both edges. edge1 := &ChannelEdgePolicy{ ChannelID: chanID, LastUpdate: time.Unix(433453, 0), Flags: 0, TimeLockDelta: 99, MinHTLC: 2342135, FeeBaseMSat: 4352345, FeeProportionalMillionths: 3452352, Node: secondNode, db: db, } edge2 := &ChannelEdgePolicy{ ChannelID: chanID, LastUpdate: time.Unix(124234, 0), Flags: 1, TimeLockDelta: 99, MinHTLC: 2342135, FeeBaseMSat: 4352345, FeeProportionalMillionths: 90392423, Node: firstNode, db: db, } // Next, insert both nodes into the database, they should both be // inserted without any issues. if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } // Check for existence of the edge within the database, it should be // found. _, _, found, err := graph.HasChannelEdge(chanID) if err != nil { t.Fatalf("unable to query for edge: %v", err) } else if !found { t.Fatalf("graph should have of inserted edge") } // We should also be able to retrieve the channelID only knowing the // channel point of the channel. dbChanID, err := graph.ChannelID(&outpoint) if err != nil { t.Fatalf("unable to retrieve channel ID: %v", err) } if dbChanID != chanID { t.Fatalf("chan ID's mismatch, expected %v got %v", dbChanID, chanID) } // With the edges inserted, perform some queries to ensure that they've // been inserted properly. dbEdgeInfo, dbEdge1, dbEdge2, err := graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch channel by ID: %v", err) } if !reflect.DeepEqual(dbEdge1, edge1) { t.Fatalf("edge doesn't match: expected %#v, \n got %#v", edge1, dbEdge1) } if !reflect.DeepEqual(dbEdge2, edge2) { t.Fatalf("edge doesn't match: expected %#v, \n got %#v", edge2, dbEdge2) } assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo) // Next, attempt to query the channel edges according to the outpoint // of the channel. dbEdgeInfo, dbEdge1, dbEdge2, err = graph.FetchChannelEdgesByOutpoint(&outpoint) if err != nil { t.Fatalf("unable to fetch channel by ID: %v", err) } if !reflect.DeepEqual(dbEdge1, edge1) { t.Fatalf("edge doesn't match: expected %#v, \n got %#v", edge1, dbEdge1) } if !reflect.DeepEqual(dbEdge2, edge2) { t.Fatalf("edge doesn't match: expected %#v, \n got %#v", edge2, dbEdge2) } assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo) } func randEdgePolicy(chanID uint64, op wire.OutPoint, db *DB) *ChannelEdgePolicy { update := prand.Int63() return &ChannelEdgePolicy{ ChannelID: chanID, LastUpdate: time.Unix(update, 0), TimeLockDelta: uint16(prand.Int63()), MinHTLC: btcutil.Amount(prand.Int63()), FeeBaseMSat: btcutil.Amount(prand.Int63()), FeeProportionalMillionths: btcutil.Amount(prand.Int63()), db: db, } } func TestGraphTraversal(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test some of the graph traversal capabilities within // the DB, so we'll create a series of fake nodes to insert into the // graph. const numNodes = 20 nodes := make([]*LightningNode, numNodes) nodeIndex := map[string]struct{}{} for i := 0; i < numNodes; i++ { node, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create node: %v", err) } nodes[i] = node nodeIndex[node.Alias] = struct{}{} } // Add each of the nodes into the graph, they should be inserted // without error. for _, node := range nodes { if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } } // Iterate over each node as returned by the graph, if all nodes are // reached, then the map created above should be empty. err = graph.ForEachNode(func(node *LightningNode) error { delete(nodeIndex, node.Alias) return nil }) if err != nil { t.Fatalf("for each failure: %v", err) } if len(nodeIndex) != 0 { t.Fatalf("all nodes not reached within ForEach") } // Determine which node is "smaller", we'll need this in order to // properly create the edges for the graph. var firstNode, secondNode *LightningNode node1Bytes := nodes[0].PubKey.SerializeCompressed() node2Bytes := nodes[1].PubKey.SerializeCompressed() if bytes.Compare(node1Bytes, node2Bytes) == -1 { firstNode = nodes[0] secondNode = nodes[1] } else { firstNode = nodes[0] secondNode = nodes[1] } // Create 5 channels between the first two nodes we generated above. const numChannels = 5 chanIndex := map[uint64]struct{}{} for i := 0; i < numChannels; i++ { txHash := fastsha256.Sum256([]byte{byte(i)}) chanID := uint64(i + 1) op := wire.OutPoint{ Hash: txHash, Index: 0, } edgeInfo := ChannelEdgeInfo{ ChannelID: chanID, NodeKey1: nodes[0].PubKey, NodeKey2: nodes[1].PubKey, BitcoinKey1: nodes[0].PubKey, BitcoinKey2: nodes[1].PubKey, AuthProof: &ChannelAuthProof{ NodeSig1: testSig, NodeSig2: testSig, BitcoinSig1: testSig, BitcoinSig2: testSig, }, ChannelPoint: op, Capacity: 1000, } err := graph.AddChannelEdge(&edgeInfo) if err != nil { t.Fatalf("unable to add node: %v", err) } // Create and add an edge with random data that points from // node1 -> node2. edge := randEdgePolicy(chanID, op, db) edge.Flags = 0 edge.Node = secondNode if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } // Create another random edge that points from node2 -> node1 // this time. edge = randEdgePolicy(chanID, op, db) edge.Flags = 1 edge.Node = firstNode if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } chanIndex[chanID] = struct{}{} } // Iterate through all the known channels within the graph DB, once // again if the map is empty that that indicates that all edges have // properly been reached. err = graph.ForEachChannel(func(ei *ChannelEdgeInfo, _ *ChannelEdgePolicy, _ *ChannelEdgePolicy) error { delete(chanIndex, ei.ChannelID) return nil }) if err != nil { t.Fatalf("for each failure: %v", err) } if len(chanIndex) != 0 { t.Fatalf("all edges not reached within ForEach") } // Finally, we want to test the ability to iterate over all the // outgoing channels for a particular node. numNodeChans := 0 err = firstNode.ForEachChannel(nil, func(_ *ChannelEdgeInfo, c *ChannelEdgePolicy) error { // Each each should indicate that it's outgoing (pointed // towards the second node). if !c.Node.PubKey.IsEqual(secondNode.PubKey) { return fmt.Errorf("wrong outgoing edge") } numNodeChans += 1 return nil }) if err != nil { t.Fatalf("for each failure: %v", err) } if numNodeChans != numChannels { t.Fatalf("all edges for node reached within ForEach") } } func assertPruneTip(t *testing.T, graph *ChannelGraph, blockHash *chainhash.Hash, blockHeight uint32) { pruneHash, pruneHeight, err := graph.PruneTip() if err != nil { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: unable to fetch prune tip: %v", line, err) } if !bytes.Equal(blockHash[:], pruneHash[:]) { _, _, line, _ := runtime.Caller(1) t.Fatalf("line: %v, prune tips don't match, expected %x got %x", line, blockHash, pruneHash) } if pruneHeight != blockHeight { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: prune heights don't match, expected %v "+ "got %v", line, blockHeight, pruneHeight) } } func asserNumChans(t *testing.T, graph *ChannelGraph, n int) { numChans := 0 if err := graph.ForEachChannel(func(*ChannelEdgeInfo, *ChannelEdgePolicy, *ChannelEdgePolicy) error { numChans += 1 return nil }); err != nil { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v:unable to scan channels: %v", line, err) } if numChans != n { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: expected %v chans instead have %v", line, n, numChans) } } func TestGraphPruning(t *testing.T) { db, cleanUp, err := makeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // As initial set up for the test, we'll create a graph with 5 vertexes // and enough edges to create a fully connected graph. The graph will // be rather simple, representing a straight line. const numNodes = 5 graphNodes := make([]*LightningNode, numNodes) for i := 0; i < numNodes; i++ { node, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create node: %v", err) } if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } graphNodes[i] = node } // With the vertexes created, we'll next create a series of channels // between them. channelPoints := make([]*wire.OutPoint, 0, numNodes-1) for i := 0; i < numNodes-1; i++ { txHash := fastsha256.Sum256([]byte{byte(i)}) chanID := uint64(i + 1) op := wire.OutPoint{ Hash: txHash, Index: 0, } channelPoints = append(channelPoints, &op) edgeInfo := ChannelEdgeInfo{ ChannelID: chanID, NodeKey1: graphNodes[i].PubKey, NodeKey2: graphNodes[i+1].PubKey, BitcoinKey1: graphNodes[i].PubKey, BitcoinKey2: graphNodes[i+1].PubKey, AuthProof: &ChannelAuthProof{ NodeSig1: testSig, NodeSig2: testSig, BitcoinSig1: testSig, BitcoinSig2: testSig, }, ChannelPoint: op, Capacity: 1000, } if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to add node: %v", err) } // Create and add an edge with random data that points from // node_i -> node_i+1 edge := randEdgePolicy(chanID, op, db) edge.Flags = 0 edge.Node = graphNodes[i] if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } // Create another random edge that points from node_i+1 -> // node_i this time. edge = randEdgePolicy(chanID, op, db) edge.Flags = 1 edge.Node = graphNodes[i] if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } } // Now with our test graph created, we can test the pruning // capabilities of the channel graph. // First we create a mock block that ends up closing the first two // channels. var blockHash chainhash.Hash copy(blockHash[:], bytes.Repeat([]byte{1}, 32)) blockHeight := uint32(1) block := channelPoints[:2] prunedChans, err := graph.PruneGraph(block, &blockHash, blockHeight) if err != nil { t.Fatalf("unable to prune graph: %v", err) } if len(prunedChans) != 2 { t.Fatalf("incorrect number of channels pruned: expected %v, got %v", 2, prunedChans) } // Now ensure that the prune tip has been updated. assertPruneTip(t, graph, &blockHash, blockHeight) // Count up the number of channels known within the graph, only 2 // should be remaining. asserNumChans(t, graph, 2) // Next we'll create a block that doesn't close any channels within the // graph to test the negative error case. fakeHash := fastsha256.Sum256([]byte("test prune")) nonChannel := &wire.OutPoint{ Hash: fakeHash, Index: 9, } blockHash = fastsha256.Sum256(blockHash[:]) blockHeight = 2 prunedChans, err = graph.PruneGraph([]*wire.OutPoint{nonChannel}, &blockHash, blockHeight) if err != nil { t.Fatalf("unable to prune graph: %v", err) } // No channels should've been detected as pruned. if len(prunedChans) != 0 { t.Fatalf("channels were pruned but shouldn't have been") } // Once again, the prune tip should've been updated. assertPruneTip(t, graph, &blockHash, blockHeight) asserNumChans(t, graph, 2) // Finally, create a block that prunes the remainder of the channels // from the graph. blockHash = fastsha256.Sum256(blockHash[:]) blockHeight = 3 prunedChans, err = graph.PruneGraph(channelPoints[2:], &blockHash, blockHeight) if err != nil { t.Fatalf("unable to prune graph: %v", err) } // The remainder of the channels should've been pruned from the graph. if len(prunedChans) != 2 { t.Fatalf("incorrect number of channels pruned: expected %v, got %v", 2, len(prunedChans)) } // TODO(roasbeef): asser that proper chans have been closed // The prune tip should be updated, and no channels should be found // within the current graph. assertPruneTip(t, graph, &blockHash, blockHeight) asserNumChans(t, graph, 0) }