package chanfunding import ( "bytes" "crypto/sha256" "errors" "fmt" "sync" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil/psbt" "github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/keychain" ) // PsbtState is a type for the state of the PSBT intent state machine. type PsbtState uint8 const ( // PsbtShimRegistered denotes a channel funding process has started with // a PSBT shim attached. This is the default state for a PsbtIntent. We // don't use iota here because the values have to be in sync with the // RPC constants. PsbtShimRegistered PsbtState = 1 // PsbtOutputKnown denotes that the local and remote peer have // negotiated the multisig keys to be used as the channel funding output // and therefore the PSBT funding process can now start. PsbtOutputKnown PsbtState = 2 // PsbtVerified denotes that a potential PSBT has been presented to the // intent and passed all checks. The verified PSBT can be given to a/the // signer(s). PsbtVerified PsbtState = 3 // PsbtFinalized denotes that a fully signed PSBT has been given to the // intent that looks identical to the previously verified transaction // but has all witness data added and is therefore completely signed. PsbtFinalized PsbtState = 4 // PsbtFundingTxCompiled denotes that the PSBT processed by this intent // has been successfully converted into a protocol transaction. It is // not yet completely certain that the resulting transaction will be // published because the commitment transactions between the channel // peers first need to be counter signed. But the job of the intent is // hereby completed. PsbtFundingTxCompiled PsbtState = 5 // PsbtInitiatorCanceled denotes that the user has canceled the intent. PsbtInitiatorCanceled PsbtState = 6 // PsbtResponderCanceled denotes that the remote peer has canceled the // funding, likely due to a timeout. PsbtResponderCanceled PsbtState = 7 ) // String returns a string representation of the PsbtState. func (s PsbtState) String() string { switch s { case PsbtShimRegistered: return "shim_registered" case PsbtOutputKnown: return "output_known" case PsbtVerified: return "verified" case PsbtFinalized: return "finalized" case PsbtFundingTxCompiled: return "funding_tx_compiled" case PsbtInitiatorCanceled: return "user_canceled" case PsbtResponderCanceled: return "remote_canceled" default: return fmt.Sprintf("", s) } } var ( // ErrRemoteCanceled is the error that is returned to the user if the // funding flow was canceled by the remote peer. ErrRemoteCanceled = errors.New("remote canceled funding, possibly " + "timed out") // ErrUserCanceled is the error that is returned through the PsbtReady // channel if the user canceled the funding flow. ErrUserCanceled = errors.New("user canceled funding") ) // PsbtIntent is an intent created by the PsbtAssembler which represents a // funding output to be created by a PSBT. This might be used when a hardware // wallet, or a channel factory is the entity crafting the funding transaction, // and not lnd. type PsbtIntent struct { // ShimIntent is the wrapped basic intent that contains common fields // we also use in the PSBT funding case. ShimIntent // State is the current state the intent state machine is in. State PsbtState // BasePsbt is the user-supplied base PSBT the channel output should be // added to. If this is nil we will create a new, empty PSBT as the base // for the funding transaction. BasePsbt *psbt.Packet // PendingPsbt is the parsed version of the current PSBT. This can be // in two stages: If the user has not yet provided any PSBT, this is // nil. Once the user sends us an unsigned funded PSBT, we verify that // we have a valid transaction that sends to the channel output PK // script and has an input large enough to pay for it. We keep this // verified but not yet signed version around until the fully signed // transaction is submitted by the user. At that point we make sure the // inputs and outputs haven't changed to what was previously verified. // Only witness data should be added after the verification process. PendingPsbt *psbt.Packet // PsbtReady is an error channel the funding manager will listen for // a signal about the PSBT being ready to continue the funding flow. In // the normal, happy flow, this channel is only ever closed. If a // non-nil error is sent through the channel, the funding flow will be // canceled. // // NOTE: This channel must always be buffered. PsbtReady chan error // signalPsbtReady is a Once guard to make sure the PsbtReady channel is // only closed exactly once. signalPsbtReady sync.Once // netParams are the network parameters used to encode the P2WSH funding // address. netParams *chaincfg.Params } // BindKeys sets both the remote and local node's keys that will be used for the // channel funding multisig output. func (i *PsbtIntent) BindKeys(localKey *keychain.KeyDescriptor, remoteKey *btcec.PublicKey) { i.localKey = localKey i.remoteKey = remoteKey i.State = PsbtOutputKnown } // FundingParams returns the parameters that are necessary to start funding the // channel output this intent was created for. It returns the P2WSH funding // address, the exact funding amount and a PSBT packet that contains exactly one // output that encodes the previous two parameters. func (i *PsbtIntent) FundingParams() (btcutil.Address, int64, *psbt.Packet, error) { if i.State != PsbtOutputKnown { return nil, 0, nil, fmt.Errorf("invalid state, got %v "+ "expected %v", i.State, PsbtOutputKnown) } // The funding output needs to be known already at this point, which // means we need to have the local and remote multisig keys bound // already. witnessScript, out, err := i.FundingOutput() if err != nil { return nil, 0, nil, fmt.Errorf("unable to create funding "+ "output: %v", err) } witnessScriptHash := sha256.Sum256(witnessScript) // Encode the address in the human readable bech32 format. addr, err := btcutil.NewAddressWitnessScriptHash( witnessScriptHash[:], i.netParams, ) if err != nil { return nil, 0, nil, fmt.Errorf("unable to encode address: %v", err) } // We'll also encode the address/amount in a machine readable raw PSBT // format. If the user supplied a base PSBT, we'll add the output to // that one, otherwise we'll create a new one. packet := i.BasePsbt if packet == nil { packet, err = psbt.New(nil, nil, 2, 0, nil) if err != nil { return nil, 0, nil, fmt.Errorf("unable to create "+ "PSBT: %v", err) } } packet.UnsignedTx.TxOut = append(packet.UnsignedTx.TxOut, out) packet.Outputs = append(packet.Outputs, psbt.POutput{}) return addr, out.Value, packet, nil } // Verify makes sure the PSBT that is given to the intent has an output that // sends to the channel funding multisig address with the correct amount. A // simple check that at least a single input has been specified is performed. func (i *PsbtIntent) Verify(packet *psbt.Packet) error { if packet == nil { return fmt.Errorf("PSBT is nil") } if i.State != PsbtOutputKnown { return fmt.Errorf("invalid state. got %v expected %v", i.State, PsbtOutputKnown) } // Try to locate the channel funding multisig output. _, expectedOutput, err := i.FundingOutput() if err != nil { return fmt.Errorf("funding output cannot be created: %v", err) } outputFound := false outputSum := int64(0) for _, out := range packet.UnsignedTx.TxOut { outputSum += out.Value if txOutsEqual(out, expectedOutput) { outputFound = true } } if !outputFound { return fmt.Errorf("funding output not found in PSBT") } // At least one input needs to be specified and it must be large enough // to pay for all outputs. We don't want to dive into fee estimation // here so we just assume that if the input amount exceeds the output // amount, the chosen fee is sufficient. if len(packet.UnsignedTx.TxIn) == 0 { return fmt.Errorf("PSBT has no inputs") } sum, err := sumUtxoInputValues(packet) if err != nil { return fmt.Errorf("error determining input sum: %v", err) } if sum <= outputSum { return fmt.Errorf("input amount sum must be larger than " + "output amount sum") } i.PendingPsbt = packet i.State = PsbtVerified return nil } // Finalize makes sure the final PSBT that is given to the intent is fully valid // and signed but still contains the same UTXOs and outputs as the pending // transaction we previously verified. If everything checks out, the funding // manager is informed that the channel can now be opened and the funding // transaction be broadcast. func (i *PsbtIntent) Finalize(packet *psbt.Packet) error { if packet == nil { return fmt.Errorf("PSBT is nil") } if i.State != PsbtVerified { return fmt.Errorf("invalid state. got %v expected %v", i.State, PsbtVerified) } // Make sure the PSBT itself thinks it's finalized and ready to be // broadcast. err := psbt.MaybeFinalizeAll(packet) if err != nil { return fmt.Errorf("error finalizing PSBT: %v", err) } _, err = psbt.Extract(packet) if err != nil { return fmt.Errorf("unable to extract funding TX: %v", err) } // Do a basic check that this is still the same PSBT that we verified in // the previous step. This is to protect the user from unwanted // modifications. We only check the outputs and previous outpoints of // the inputs of the wire transaction because the fields in the PSBT // part are allowed to change. if i.PendingPsbt == nil { return fmt.Errorf("PSBT was not verified first") } err = verifyOutputsEqual( packet.UnsignedTx.TxOut, i.PendingPsbt.UnsignedTx.TxOut, ) if err != nil { return fmt.Errorf("outputs differ from verified PSBT: %v", err) } err = verifyInputPrevOutpointsEqual( packet.UnsignedTx.TxIn, i.PendingPsbt.UnsignedTx.TxIn, ) if err != nil { return fmt.Errorf("inputs differ from verified PSBT: %v", err) } // As far as we can tell, this PSBT is ok to be used as a funding // transaction. i.PendingPsbt = packet i.State = PsbtFinalized // Signal the funding manager that it can now finally continue with its // funding flow as the PSBT is now ready to be converted into a real // transaction and be published. i.signalPsbtReady.Do(func() { close(i.PsbtReady) }) return nil } // CompileFundingTx finalizes the previously verified PSBT and returns the // extracted binary serialized transaction from it. It also prepares the channel // point for which this funding intent was initiated for. func (i *PsbtIntent) CompileFundingTx() (*wire.MsgTx, error) { if i.State != PsbtFinalized { return nil, fmt.Errorf("invalid state. got %v expected %v", i.State, PsbtFinalized) } // Make sure the PSBT can be finalized and extracted. err := psbt.MaybeFinalizeAll(i.PendingPsbt) if err != nil { return nil, fmt.Errorf("error finalizing PSBT: %v", err) } fundingTx, err := psbt.Extract(i.PendingPsbt) if err != nil { return nil, fmt.Errorf("unable to extract funding TX: %v", err) } // Identify our funding outpoint now that we know everything's ready. _, txOut, err := i.FundingOutput() if err != nil { return nil, fmt.Errorf("cannot get funding output: %v", err) } ok, idx := input.FindScriptOutputIndex(fundingTx, txOut.PkScript) if !ok { return nil, fmt.Errorf("funding output not found in PSBT") } i.chanPoint = &wire.OutPoint{ Hash: fundingTx.TxHash(), Index: idx, } i.State = PsbtFundingTxCompiled return fundingTx, nil } // RemoteCanceled informs the listener of the PSBT ready channel that the // funding has been canceled by the remote peer and that we can no longer // continue with it. func (i *PsbtIntent) RemoteCanceled() { log.Debugf("PSBT funding intent canceled by remote, state=%v", i.State) i.signalPsbtReady.Do(func() { i.PsbtReady <- ErrRemoteCanceled i.State = PsbtResponderCanceled }) i.ShimIntent.Cancel() } // Cancel allows the caller to cancel a funding Intent at any time. This will // return make sure the channel funding flow with the remote peer is failed and // any reservations are canceled. // // NOTE: Part of the chanfunding.Intent interface. func (i *PsbtIntent) Cancel() { log.Debugf("PSBT funding intent canceled, state=%v", i.State) i.signalPsbtReady.Do(func() { i.PsbtReady <- ErrUserCanceled i.State = PsbtInitiatorCanceled }) i.ShimIntent.Cancel() } // PsbtAssembler is a type of chanfunding.Assembler wherein the funding // transaction is constructed outside of lnd by using partially signed bitcoin // transactions (PSBT). type PsbtAssembler struct { // fundingAmt is the total amount of coins in the funding output. fundingAmt btcutil.Amount // basePsbt is the user-supplied base PSBT the channel output should be // added to. basePsbt *psbt.Packet // netParams are the network parameters used to encode the P2WSH funding // address. netParams *chaincfg.Params } // NewPsbtAssembler creates a new CannedAssembler from the material required // to construct a funding output and channel point. An optional base PSBT can // be supplied which will be used to add the channel output to instead of // creating a new one. func NewPsbtAssembler(fundingAmt btcutil.Amount, basePsbt *psbt.Packet, netParams *chaincfg.Params) *PsbtAssembler { return &PsbtAssembler{ fundingAmt: fundingAmt, basePsbt: basePsbt, netParams: netParams, } } // ProvisionChannel creates a new ShimIntent given the passed funding Request. // The returned intent is immediately able to provide the channel point and // funding output as they've already been created outside lnd. // // NOTE: This method satisfies the chanfunding.Assembler interface. func (p *PsbtAssembler) ProvisionChannel(req *Request) (Intent, error) { // We'll exit out if this field is set as the funding transaction will // be assembled externally, so we don't influence coin selection. if req.SubtractFees { return nil, fmt.Errorf("SubtractFees not supported for PSBT") } intent := &PsbtIntent{ ShimIntent: ShimIntent{ localFundingAmt: p.fundingAmt, }, State: PsbtShimRegistered, BasePsbt: p.basePsbt, PsbtReady: make(chan error, 1), netParams: p.netParams, } // A simple sanity check to ensure the provisioned request matches the // re-made shim intent. if req.LocalAmt+req.RemoteAmt != p.fundingAmt { return nil, fmt.Errorf("intent doesn't match PSBT "+ "assembler: local_amt=%v, remote_amt=%v, funding_amt=%v", req.LocalAmt, req.RemoteAmt, p.fundingAmt) } return intent, nil } // FundingTxAvailable is an empty method that an assembler can implement to // signal to callers that its able to provide the funding transaction for the // channel via the intent it returns. // // NOTE: This method is a part of the FundingTxAssembler interface. func (p *PsbtAssembler) FundingTxAvailable() {} // A compile-time assertion to ensure PsbtAssembler meets the Assembler // interface. var _ Assembler = (*PsbtAssembler)(nil) // sumUtxoInputValues tries to extract the sum of all inputs specified in the // UTXO fields of the PSBT. An error is returned if an input is specified that // does not contain any UTXO information. func sumUtxoInputValues(packet *psbt.Packet) (int64, error) { // We take the TX ins of the unsigned TX as the truth for how many // inputs there should be, as the fields in the extra data part of the // PSBT can be empty. if len(packet.UnsignedTx.TxIn) != len(packet.Inputs) { return 0, fmt.Errorf("TX input length doesn't match PSBT " + "input length") } inputSum := int64(0) for idx, in := range packet.Inputs { switch { case in.WitnessUtxo != nil: // Witness UTXOs only need to reference the TxOut. inputSum += in.WitnessUtxo.Value case in.NonWitnessUtxo != nil: // Non-witness UTXOs reference to the whole transaction // the UTXO resides in. utxOuts := in.NonWitnessUtxo.TxOut txIn := packet.UnsignedTx.TxIn[idx] inputSum += utxOuts[txIn.PreviousOutPoint.Index].Value default: return 0, fmt.Errorf("input %d has no UTXO information", idx) } } return inputSum, nil } // txOutsEqual returns true if two transaction outputs are equal. func txOutsEqual(out1, out2 *wire.TxOut) bool { if out1 == nil || out2 == nil { return out1 == out2 } return out1.Value == out2.Value && bytes.Equal(out1.PkScript, out2.PkScript) } // verifyOutputsEqual verifies that the two slices of transaction outputs are // deep equal to each other. We do the length check and manual loop to provide // better error messages to the user than just returning "not equal". func verifyOutputsEqual(outs1, outs2 []*wire.TxOut) error { if len(outs1) != len(outs2) { return fmt.Errorf("number of outputs are different") } for idx, out := range outs1 { // There is a byte slice in the output so we can't use the // equality operator. if !txOutsEqual(out, outs2[idx]) { return fmt.Errorf("output %d is different", idx) } } return nil } // verifyInputPrevOutpointsEqual verifies that the previous outpoints of the // two slices of transaction inputs are deep equal to each other. We do the // length check and manual loop to provide better error messages to the user // than just returning "not equal". func verifyInputPrevOutpointsEqual(ins1, ins2 []*wire.TxIn) error { if len(ins1) != len(ins2) { return fmt.Errorf("number of inputs are different") } for idx, in := range ins1 { if in.PreviousOutPoint != ins2[idx].PreviousOutPoint { return fmt.Errorf("previous outpoint of input %d is "+ "different", idx) } } return nil }