package lnwallet_test import ( "bytes" "encoding/hex" "fmt" "io/ioutil" "net" "os" "path/filepath" "runtime" "testing" "time" "github.com/boltdb/bolt" "github.com/davecgh/go-spew/spew" "github.com/roasbeef/btcwallet/chain" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/chainntnfs/btcdnotify" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwallet/btcwallet" "github.com/lightningnetwork/lnd/lnwire" "github.com/roasbeef/btcd/chaincfg" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/rpcclient" _ "github.com/roasbeef/btcwallet/walletdb/bdb" "github.com/roasbeef/btcd/btcec" "github.com/roasbeef/btcd/integration/rpctest" "github.com/roasbeef/btcd/txscript" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" ) var ( privPass = []byte("private-test") // For simplicity a single priv key controls all of our test outputs. testWalletPrivKey = []byte{ 0x2b, 0xd8, 0x06, 0xc9, 0x7f, 0x0e, 0x00, 0xaf, 0x1a, 0x1f, 0xc3, 0x32, 0x8f, 0xa7, 0x63, 0xa9, 0x26, 0x97, 0x23, 0xc8, 0xdb, 0x8f, 0xac, 0x4f, 0x93, 0xaf, 0x71, 0xdb, 0x18, 0x6d, 0x6e, 0x90, } bobsPrivKey = []byte{ 0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda, 0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17, 0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d, 0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9, } // Use a hard-coded HD seed. testHdSeed = chainhash.Hash{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9, 0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } aliceHDSeed = chainhash.Hash{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x18, 0xa3, 0xef, 0xb9, 0x64, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } bobHDSeed = chainhash.Hash{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x98, 0xa3, 0xef, 0xb9, 0x69, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } netParams = &chaincfg.SimNetParams chainHash = netParams.GenesisHash _, alicePub = btcec.PrivKeyFromBytes(btcec.S256(), testHdSeed[:]) _, bobPub = btcec.PrivKeyFromBytes(btcec.S256(), bobsPrivKey) // The number of confirmations required to consider any created channel // open. numReqConfs uint16 = 1 csvDelay uint16 = 4 bobAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.2:9000") aliceAddr, _ = net.ResolveTCPAddr("tcp", "10.0.0.3:9000") ) // assertProperBalance asserts than the total value of the unspent outputs // within the wallet are *exactly* amount. If unable to retrieve the current // balance, or the assertion fails, the test will halt with a fatal error. func assertProperBalance(t *testing.T, lw *lnwallet.LightningWallet, numConfirms int32, amount int64) { balance, err := lw.ConfirmedBalance(numConfirms, false) if err != nil { t.Fatalf("unable to query for balance: %v", err) } if balance != btcutil.Amount(amount*1e8) { t.Fatalf("wallet credits not properly loaded, should have 40BTC, "+ "instead have %v", balance) } } func assertChannelOpen(t *testing.T, miner *rpctest.Harness, numConfs uint32, c <-chan *lnwallet.LightningChannel) *lnwallet.LightningChannel { // Mine a single block. After this block is mined, the channel should // be considered fully open. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } select { case lnc := <-c: return lnc case <-time.After(time.Second * 5): t.Fatalf("channel never opened") return nil } } func assertReservationDeleted(res *lnwallet.ChannelReservation, t *testing.T) { if err := res.Cancel(); err == nil { t.Fatalf("reservation wasn't deleted from wallet") } } // calcStaticFee calculates appropriate fees for commitment transactions. This // function provides a simple way to allow test balance assertions to take fee // calculations into account. // TODO(bvu): Refactor when dynamic fee estimation is added. func calcStaticFee(numHTLCs int) btcutil.Amount { const ( commitWeight = btcutil.Amount(724) htlcWeight = 172 feePerKw = btcutil.Amount(250/4) * 1000 ) return feePerKw * (commitWeight + btcutil.Amount(htlcWeight*numHTLCs)) / 1000 } func loadTestCredits(miner *rpctest.Harness, w *lnwallet.LightningWallet, numOutputs, btcPerOutput int) error { // Using the mining node, spend from a coinbase output numOutputs to // give us btcPerOutput with each output. satoshiPerOutput := int64(btcPerOutput * 1e8) expectedBalance, err := w.ConfirmedBalance(1, false) if err != nil { return err } expectedBalance += btcutil.Amount(satoshiPerOutput * int64(numOutputs)) addrs := make([]btcutil.Address, 0, numOutputs) for i := 0; i < numOutputs; i++ { // Grab a fresh address from the wallet to house this output. walletAddr, err := w.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { return err } script, err := txscript.PayToAddrScript(walletAddr) if err != nil { return err } addrs = append(addrs, walletAddr) output := &wire.TxOut{ Value: satoshiPerOutput, PkScript: script, } if _, err := miner.SendOutputs([]*wire.TxOut{output}, 10); err != nil { return err } } // TODO(roasbeef): shouldn't hardcode 10, use config param that dictates // how many confs we wait before opening a channel. // Generate 10 blocks with the mining node, this should mine all // numOutputs transactions created above. We generate 10 blocks here // in order to give all the outputs a "sufficient" number of confirmations. if _, err := miner.Node.Generate(10); err != nil { return err } // Wait until the wallet has finished syncing up to the main chain. ticker := time.NewTicker(100 * time.Millisecond) for range ticker.C { balance, err := w.ConfirmedBalance(1, false) if err != nil { return err } if balance == expectedBalance { break } } ticker.Stop() return nil } // createTestWallet creates a test LightningWallet will a total of 20BTC // available for funding channels. func createTestWallet(tempTestDir string, miningNode *rpctest.Harness, netParams *chaincfg.Params, notifier chainntnfs.ChainNotifier, wc lnwallet.WalletController, signer lnwallet.Signer, bio lnwallet.BlockChainIO) (*lnwallet.LightningWallet, error) { dbDir := filepath.Join(tempTestDir, "cdb") cdb, err := channeldb.Open(dbDir) if err != nil { return nil, err } cfg := lnwallet.Config{ Database: cdb, Notifier: notifier, WalletController: wc, Signer: signer, ChainIO: bio, FeeEstimator: lnwallet.StaticFeeEstimator{FeeRate: 250}, DefaultConstraints: channeldb.ChannelConstraints{ DustLimit: 500, MaxPendingAmount: lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) * 100, ChanReserve: 100, MinHTLC: 400, MaxAcceptedHtlcs: 900, }, NetParams: *netParams, } wallet, err := lnwallet.NewLightningWallet(cfg) if err != nil { return nil, err } if err := wallet.Startup(); err != nil { return nil, err } // Load our test wallet with 20 outputs each holding 4BTC. if err := loadTestCredits(miningNode, wallet, 20, 4); err != nil { return nil, err } return wallet, nil } func testDualFundingReservationWorkflow(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet, t *testing.T) { const fundingAmount = btcutil.Amount(5 * 1e8) // In this scenario, we'll test a dual funder reservation, with each // side putting in 10 BTC. // Alice initiates a channel funded with 5 BTC for each side, so 10 BTC // total. She also generates 2 BTC in change. feePerWeight, err := alice.Cfg.FeeEstimator.EstimateFeePerWeight(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feePerWeight * 1000 aliceChanReservation, err := alice.InitChannelReservation( fundingAmount*2, fundingAmount, 0, feePerKw, feePerKw, bobPub, bobAddr, chainHash) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } aliceChanReservation.SetNumConfsRequired(numReqConfs) aliceChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmount), 10) // The channel reservation should now be populated with a multi-sig key // from our HD chain, a change output with 3 BTC, and 2 outputs // selected of 4 BTC each. Additionally, the rest of the items needed // to fulfill a funding contribution should also have been filled in. aliceContribution := aliceChanReservation.OurContribution() if len(aliceContribution.Inputs) != 2 { t.Fatalf("outputs for funding tx not properly selected, have %v "+ "outputs should have 2", len(aliceContribution.Inputs)) } assertContributionInitPopulated(t, aliceContribution) // Bob does the same, generating his own contribution. He then also // receives' Alice's contribution, and consumes that so we can continue // the funding process. bobChanReservation, err := bob.InitChannelReservation(fundingAmount*2, fundingAmount, 0, feePerKw, feePerKw, alicePub, aliceAddr, chainHash) if err != nil { t.Fatalf("bob unable to init channel reservation: %v", err) } bobChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmount), 10) bobChanReservation.SetNumConfsRequired(numReqConfs) assertContributionInitPopulated(t, bobChanReservation.OurContribution()) err = bobChanReservation.ProcessContribution(aliceContribution) if err != nil { t.Fatalf("bob unable to process alice's contribution: %v", err) } assertContributionInitPopulated(t, bobChanReservation.TheirContribution()) bobContribution := bobChanReservation.OurContribution() // Bob then sends over his contribution, which will be consumed by // Alice. After this phase, Alice should have all the necessary // material required to craft the funding transaction and commitment // transactions. err = aliceChanReservation.ProcessContribution(bobContribution) if err != nil { t.Fatalf("alice unable to process bob's contribution: %v", err) } assertContributionInitPopulated(t, aliceChanReservation.TheirContribution()) // At this point, all Alice's signatures should be fully populated. aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures() if aliceFundingSigs == nil { t.Fatalf("alice's funding signatures not populated") } if aliceCommitSig == nil { t.Fatalf("alice's commit signatures not populated") } // Additionally, Bob's signatures should also be fully populated. bobFundingSigs, bobCommitSig := bobChanReservation.OurSignatures() if bobFundingSigs == nil { t.Fatalf("bob's funding signatures not populated") } if bobCommitSig == nil { t.Fatalf("bob's commit signatures not populated") } // To concludes, we'll consume first Alice's signatures with Bob, and // then the other way around. _, err = aliceChanReservation.CompleteReservation( bobFundingSigs, bobCommitSig, ) if err != nil { t.Fatalf("unable to consume alice's sigs: %v", err) } _, err = bobChanReservation.CompleteReservation( aliceFundingSigs, aliceCommitSig, ) if err != nil { t.Fatalf("unable to consume bob's sigs: %v", err) } // At this point, the funding tx should have been populated. fundingTx := aliceChanReservation.FinalFundingTx() if fundingTx == nil { t.Fatalf("funding transaction never created!") } // The resulting active channel state should have been persisted to the // DB. fundingSha := fundingTx.TxHash() aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved") } if aliceChannels[0].ChanType != channeldb.DualFunder { t.Fatalf("channel not detected as dual funder") } bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved") } if bobChannels[0].ChanType != channeldb.DualFunder { t.Fatalf("channel not detected as dual funder") } // Mine a single block, the funding transaction should be included // within this block. blockHashes, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate block: %v", err) } block, err := miner.Node.GetBlock(blockHashes[0]) if err != nil { t.Fatalf("unable to find block: %v", err) } if len(block.Transactions) != 2 { t.Fatalf("funding transaction wasn't mined: %v", err) } blockTx := block.Transactions[1] if blockTx.TxHash() != fundingSha { t.Fatalf("incorrect transaction was mined") } assertReservationDeleted(aliceChanReservation, t) assertReservationDeleted(bobChanReservation, t) } func testFundingTransactionLockedOutputs(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // Create a single channel asking for 16 BTC total. fundingAmount := btcutil.Amount(8 * 1e8) feePerWeight, err := alice.Cfg.FeeEstimator.EstimateFeePerWeight(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feePerWeight * 1000 _, err = alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feePerKw, bobPub, bobAddr, chainHash, ) if err != nil { t.Fatalf("unable to initialize funding reservation 1: %v", err) } // Now attempt to reserve funds for another channel, this time // requesting 900 BTC. We only have around 64BTC worth of outpoints // that aren't locked, so this should fail. amt := btcutil.Amount(900 * 1e8) failedReservation, err := alice.InitChannelReservation(amt, amt, 0, feePerKw, feePerKw, bobPub, bobAddr, chainHash) if err == nil { t.Fatalf("not error returned, should fail on coin selection") } if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok { t.Fatalf("error not coinselect error: %v", err) } if failedReservation != nil { t.Fatalf("reservation should be nil") } } func testFundingCancellationNotEnoughFunds(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { feePerWeight, err := alice.Cfg.FeeEstimator.EstimateFeePerWeight(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feePerWeight * 1000 // Create a reservation for 44 BTC. fundingAmount := btcutil.Amount(44 * 1e8) chanReservation, err := alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feePerKw, bobPub, bobAddr, chainHash) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } // Attempt to create another channel with 44 BTC, this should fail. _, err = alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feePerKw, bobPub, bobAddr, chainHash, ) if _, ok := err.(*lnwallet.ErrInsufficientFunds); !ok { t.Fatalf("coin selection succeded should have insufficient funds: %v", err) } // Now cancel that old reservation. if err := chanReservation.Cancel(); err != nil { t.Fatalf("unable to cancel reservation: %v", err) } // Those outpoints should no longer be locked. lockedOutPoints := alice.LockedOutpoints() if len(lockedOutPoints) != 0 { t.Fatalf("outpoints still locked") } // Reservation ID should no longer be tracked. numReservations := alice.ActiveReservations() if len(alice.ActiveReservations()) != 0 { t.Fatalf("should have 0 reservations, instead have %v", numReservations) } // TODO(roasbeef): create method like Balance that ignores locked // outpoints, will let us fail early/fast instead of querying and // attempting coin selection. // Request to fund a new channel should now succeed. _, err = alice.InitChannelReservation(fundingAmount, fundingAmount, 0, feePerKw, feePerKw, bobPub, bobAddr, chainHash) if err != nil { t.Fatalf("unable to initialize funding reservation: %v", err) } } func testCancelNonExistantReservation(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { feeRate, err := alice.Cfg.FeeEstimator.EstimateFeePerWeight(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } // Create our own reservation, give it some ID. res := lnwallet.NewChannelReservation( 1000, 1000, feeRate, alice, 22, 10, &testHdSeed, ) // Attempt to cancel this reservation. This should fail, we know // nothing of it. if err := res.Cancel(); err == nil { t.Fatalf("cancelled non-existent reservation") } } func assertContributionInitPopulated(t *testing.T, c *lnwallet.ChannelContribution) { _, _, line, _ := runtime.Caller(1) if c.FirstCommitmentPoint == nil { t.Fatalf("line #%v: commitment point not fond", line) } if c.CsvDelay == 0 { t.Fatalf("line #%v: csv delay not set", line) } if c.MultiSigKey == nil { t.Fatalf("line #%v: multi-sig key not set", line) } if c.RevocationBasePoint == nil { t.Fatalf("line #%v: revocation key not set", line) } if c.PaymentBasePoint == nil { t.Fatalf("line #%v: payment key not set", line) } if c.DelayBasePoint == nil { t.Fatalf("line #%v: delay key not set", line) } if c.DustLimit == 0 { t.Fatalf("line #%v: dust limit not set", line) } if c.MaxPendingAmount == 0 { t.Fatalf("line #%v: max pending amt not set", line) } if c.ChanReserve == 0 { // TODO(roasbeef): need to follow up and ensure reserve set to // fraction t.Fatalf("line #%v: chan reserve not set", line) } if c.MinHTLC == 0 { t.Fatalf("line #%v: min htlc not set", line) } if c.MaxAcceptedHtlcs == 0 { t.Fatalf("line #%v: max accepted htlc's not set", line) } } func testSingleFunderReservationWorkflow(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet, t *testing.T) { // For this scenario, Alice will be the channel initiator while bob // will act as the responder to the workflow. // First, Alice will Initialize a reservation for a channel with 4 BTC // funded solely by us. We'll also initially push 1 BTC of the channel // towards Bob's side. fundingAmt := btcutil.Amount(4 * 1e8) pushAmt := lnwire.NewMSatFromSatoshis(btcutil.SatoshiPerBitcoin) feePerWeight, err := alice.Cfg.FeeEstimator.EstimateFeePerWeight(1) if err != nil { t.Fatalf("unable to query fee estimator: %v", err) } feePerKw := feePerWeight * 1000 aliceChanReservation, err := alice.InitChannelReservation(fundingAmt, fundingAmt, pushAmt, feePerKw, feePerKw, bobPub, bobAddr, chainHash) if err != nil { t.Fatalf("unable to init channel reservation: %v", err) } aliceChanReservation.SetNumConfsRequired(numReqConfs) aliceChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmt), 10) // Verify all contribution fields have been set properly. aliceContribution := aliceChanReservation.OurContribution() if len(aliceContribution.Inputs) < 1 { t.Fatalf("outputs for funding tx not properly selected, have %v "+ "outputs should at least 1", len(aliceContribution.Inputs)) } if len(aliceContribution.ChangeOutputs) != 1 { t.Fatalf("coin selection failed, should have one change outputs, "+ "instead have: %v", len(aliceContribution.ChangeOutputs)) } aliceContribution.CsvDelay = csvDelay assertContributionInitPopulated(t, aliceContribution) // Next, Bob receives the initial request, generates a corresponding // reservation initiation, then consume Alice's contribution. bobChanReservation, err := bob.InitChannelReservation(fundingAmt, 0, pushAmt, feePerKw, feePerKw, alicePub, aliceAddr, chainHash) if err != nil { t.Fatalf("unable to create bob reservation: %v", err) } bobChanReservation.CommitConstraints(csvDelay, lnwallet.MaxHTLCNumber/2, lnwire.NewMSatFromSatoshis(fundingAmt), 10) bobChanReservation.SetNumConfsRequired(numReqConfs) // We'll ensure that Bob's contribution also gets generated properly. bobContribution := bobChanReservation.OurContribution() bobContribution.CsvDelay = csvDelay assertContributionInitPopulated(t, bobContribution) // With his contribution generated, he can now process Alice's // contribution. err = bobChanReservation.ProcessSingleContribution(aliceContribution) if err != nil { t.Fatalf("bob unable to process alice's contribution: %v", err) } assertContributionInitPopulated(t, bobChanReservation.TheirContribution()) // Bob will next send over his contribution to Alice, we simulate this // by having Alice immediately process his contribution. err = aliceChanReservation.ProcessContribution(bobContribution) if err != nil { t.Fatalf("alice unable to process bob's contribution") } assertContributionInitPopulated(t, bobChanReservation.TheirContribution()) // At this point, Alice should have generated all the signatures // required for the funding transaction, as well as Alice's commitment // signature to bob. aliceRemoteContribution := aliceChanReservation.TheirContribution() aliceFundingSigs, aliceCommitSig := aliceChanReservation.OurSignatures() if aliceFundingSigs == nil { t.Fatalf("funding sigs not found") } if aliceCommitSig == nil { t.Fatalf("commitment sig not found") } // Additionally, the funding tx and the funding outpoint should have // been populated. if aliceChanReservation.FinalFundingTx() == nil { t.Fatalf("funding transaction never created!") } if aliceChanReservation.FundingOutpoint() == nil { t.Fatalf("funding outpoint never created!") } // Their funds should also be filled in. if len(aliceRemoteContribution.Inputs) != 0 { t.Fatalf("bob shouldn't have any inputs, instead has %v", len(aliceRemoteContribution.Inputs)) } if len(aliceRemoteContribution.ChangeOutputs) != 0 { t.Fatalf("bob shouldn't have any change outputs, instead "+ "has %v", aliceRemoteContribution.ChangeOutputs[0].Value) } // Next, Alice will send over her signature for Bob's commitment // transaction, as well as the funding outpoint. fundingPoint := aliceChanReservation.FundingOutpoint() _, err = bobChanReservation.CompleteReservationSingle( fundingPoint, aliceCommitSig, ) if err != nil { t.Fatalf("bob unable to consume single reservation: %v", err) } // Finally, we'll conclude the reservation process by sending over // Bob's commitment signature, which is the final thing Alice needs to // be able to safely broadcast the funding transaction. _, bobCommitSig := bobChanReservation.OurSignatures() if bobCommitSig == nil { t.Fatalf("bob failed to generate commitment signature: %v", err) } _, err = aliceChanReservation.CompleteReservation( nil, bobCommitSig, ) if err != nil { t.Fatalf("alice unable to complete reservation: %v", err) } // The resulting active channel state should have been persisted to the // DB for both Alice and Bob. fundingTx := aliceChanReservation.FinalFundingTx() fundingSha := fundingTx.TxHash() aliceChannels, err := alice.Cfg.Database.FetchOpenChannels(bobPub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if len(aliceChannels) != 1 { t.Fatalf("alice didn't save channel state: %v", err) } if !bytes.Equal(aliceChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved: %v vs %v", hex.EncodeToString(aliceChannels[0].FundingOutpoint.Hash[:]), hex.EncodeToString(fundingSha[:])) } if !aliceChannels[0].IsInitiator { t.Fatalf("alice not detected as channel initiator") } if aliceChannels[0].ChanType != channeldb.SingleFunder { t.Fatalf("channel type is incorrect, expected %v instead got %v", channeldb.SingleFunder, aliceChannels[0].ChanType) } bobChannels, err := bob.Cfg.Database.FetchOpenChannels(alicePub) if err != nil { t.Fatalf("unable to retrieve channel from DB: %v", err) } if len(bobChannels) != 1 { t.Fatalf("bob didn't save channel state: %v", err) } if !bytes.Equal(bobChannels[0].FundingOutpoint.Hash[:], fundingSha[:]) { t.Fatalf("channel state not properly saved: %v vs %v", hex.EncodeToString(bobChannels[0].FundingOutpoint.Hash[:]), hex.EncodeToString(fundingSha[:])) } if bobChannels[0].IsInitiator { t.Fatalf("bob not detected as channel responder") } if bobChannels[0].ChanType != channeldb.SingleFunder { t.Fatalf("channel type is incorrect, expected %v instead got %v", channeldb.SingleFunder, bobChannels[0].ChanType) } // Mine a single block, the funding transaction should be included // within this block. blockHashes, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate block: %v", err) } block, err := miner.Node.GetBlock(blockHashes[0]) if err != nil { t.Fatalf("unable to find block: %v", err) } if len(block.Transactions) != 2 { t.Fatalf("funding transaction wasn't mined: %v", err) } blockTx := block.Transactions[1] if blockTx.TxHash() != fundingSha { t.Fatalf("incorrect transaction was mined") } assertReservationDeleted(aliceChanReservation, t) assertReservationDeleted(bobChanReservation, t) } func testListTransactionDetails(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // Create 5 new outputs spendable by the wallet. const numTxns = 5 const outputAmt = btcutil.SatoshiPerBitcoin txids := make(map[chainhash.Hash]struct{}) for i := 0; i < numTxns; i++ { addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { t.Fatalf("unable to create new address: %v", err) } script, err := txscript.PayToAddrScript(addr) if err != nil { t.Fatalf("unable to create output script: %v", err) } output := &wire.TxOut{ Value: outputAmt, PkScript: script, } txid, err := miner.SendOutputs([]*wire.TxOut{output}, 10) if err != nil { t.Fatalf("unable to send coinbase: %v", err) } txids[*txid] = struct{}{} } // Generate 10 blocks to mine all the transactions created above. const numBlocksMined = 10 blocks, err := miner.Node.Generate(numBlocksMined) if err != nil { t.Fatalf("unable to mine blocks: %v", err) } // Next, fetch all the current transaction details. // TODO(roasbeef): use ntfn client here instead? time.Sleep(time.Second * 2) txDetails, err := alice.ListTransactionDetails() if err != nil { t.Fatalf("unable to fetch tx details: %v", err) } // Each of the transactions created above should be found with the // proper details populated. for _, txDetail := range txDetails { if _, ok := txids[txDetail.Hash]; !ok { continue } if txDetail.NumConfirmations != numBlocksMined { t.Fatalf("num confs incorrect, got %v expected %v", txDetail.NumConfirmations, numBlocksMined) } if txDetail.Value != outputAmt { t.Fatalf("tx value incorrect, got %v expected %v", txDetail.Value, outputAmt) } if !bytes.Equal(txDetail.BlockHash[:], blocks[0][:]) { t.Fatalf("block hash mismatch, got %v expected %v", txDetail.BlockHash, blocks[0]) } delete(txids, txDetail.Hash) } if len(txids) != 0 { t.Fatalf("all transactions not found in details!") } // Next create a transaction paying to an output which isn't under the // wallet's control. b := txscript.NewScriptBuilder() b.AddOp(txscript.OP_0) outputScript, err := b.Script() if err != nil { t.Fatalf("unable to make output script: %v", err) } burnOutput := wire.NewTxOut(outputAmt, outputScript) burnTXID, err := alice.SendOutputs([]*wire.TxOut{burnOutput}, 10) if err != nil { t.Fatalf("unable to create burn tx: %v", err) } burnBlock, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to mine block: %v", err) } // Fetch the transaction details again, the new transaction should be // shown as debiting from the wallet's balance. time.Sleep(time.Second * 2) txDetails, err = alice.ListTransactionDetails() if err != nil { t.Fatalf("unable to fetch tx details: %v", err) } var burnTxFound bool for _, txDetail := range txDetails { if !bytes.Equal(txDetail.Hash[:], burnTXID[:]) { continue } burnTxFound = true if txDetail.NumConfirmations != 1 { t.Fatalf("num confs incorrect, got %v expected %v", txDetail.NumConfirmations, 1) } if txDetail.Value != -outputAmt { fmt.Println(spew.Sdump(txDetail)) t.Fatalf("tx value incorrect, got %v expected %v", int64(txDetail.Value), -int64(outputAmt)) } if !bytes.Equal(txDetail.BlockHash[:], burnBlock[0][:]) { t.Fatalf("block hash mismatch, got %v expected %v", txDetail.BlockHash, burnBlock[0]) } } if !burnTxFound { t.Fatal("tx burning btc not found") } } func testTransactionSubscriptions(miner *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // First, check to see if this wallet meets the TransactionNotifier // interface, if not then we'll skip this test for this particular // implementation of the WalletController. txClient, err := alice.SubscribeTransactions() if err != nil { t.Fatalf("unable to generate tx subscription: %v", err) } defer txClient.Cancel() const ( outputAmt = btcutil.SatoshiPerBitcoin numTxns = 3 ) unconfirmedNtfns := make(chan struct{}) go func() { for i := 0; i < numTxns; i++ { txDetail := <-txClient.UnconfirmedTransactions() if txDetail.NumConfirmations != 0 { t.Fatalf("incorrect number of confs, expected %v got %v", 0, txDetail.NumConfirmations) } if txDetail.Value != outputAmt { t.Fatalf("incorrect output amt, expected %v got %v", outputAmt, txDetail.Value) } if txDetail.BlockHash != nil { t.Fatalf("block hash should be nil, is instead %v", txDetail.BlockHash) } } close(unconfirmedNtfns) }() // Next, fetch a fresh address from the wallet, create 3 new outputs // with the pkScript. for i := 0; i < numTxns; i++ { addr, err := alice.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { t.Fatalf("unable to create new address: %v", err) } script, err := txscript.PayToAddrScript(addr) if err != nil { t.Fatalf("unable to create output script: %v", err) } output := &wire.TxOut{ Value: outputAmt, PkScript: script, } if _, err := miner.SendOutputs([]*wire.TxOut{output}, 10); err != nil { t.Fatalf("unable to send coinbase: %v", err) } } // We should receive a notification for all three transactions // generated above. select { case <-time.After(time.Second * 5): t.Fatalf("transactions not received after 3 seconds") case <-unconfirmedNtfns: // Fall through on successs } confirmedNtfns := make(chan struct{}) go func() { for i := 0; i < numTxns; i++ { txDetail := <-txClient.ConfirmedTransactions() if txDetail.NumConfirmations != 1 { t.Fatalf("incorrect number of confs, expected %v got %v", 1, txDetail.NumConfirmations) } if txDetail.Value != outputAmt { t.Fatalf("incorrect output amt, expected %v got %v", outputAmt, txDetail.Value) } } close(confirmedNtfns) }() // Next mine a single block, all the transactions generated above // should be included. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } // We should receive a notification for all three transactions // since they should be mined in the next block. select { case <-time.After(time.Second * 5): t.Fatalf("transactions not received after 3 seconds") case <-confirmedNtfns: // Fall through on success } } func testSignOutputUsingTweaks(r *rpctest.Harness, alice, _ *lnwallet.LightningWallet, t *testing.T) { // We'd like to test the ability of the wallet's Signer implementation // to be able to sign with a private key derived from tweaking the // specific public key. This scenario exercises the case when the // wallet needs to sign for a sweep of a revoked output, or just claim // any output that pays to a tweaked key. // First, generate a new public key under the control of the wallet, // then generate a revocation key using it. pubKey, err := alice.NewRawKey() if err != nil { t.Fatalf("unable to obtain public key: %v", err) } // As we'd like to test both single tweak, and double tweak spends, // we'll generate a commitment pre-image, then derive a revocation key // and single tweak from that. commitPreimage := bytes.Repeat([]byte{2}, 32) commitSecret, commitPoint := btcec.PrivKeyFromBytes(btcec.S256(), commitPreimage) revocationKey := lnwallet.DeriveRevocationPubkey(pubKey, commitPoint) commitTweak := lnwallet.SingleTweakBytes(commitPoint, pubKey) tweakedPub := lnwallet.TweakPubKey(pubKey, commitPoint) // As we'd like to test both single and double tweaks, we'll repeat // the same set up twice. The first will use a regular single tweak, // and the second will use a double tweak. baseKey := pubKey for i := 0; i < 2; i++ { var tweakedKey *btcec.PublicKey if i == 0 { tweakedKey = tweakedPub } else { tweakedKey = revocationKey } // Using the given key for the current iteration, we'll // generate a regular p2wkh from that. pubkeyHash := btcutil.Hash160(tweakedKey.SerializeCompressed()) keyAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubkeyHash, &chaincfg.SimNetParams) if err != nil { t.Fatalf("unable to create addr: %v", err) } keyScript, err := txscript.PayToAddrScript(keyAddr) if err != nil { t.Fatalf("unable to generate script: %v", err) } // With the script fully assembled, instruct the wallet to fund // the output with a newly created transaction. newOutput := &wire.TxOut{ Value: btcutil.SatoshiPerBitcoin, PkScript: keyScript, } txid, err := alice.SendOutputs([]*wire.TxOut{newOutput}, 10) if err != nil { t.Fatalf("unable to create output: %v", err) } // Query for the transaction generated above so we can located // the index of our output. tx, err := r.Node.GetRawTransaction(txid) if err != nil { t.Fatalf("unable to query for tx: %v", err) } var outputIndex uint32 if bytes.Equal(tx.MsgTx().TxOut[0].PkScript, keyScript) { outputIndex = 0 } else { outputIndex = 1 } // With the index located, we can create a transaction spending // the referenced output. sweepTx := wire.NewMsgTx(2) sweepTx.AddTxIn(&wire.TxIn{ PreviousOutPoint: wire.OutPoint{ Hash: tx.MsgTx().TxHash(), Index: outputIndex, }, }) sweepTx.AddTxOut(&wire.TxOut{ Value: 1000, PkScript: keyScript, }) // Now we can populate the sign descriptor which we'll use to // generate the signature. Within the descriptor we set the // private tweak value as the key in the script is derived // based on this tweak value and the key we originally // generated above. signDesc := &lnwallet.SignDescriptor{ PubKey: baseKey, WitnessScript: keyScript, Output: newOutput, HashType: txscript.SigHashAll, SigHashes: txscript.NewTxSigHashes(sweepTx), InputIndex: 0, } // If this is the first, loop, we'll use the generated single // tweak, otherwise, we'll use the double tweak. if i == 0 { signDesc.SingleTweak = commitTweak } else { signDesc.DoubleTweak = commitSecret } // With the descriptor created, we use it to generate a // signature, then manually create a valid witness stack we'll // use for signing. spendSig, err := alice.Cfg.Signer.SignOutputRaw(sweepTx, signDesc) if err != nil { t.Fatalf("unable to generate signature: %v", err) } witness := make([][]byte, 2) witness[0] = append(spendSig, byte(txscript.SigHashAll)) witness[1] = tweakedKey.SerializeCompressed() sweepTx.TxIn[0].Witness = witness // Finally, attempt to validate the completed transaction. This // should succeed if the wallet was able to properly generate // the proper private key. vm, err := txscript.NewEngine(keyScript, sweepTx, 0, txscript.StandardVerifyFlags, nil, nil, int64(btcutil.SatoshiPerBitcoin)) if err != nil { t.Fatalf("unable to create engine: %v", err) } if err := vm.Execute(); err != nil { t.Fatalf("spend #%v is invalid: %v", i, err) } } } func testReorgWalletBalance(r *rpctest.Harness, w *lnwallet.LightningWallet, _ *lnwallet.LightningWallet, t *testing.T) { // We first mine a few blocks to ensure any transactions still in the // mempool confirm, and then get the original balance, before a // reorganization that doesn't invalidate any existing transactions or // create any new non-coinbase transactions. We'll then check if it's // the same after the empty reorg. _, err := r.Node.Generate(5) if err != nil { t.Fatalf("unable to generate blocks on passed node: %v", err) } // Give wallet time to catch up. err = waitForWalletSync(w) if err != nil { t.Fatalf("unable to sync wallet: %v", err) } // Send some money from the miner to the wallet err = loadTestCredits(r, w, 20, 4) if err != nil { t.Fatalf("unable to send money to lnwallet: %v", err) } // Send some money from the wallet back to the miner. // Grab a fresh address from the miner to house this output. minerAddr, err := r.NewAddress() if err != nil { t.Fatalf("unable to generate address for miner: %v", err) } script, err := txscript.PayToAddrScript(minerAddr) if err != nil { t.Fatalf("unable to create pay to addr script: %v", err) } output := &wire.TxOut{ Value: 1e8, PkScript: script, } if _, err = w.SendOutputs([]*wire.TxOut{output}, 10); err != nil { t.Fatalf("unable to send outputs: %v", err) } _, err = r.Node.Generate(50) if err != nil { t.Fatalf("unable to generate blocks on passed node: %v", err) } // Give wallet time to catch up. err = waitForWalletSync(w) if err != nil { t.Fatalf("unable to sync wallet: %v", err) } // Get the original balance. origBalance, err := w.ConfirmedBalance(1, false) if err != nil { t.Fatalf("unable to query for balance: %v", err) } // Now we cause a reorganization as follows. // Step 1: create a new miner and start it. r2, err := rpctest.New(r.ActiveNet, nil, nil) if err != nil { t.Fatalf("unable to create mining node: %v", err) } err = r2.SetUp(false, 0) if err != nil { t.Fatalf("unable to set up mining node: %v", err) } defer r2.TearDown() newBalance, err := w.ConfirmedBalance(1, false) if err != nil { t.Fatalf("unable to query for balance: %v", err) } if origBalance != newBalance { t.Fatalf("wallet balance incorrect, should have %v, "+ "instead have %v", origBalance, newBalance) } // Step 2: connect the miner to the passed miner and wait for // synchronization. err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd) if err != nil { t.Fatalf("unable to connect mining nodes together: %v", err) } err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks) if err != nil { t.Fatalf("unable to synchronize mining nodes: %v", err) } // Step 3: Do a set of reorgs by disconecting the two miners, mining // one block on the passed miner and two on the created miner, // connecting them, and waiting for them to sync. for i := 0; i < 5; i++ { peers, err := r2.Node.GetPeerInfo() if err != nil { t.Fatalf("unable to get peer info: %v", err) } numPeers := len(peers) err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANRemove) if err != nil { t.Fatalf("unable to disconnect mining nodes: %v", err) } // Wait for disconnection timeout := time.After(30 * time.Second) for true { // Allow for timeout select { case <-timeout: t.Fatalf("timeout waiting for miner disconnect") default: } peers, err = r2.Node.GetPeerInfo() if err != nil { t.Fatalf("unable to get peer info: %v", err) } if len(peers) < numPeers { break } time.Sleep(100 * time.Millisecond) } _, err = r.Node.Generate(2) if err != nil { t.Fatalf("unable to generate blocks on passed node: %v", err) } _, err = r2.Node.Generate(3) if err != nil { t.Fatalf("unable to generate blocks on created node: %v", err) } // Step 5: Reconnect the miners and wait for them to synchronize. err = r2.Node.AddNode(r.P2PAddress(), rpcclient.ANAdd) if err != nil { t.Fatalf("unable to connect mining nodes together: %v", err) } err = rpctest.JoinNodes([]*rpctest.Harness{r2, r}, rpctest.Blocks) if err != nil { t.Fatalf("unable to synchronize mining nodes: %v", err) } // Give wallet time to catch up. err = waitForWalletSync(w) if err != nil { t.Fatalf("unable to sync wallet: %v", err) } } // Now we check that the wallet balance stays the same. newBalance, err = w.ConfirmedBalance(1, false) if err != nil { t.Fatalf("unable to query for balance: %v", err) } if origBalance != newBalance { t.Fatalf("wallet balance incorrect, should have %v, "+ "instead have %v", origBalance, newBalance) } } type walletTestCase struct { name string test func(miner *rpctest.Harness, alice, bob *lnwallet.LightningWallet, test *testing.T) } var walletTests = []walletTestCase{ { name: "single funding workflow", test: testSingleFunderReservationWorkflow, }, { name: "dual funder workflow", test: testDualFundingReservationWorkflow, }, { name: "output locking", test: testFundingTransactionLockedOutputs, }, { name: "reservation insufficient funds", test: testFundingCancellationNotEnoughFunds, }, { name: "transaction subscriptions", test: testTransactionSubscriptions, }, { name: "transaction details", test: testListTransactionDetails, }, { name: "signed with tweaked pubkeys", test: testSignOutputUsingTweaks, }, { name: "test cancel non-existent reservation", test: testCancelNonExistantReservation, }, { name: "reorg wallet balance", test: testReorgWalletBalance, }, } func clearWalletStates(a, b *lnwallet.LightningWallet) error { a.ResetReservations() b.ResetReservations() if err := a.Cfg.Database.Wipe(); err != nil { return err } return b.Cfg.Database.Wipe() } func waitForWalletSync(w *lnwallet.LightningWallet) error { var synced bool var err error timeout := time.After(10 * time.Second) for !synced { synced, err = w.IsSynced() if err != nil { return err } select { case <-timeout: return fmt.Errorf("timeout after 10s") default: } time.Sleep(100 * time.Millisecond) } return nil } // TestInterfaces tests all registered interfaces with a unified set of tests // which excersie each of the required methods found within the WalletController // interface. // // NOTE: In the future, when additional implementations of the WalletController // interface have been implemented, in order to ensure the new concrete // implementation is automatically tested, two steps must be undertaken. First, // one needs add a "non-captured" (_) import from the new sub-package. This // import should trigger an init() method within the package which registers // the interface. Second, an additional case in the switch within the main loop // below needs to be added which properly initializes the interface. // // TODO(roasbeef): purge bobNode in favor of dual lnwallet's func TestLightningWallet(t *testing.T) { t.Parallel() // Initialize the harness around a btcd node which will serve as our // dedicated miner to generate blocks, cause re-orgs, etc. We'll set // up this node with a chain length of 125, so we have plentyyy of BTC // to play around with. miningNode, err := rpctest.New(netParams, nil, nil) if err != nil { t.Fatalf("unable to create mining node: %v", err) } defer miningNode.TearDown() if err := miningNode.SetUp(true, 25); err != nil { t.Fatalf("unable to set up mining node: %v", err) } // Next mine enough blocks in order for segwit and the CSV package // soft-fork to activate on SimNet. numBlocks := netParams.MinerConfirmationWindow * 2 if _, err := miningNode.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate blocks: %v", err) } rpcConfig := miningNode.RPCConfig() chainNotifier, err := btcdnotify.New(&rpcConfig) if err != nil { t.Fatalf("unable to create notifier: %v", err) } if err := chainNotifier.Start(); err != nil { t.Fatalf("unable to start notifier: %v", err) } var ( bio lnwallet.BlockChainIO aliceSigner lnwallet.Signer bobSigner lnwallet.Signer aliceWalletController lnwallet.WalletController bobWalletController lnwallet.WalletController ) for _, walletDriver := range lnwallet.RegisteredWallets() { tempTestDirAlice, err := ioutil.TempDir("", "lnwallet") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } defer os.RemoveAll(tempTestDirAlice) tempTestDirBob, err := ioutil.TempDir("", "lnwallet") if err != nil { t.Fatalf("unable to create temp directory: %v", err) } defer os.RemoveAll(tempTestDirBob) walletType := walletDriver.WalletType switch walletType { case "btcwallet": aliceChainRPC, err := chain.NewRPCClient(netParams, rpcConfig.Host, rpcConfig.User, rpcConfig.Pass, rpcConfig.Certificates, false, 20) if err != nil { t.Fatalf("unable to make chain rpc: %v", err) } aliceWalletConfig := &btcwallet.Config{ PrivatePass: []byte("alice-pass"), HdSeed: aliceHDSeed[:], DataDir: tempTestDirAlice, NetParams: netParams, ChainSource: aliceChainRPC, FeeEstimator: lnwallet.StaticFeeEstimator{FeeRate: 250}, } aliceWalletController, err = walletDriver.New(aliceWalletConfig) if err != nil { t.Fatalf("unable to create btcwallet: %v", err) } aliceSigner = aliceWalletController.(*btcwallet.BtcWallet) bobChainRPC, err := chain.NewRPCClient(netParams, rpcConfig.Host, rpcConfig.User, rpcConfig.Pass, rpcConfig.Certificates, false, 20) if err != nil { t.Fatalf("unable to make chain rpc: %v", err) } bobWalletConfig := &btcwallet.Config{ PrivatePass: []byte("bob-pass"), HdSeed: bobHDSeed[:], DataDir: tempTestDirBob, NetParams: netParams, ChainSource: bobChainRPC, FeeEstimator: lnwallet.StaticFeeEstimator{FeeRate: 250}, } bobWalletController, err = walletDriver.New(bobWalletConfig) if err != nil { t.Fatalf("unable to create btcwallet: %v", err) } bobSigner = bobWalletController.(*btcwallet.BtcWallet) bio = bobWalletController.(*btcwallet.BtcWallet) default: // TODO(roasbeef): add neutrino case t.Fatalf("unknown wallet driver: %v", walletType) } // Funding via 20 outputs with 4BTC each. alice, err := createTestWallet(tempTestDirAlice, miningNode, netParams, chainNotifier, aliceWalletController, aliceSigner, bio) if err != nil { t.Fatalf("unable to create test ln wallet: %v", err) } defer alice.Shutdown() bob, err := createTestWallet(tempTestDirBob, miningNode, netParams, chainNotifier, bobWalletController, bobSigner, bio) if err != nil { t.Fatalf("unable to create test ln wallet: %v", err) } defer bob.Shutdown() // Both wallets should now have 80BTC available for spending. assertProperBalance(t, alice, 1, 80) assertProperBalance(t, bob, 1, 80) // Execute every test, clearing possibly mutated wallet state // after each step. for _, walletTest := range walletTests { testName := fmt.Sprintf("%v:%v", walletType, walletTest.name) success := t.Run(testName, func(t *testing.T) { walletTest.test(miningNode, alice, bob, t) }) if !success { break } // TODO(roasbeef): possible reset mining node's // chainstate to initial level, cleanly wipe buckets if err := clearWalletStates(alice, bob); err != nil && err != bolt.ErrBucketNotFound { t.Fatalf("unable to wipe wallet state: %v", err) } } } }