package neutrinonotify import ( "errors" "fmt" "strings" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/btcjson" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/rpcclient" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcutil/gcs/builder" "github.com/lightninglabs/neutrino" "github.com/lightninglabs/neutrino/headerfs" "github.com/lightningnetwork/lnd/blockcache" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/lntypes" "github.com/lightningnetwork/lnd/queue" ) const ( // notifierType uniquely identifies this concrete implementation of the // ChainNotifier interface. notifierType = "neutrino" ) // NeutrinoNotifier is a version of ChainNotifier that's backed by the neutrino // Bitcoin light client. Unlike other implementations, this implementation // speaks directly to the p2p network. As a result, this implementation of the // ChainNotifier interface is much more light weight that other implementation // which rely of receiving notification over an RPC interface backed by a // running full node. // // TODO(roasbeef): heavily consolidate with NeutrinoNotifier code // * maybe combine into single package? type NeutrinoNotifier struct { epochClientCounter uint64 // To be used atomically. start sync.Once active int32 // To be used atomically. stopped int32 // To be used atomically. bestBlockMtx sync.RWMutex bestBlock chainntnfs.BlockEpoch p2pNode *neutrino.ChainService chainView *neutrino.Rescan chainConn *NeutrinoChainConn notificationCancels chan interface{} notificationRegistry chan interface{} txNotifier *chainntnfs.TxNotifier blockEpochClients map[uint64]*blockEpochRegistration rescanErr <-chan error chainUpdates *queue.ConcurrentQueue txUpdates *queue.ConcurrentQueue // spendHintCache is a cache used to query and update the latest height // hints for an outpoint. Each height hint represents the earliest // height at which the outpoint could have been spent within the chain. spendHintCache chainntnfs.SpendHintCache // confirmHintCache is a cache used to query the latest height hints for // a transaction. Each height hint represents the earliest height at // which the transaction could have confirmed within the chain. confirmHintCache chainntnfs.ConfirmHintCache // blockCache is an LRU block cache. blockCache *blockcache.BlockCache wg sync.WaitGroup quit chan struct{} } // Ensure NeutrinoNotifier implements the ChainNotifier interface at compile time. var _ chainntnfs.ChainNotifier = (*NeutrinoNotifier)(nil) // New creates a new instance of the NeutrinoNotifier concrete implementation // of the ChainNotifier interface. // // NOTE: The passed neutrino node should already be running and active before // being passed into this function. func New(node *neutrino.ChainService, spendHintCache chainntnfs.SpendHintCache, confirmHintCache chainntnfs.ConfirmHintCache, blockCache *blockcache.BlockCache) *NeutrinoNotifier { return &NeutrinoNotifier{ notificationCancels: make(chan interface{}), notificationRegistry: make(chan interface{}), blockEpochClients: make(map[uint64]*blockEpochRegistration), p2pNode: node, chainConn: &NeutrinoChainConn{node}, rescanErr: make(chan error), chainUpdates: queue.NewConcurrentQueue(10), txUpdates: queue.NewConcurrentQueue(10), spendHintCache: spendHintCache, confirmHintCache: confirmHintCache, blockCache: blockCache, quit: make(chan struct{}), } } // Start contacts the running neutrino light client and kicks off an initial // empty rescan. func (n *NeutrinoNotifier) Start() error { var startErr error n.start.Do(func() { startErr = n.startNotifier() }) return startErr } // Stop shuts down the NeutrinoNotifier. func (n *NeutrinoNotifier) Stop() error { // Already shutting down? if atomic.AddInt32(&n.stopped, 1) != 1 { return nil } close(n.quit) n.wg.Wait() n.chainUpdates.Stop() n.txUpdates.Stop() // Notify all pending clients of our shutdown by closing the related // notification channels. for _, epochClient := range n.blockEpochClients { close(epochClient.cancelChan) epochClient.wg.Wait() close(epochClient.epochChan) } n.txNotifier.TearDown() return nil } // Started returns true if this instance has been started, and false otherwise. func (n *NeutrinoNotifier) Started() bool { return atomic.LoadInt32(&n.active) != 0 } func (n *NeutrinoNotifier) startNotifier() error { // Start our concurrent queues before starting the rescan, to ensure // onFilteredBlockConnected and onRelavantTx callbacks won't be // blocked. n.chainUpdates.Start() n.txUpdates.Start() // First, we'll obtain the latest block height of the p2p node. We'll // start the auto-rescan from this point. Once a caller actually wishes // to register a chain view, the rescan state will be rewound // accordingly. startingPoint, err := n.p2pNode.BestBlock() if err != nil { n.txUpdates.Stop() n.chainUpdates.Stop() return err } n.bestBlock.Hash = &startingPoint.Hash n.bestBlock.Height = startingPoint.Height n.txNotifier = chainntnfs.NewTxNotifier( uint32(n.bestBlock.Height), chainntnfs.ReorgSafetyLimit, n.confirmHintCache, n.spendHintCache, ) // Next, we'll create our set of rescan options. Currently it's // required that a user MUST set an addr/outpoint/txid when creating a // rescan. To get around this, we'll add a "zero" outpoint, that won't // actually be matched. var zeroInput neutrino.InputWithScript rescanOptions := []neutrino.RescanOption{ neutrino.StartBlock(startingPoint), neutrino.QuitChan(n.quit), neutrino.NotificationHandlers( rpcclient.NotificationHandlers{ OnFilteredBlockConnected: n.onFilteredBlockConnected, OnFilteredBlockDisconnected: n.onFilteredBlockDisconnected, OnRedeemingTx: n.onRelevantTx, }, ), neutrino.WatchInputs(zeroInput), } // Finally, we'll create our rescan struct, start it, and launch all // the goroutines we need to operate this ChainNotifier instance. n.chainView = neutrino.NewRescan( &neutrino.RescanChainSource{ ChainService: n.p2pNode, }, rescanOptions..., ) n.rescanErr = n.chainView.Start() n.wg.Add(1) go n.notificationDispatcher() // Set the active flag now that we've completed the full // startup. atomic.StoreInt32(&n.active, 1) return nil } // filteredBlock represents a new block which has been connected to the main // chain. The slice of transactions will only be populated if the block // includes a transaction that confirmed one of our watched txids, or spends // one of the outputs currently being watched. type filteredBlock struct { hash chainhash.Hash height uint32 txns []*btcutil.Tx // connected is true if this update is a new block and false if it is a // disconnected block. connect bool } // rescanFilterUpdate represents a request that will be sent to the // notificaionRegistry in order to prevent race conditions between the filter // update and new block notifications. type rescanFilterUpdate struct { updateOptions []neutrino.UpdateOption errChan chan error } // onFilteredBlockConnected is a callback which is executed each a new block is // connected to the end of the main chain. func (n *NeutrinoNotifier) onFilteredBlockConnected(height int32, header *wire.BlockHeader, txns []*btcutil.Tx) { // Append this new chain update to the end of the queue of new chain // updates. select { case n.chainUpdates.ChanIn() <- &filteredBlock{ hash: header.BlockHash(), height: uint32(height), txns: txns, connect: true, }: case <-n.quit: } } // onFilteredBlockDisconnected is a callback which is executed each time a new // block has been disconnected from the end of the mainchain due to a re-org. func (n *NeutrinoNotifier) onFilteredBlockDisconnected(height int32, header *wire.BlockHeader) { // Append this new chain update to the end of the queue of new chain // disconnects. select { case n.chainUpdates.ChanIn() <- &filteredBlock{ hash: header.BlockHash(), height: uint32(height), connect: false, }: case <-n.quit: } } // relevantTx represents a relevant transaction to the notifier that fulfills // any outstanding spend requests. type relevantTx struct { tx *btcutil.Tx details *btcjson.BlockDetails } // onRelevantTx is a callback that proxies relevant transaction notifications // from the backend to the notifier's main event handler. func (n *NeutrinoNotifier) onRelevantTx(tx *btcutil.Tx, details *btcjson.BlockDetails) { select { case n.txUpdates.ChanIn() <- &relevantTx{tx, details}: case <-n.quit: } } // notificationDispatcher is the primary goroutine which handles client // notification registrations, as well as notification dispatches. func (n *NeutrinoNotifier) notificationDispatcher() { defer n.wg.Done() out: for { select { case cancelMsg := <-n.notificationCancels: switch msg := cancelMsg.(type) { case *epochCancel: chainntnfs.Log.Infof("Cancelling epoch "+ "notification, epoch_id=%v", msg.epochID) // First, we'll lookup the original // registration in order to stop the active // queue goroutine. reg := n.blockEpochClients[msg.epochID] reg.epochQueue.Stop() // Next, close the cancel channel for this // specific client, and wait for the client to // exit. close(n.blockEpochClients[msg.epochID].cancelChan) n.blockEpochClients[msg.epochID].wg.Wait() // Once the client has exited, we can then // safely close the channel used to send epoch // notifications, in order to notify any // listeners that the intent has been // canceled. close(n.blockEpochClients[msg.epochID].epochChan) delete(n.blockEpochClients, msg.epochID) } case registerMsg := <-n.notificationRegistry: switch msg := registerMsg.(type) { case *chainntnfs.HistoricalConfDispatch: // We'll start a historical rescan chain of the // chain asynchronously to prevent blocking // potentially long rescans. n.wg.Add(1) go func() { defer n.wg.Done() confDetails, err := n.historicalConfDetails( msg.ConfRequest, msg.StartHeight, msg.EndHeight, ) if err != nil { chainntnfs.Log.Error(err) return } // If the historical dispatch finished // without error, we will invoke // UpdateConfDetails even if none were // found. This allows the notifier to // begin safely updating the height hint // cache at tip, since any pending // rescans have now completed. err = n.txNotifier.UpdateConfDetails( msg.ConfRequest, confDetails, ) if err != nil { chainntnfs.Log.Error(err) } }() case *blockEpochRegistration: chainntnfs.Log.Infof("New block epoch subscription") n.blockEpochClients[msg.epochID] = msg // If the client did not provide their best // known block, then we'll immediately dispatch // a notification for the current tip. if msg.bestBlock == nil { n.notifyBlockEpochClient( msg, n.bestBlock.Height, n.bestBlock.Hash, ) msg.errorChan <- nil continue } // Otherwise, we'll attempt to deliver the // backlog of notifications from their best // known block. n.bestBlockMtx.Lock() bestHeight := n.bestBlock.Height n.bestBlockMtx.Unlock() missedBlocks, err := chainntnfs.GetClientMissedBlocks( n.chainConn, msg.bestBlock, bestHeight, false, ) if err != nil { msg.errorChan <- err continue } for _, block := range missedBlocks { n.notifyBlockEpochClient( msg, block.Height, block.Hash, ) } msg.errorChan <- nil case *rescanFilterUpdate: err := n.chainView.Update(msg.updateOptions...) if err != nil { chainntnfs.Log.Errorf("Unable to "+ "update rescan filter: %v", err) } msg.errChan <- err } case item := <-n.chainUpdates.ChanOut(): update := item.(*filteredBlock) if update.connect { n.bestBlockMtx.Lock() // Since neutrino has no way of knowing what // height to rewind to in the case of a reorged // best known height, there is no point in // checking that the previous hash matches the // the hash from our best known height the way // the other notifiers do when they receive // a new connected block. Therefore, we just // compare the heights. if update.height != uint32(n.bestBlock.Height+1) { // Handle the case where the notifier // missed some blocks from its chain // backend chainntnfs.Log.Infof("Missed blocks, " + "attempting to catch up") _, missedBlocks, err := chainntnfs.HandleMissedBlocks( n.chainConn, n.txNotifier, n.bestBlock, int32(update.height), false, ) if err != nil { chainntnfs.Log.Error(err) n.bestBlockMtx.Unlock() continue } for _, block := range missedBlocks { filteredBlock, err := n.getFilteredBlock(block) if err != nil { chainntnfs.Log.Error(err) n.bestBlockMtx.Unlock() continue out } err = n.handleBlockConnected(filteredBlock) if err != nil { chainntnfs.Log.Error(err) n.bestBlockMtx.Unlock() continue out } } } err := n.handleBlockConnected(update) if err != nil { chainntnfs.Log.Error(err) } n.bestBlockMtx.Unlock() continue } n.bestBlockMtx.Lock() if update.height != uint32(n.bestBlock.Height) { chainntnfs.Log.Infof("Missed disconnected " + "blocks, attempting to catch up") } newBestBlock, err := chainntnfs.RewindChain( n.chainConn, n.txNotifier, n.bestBlock, int32(update.height-1), ) if err != nil { chainntnfs.Log.Errorf("Unable to rewind chain "+ "from height %d to height %d: %v", n.bestBlock.Height, update.height-1, err) } // Set the bestHeight here in case a chain rewind // partially completed. n.bestBlock = newBestBlock n.bestBlockMtx.Unlock() case txUpdate := <-n.txUpdates.ChanOut(): // A new relevant transaction notification has been // received from the backend. We'll attempt to process // it to determine if it fulfills any outstanding // confirmation and/or spend requests and dispatch // notifications for them. update := txUpdate.(*relevantTx) err := n.txNotifier.ProcessRelevantSpendTx( update.tx, uint32(update.details.Height), ) if err != nil { chainntnfs.Log.Errorf("Unable to process "+ "transaction %v: %v", update.tx.Hash(), err) } case err := <-n.rescanErr: chainntnfs.Log.Errorf("Error during rescan: %v", err) case <-n.quit: return } } } // historicalConfDetails looks up whether a confirmation request (txid/output // script) has already been included in a block in the active chain and, if so, // returns details about said block. func (n *NeutrinoNotifier) historicalConfDetails(confRequest chainntnfs.ConfRequest, startHeight, endHeight uint32) (*chainntnfs.TxConfirmation, error) { // Starting from the height hint, we'll walk forwards in the chain to // see if this transaction/output script has already been confirmed. for scanHeight := endHeight; scanHeight >= startHeight && scanHeight > 0; scanHeight-- { // Ensure we haven't been requested to shut down before // processing the next height. select { case <-n.quit: return nil, chainntnfs.ErrChainNotifierShuttingDown default: } // First, we'll fetch the block header for this height so we // can compute the current block hash. blockHash, err := n.p2pNode.GetBlockHash(int64(scanHeight)) if err != nil { return nil, fmt.Errorf("unable to get header for height=%v: %v", scanHeight, err) } // With the hash computed, we can now fetch the basic filter for this // height. Since the range of required items is known we avoid // roundtrips by requesting a batched response and save bandwidth by // limiting the max number of items per batch. Since neutrino populates // its underline filters cache with the batch response, the next call // will execute a network query only once per batch and not on every // iteration. regFilter, err := n.p2pNode.GetCFilter( *blockHash, wire.GCSFilterRegular, neutrino.NumRetries(5), neutrino.OptimisticReverseBatch(), neutrino.MaxBatchSize(int64(scanHeight-startHeight+1)), ) if err != nil { return nil, fmt.Errorf("unable to retrieve regular filter for "+ "height=%v: %v", scanHeight, err) } // In the case that the filter exists, we'll attempt to see if // any element in it matches our target public key script. key := builder.DeriveKey(blockHash) match, err := regFilter.Match(key, confRequest.PkScript.Script()) if err != nil { return nil, fmt.Errorf("unable to query filter: %v", err) } // If there's no match, then we can continue forward to the // next block. if !match { continue } // In the case that we do have a match, we'll fetch the block // from the network so we can find the positional data required // to send the proper response. block, err := n.GetBlock(*blockHash) if err != nil { return nil, fmt.Errorf("unable to get block from network: %v", err) } // For every transaction in the block, check which one matches // our request. If we find one that does, we can dispatch its // confirmation details. for i, tx := range block.Transactions() { if !confRequest.MatchesTx(tx.MsgTx()) { continue } return &chainntnfs.TxConfirmation{ Tx: tx.MsgTx(), BlockHash: blockHash, BlockHeight: scanHeight, TxIndex: uint32(i), }, nil } } return nil, nil } // handleBlockConnected applies a chain update for a new block. Any watched // transactions included this block will processed to either send notifications // now or after numConfirmations confs. // // NOTE: This method must be called with the bestBlockMtx lock held. func (n *NeutrinoNotifier) handleBlockConnected(newBlock *filteredBlock) error { // We'll extend the txNotifier's height with the information of this new // block, which will handle all of the notification logic for us. err := n.txNotifier.ConnectTip( &newBlock.hash, newBlock.height, newBlock.txns, ) if err != nil { return fmt.Errorf("unable to connect tip: %v", err) } chainntnfs.Log.Infof("New block: height=%v, sha=%v", newBlock.height, newBlock.hash) // Now that we've guaranteed the new block extends the txNotifier's // current tip, we'll proceed to dispatch notifications to all of our // registered clients whom have had notifications fulfilled. Before // doing so, we'll make sure update our in memory state in order to // satisfy any client requests based upon the new block. n.bestBlock.Hash = &newBlock.hash n.bestBlock.Height = int32(newBlock.height) n.notifyBlockEpochs(int32(newBlock.height), &newBlock.hash) return n.txNotifier.NotifyHeight(newBlock.height) } // getFilteredBlock is a utility to retrieve the full filtered block from a block epoch. func (n *NeutrinoNotifier) getFilteredBlock(epoch chainntnfs.BlockEpoch) (*filteredBlock, error) { rawBlock, err := n.GetBlock(*epoch.Hash) if err != nil { return nil, fmt.Errorf("unable to get block: %v", err) } txns := rawBlock.Transactions() block := &filteredBlock{ hash: *epoch.Hash, height: uint32(epoch.Height), txns: txns, connect: true, } return block, nil } // notifyBlockEpochs notifies all registered block epoch clients of the newly // connected block to the main chain. func (n *NeutrinoNotifier) notifyBlockEpochs(newHeight int32, newSha *chainhash.Hash) { for _, client := range n.blockEpochClients { n.notifyBlockEpochClient(client, newHeight, newSha) } } // notifyBlockEpochClient sends a registered block epoch client a notification // about a specific block. func (n *NeutrinoNotifier) notifyBlockEpochClient(epochClient *blockEpochRegistration, height int32, sha *chainhash.Hash) { epoch := &chainntnfs.BlockEpoch{ Height: height, Hash: sha, } select { case epochClient.epochQueue.ChanIn() <- epoch: case <-epochClient.cancelChan: case <-n.quit: } } // RegisterSpendNtfn registers an intent to be notified once the target // outpoint/output script has been spent by a transaction on-chain. When // intending to be notified of the spend of an output script, a nil outpoint // must be used. The heightHint should represent the earliest height in the // chain of the transaction that spent the outpoint/output script. // // Once a spend of has been detected, the details of the spending event will be // sent across the 'Spend' channel. func (n *NeutrinoNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint, pkScript []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) { // Register the conf notification with the TxNotifier. A non-nil value // for `dispatch` will be returned if we are required to perform a // manual scan for the confirmation. Otherwise the notifier will begin // watching at tip for the transaction to confirm. ntfn, err := n.txNotifier.RegisterSpend(outpoint, pkScript, heightHint) if err != nil { return nil, err } // To determine whether this outpoint has been spent on-chain, we'll // update our filter to watch for the transaction at tip and we'll also // dispatch a historical rescan to determine if it has been spent in the // past. // // We'll update our filter first to ensure we can immediately detect the // spend at tip. if outpoint == nil { outpoint = &chainntnfs.ZeroOutPoint } inputToWatch := neutrino.InputWithScript{ OutPoint: *outpoint, PkScript: pkScript, } updateOptions := []neutrino.UpdateOption{ neutrino.AddInputs(inputToWatch), neutrino.DisableDisconnectedNtfns(true), } // We'll use the txNotifier's tip as the starting point of our filter // update. In the case of an output script spend request, we'll check if // we should perform a historical rescan and start from there, as we // cannot do so with GetUtxo since it matches outpoints. rewindHeight := ntfn.Height if ntfn.HistoricalDispatch != nil && *outpoint == chainntnfs.ZeroOutPoint { rewindHeight = ntfn.HistoricalDispatch.StartHeight } updateOptions = append(updateOptions, neutrino.Rewind(rewindHeight)) errChan := make(chan error, 1) select { case n.notificationRegistry <- &rescanFilterUpdate{ updateOptions: updateOptions, errChan: errChan, }: case <-n.quit: return nil, chainntnfs.ErrChainNotifierShuttingDown } select { case err = <-errChan: case <-n.quit: return nil, chainntnfs.ErrChainNotifierShuttingDown } if err != nil { return nil, fmt.Errorf("unable to update filter: %v", err) } // If the txNotifier didn't return any details to perform a historical // scan of the chain, or if we already performed one like in the case of // output script spend requests, then we can return early as there's // nothing left for us to do. if ntfn.HistoricalDispatch == nil || *outpoint == chainntnfs.ZeroOutPoint { return ntfn.Event, nil } // With the filter updated, we'll dispatch our historical rescan to // ensure we detect the spend if it happened in the past. n.wg.Add(1) go func() { defer n.wg.Done() // We'll ensure that neutrino is caught up to the starting // height before we attempt to fetch the UTXO from the chain. // If we're behind, then we may miss a notification dispatch. for { n.bestBlockMtx.RLock() currentHeight := uint32(n.bestBlock.Height) n.bestBlockMtx.RUnlock() if currentHeight >= ntfn.HistoricalDispatch.StartHeight { break } select { case <-time.After(time.Millisecond * 200): case <-n.quit: return } } spendReport, err := n.p2pNode.GetUtxo( neutrino.WatchInputs(inputToWatch), neutrino.StartBlock(&headerfs.BlockStamp{ Height: int32(ntfn.HistoricalDispatch.StartHeight), }), neutrino.EndBlock(&headerfs.BlockStamp{ Height: int32(ntfn.HistoricalDispatch.EndHeight), }), neutrino.ProgressHandler(func(processedHeight uint32) { // We persist the rescan progress to achieve incremental // behavior across restarts, otherwise long rescans may // start from the beginning with every restart. err := n.spendHintCache.CommitSpendHint( processedHeight, ntfn.HistoricalDispatch.SpendRequest) if err != nil { chainntnfs.Log.Errorf("Failed to update rescan "+ "progress: %v", err) } }), neutrino.QuitChan(n.quit), ) if err != nil && !strings.Contains(err.Error(), "not found") { chainntnfs.Log.Errorf("Failed getting UTXO: %v", err) return } // If a spend report was returned, and the transaction is present, then // this means that the output is already spent. var spendDetails *chainntnfs.SpendDetail if spendReport != nil && spendReport.SpendingTx != nil { spendingTxHash := spendReport.SpendingTx.TxHash() spendDetails = &chainntnfs.SpendDetail{ SpentOutPoint: outpoint, SpenderTxHash: &spendingTxHash, SpendingTx: spendReport.SpendingTx, SpenderInputIndex: spendReport.SpendingInputIndex, SpendingHeight: int32(spendReport.SpendingTxHeight), } } // Finally, no matter whether the rescan found a spend in the past or // not, we'll mark our historical rescan as complete to ensure the // outpoint's spend hint gets updated upon connected/disconnected // blocks. err = n.txNotifier.UpdateSpendDetails( ntfn.HistoricalDispatch.SpendRequest, spendDetails, ) if err != nil { chainntnfs.Log.Errorf("Failed to update spend details: %v", err) return } }() return ntfn.Event, nil } // RegisterConfirmationsNtfn registers an intent to be notified once the target // txid/output script has reached numConfs confirmations on-chain. When // intending to be notified of the confirmation of an output script, a nil txid // must be used. The heightHint should represent the earliest height at which // the txid/output script could have been included in the chain. // // Progress on the number of confirmations left can be read from the 'Updates' // channel. Once it has reached all of its confirmations, a notification will be // sent across the 'Confirmed' channel. func (n *NeutrinoNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash, pkScript []byte, numConfs, heightHint uint32) (*chainntnfs.ConfirmationEvent, error) { // Register the conf notification with the TxNotifier. A non-nil value // for `dispatch` will be returned if we are required to perform a // manual scan for the confirmation. Otherwise the notifier will begin // watching at tip for the transaction to confirm. ntfn, err := n.txNotifier.RegisterConf( txid, pkScript, numConfs, heightHint, ) if err != nil { return nil, err } // To determine whether this transaction has confirmed on-chain, we'll // update our filter to watch for the transaction at tip and we'll also // dispatch a historical rescan to determine if it has confirmed in the // past. // // We'll update our filter first to ensure we can immediately detect the // confirmation at tip. To do so, we'll map the script into an address // type so we can instruct neutrino to match if the transaction // containing the script is found in a block. params := n.p2pNode.ChainParams() _, addrs, _, err := txscript.ExtractPkScriptAddrs(pkScript, ¶ms) if err != nil { return nil, fmt.Errorf("unable to extract script: %v", err) } // We'll send the filter update request to the notifier's main event // handler and wait for its response. errChan := make(chan error, 1) select { case n.notificationRegistry <- &rescanFilterUpdate{ updateOptions: []neutrino.UpdateOption{ neutrino.AddAddrs(addrs...), neutrino.Rewind(ntfn.Height), neutrino.DisableDisconnectedNtfns(true), }, errChan: errChan, }: case <-n.quit: return nil, chainntnfs.ErrChainNotifierShuttingDown } select { case err = <-errChan: case <-n.quit: return nil, chainntnfs.ErrChainNotifierShuttingDown } if err != nil { return nil, fmt.Errorf("unable to update filter: %v", err) } // If a historical rescan was not requested by the txNotifier, then we // can return to the caller. if ntfn.HistoricalDispatch == nil { return ntfn.Event, nil } // Finally, with the filter updated, we can dispatch the historical // rescan to ensure we can detect if the event happened in the past. select { case n.notificationRegistry <- ntfn.HistoricalDispatch: case <-n.quit: return nil, chainntnfs.ErrChainNotifierShuttingDown } return ntfn.Event, nil } // GetBlock is used to retrieve the block with the given hash. Since the block // cache used by neutrino will be the same as that used by LND (since it is // passed to neutrino on initialisation), the neutrino GetBlock method can be // called directly since it already uses the block cache. However, neutrino // does not lock the block cache mutex for the given block hash and so that is // done here. func (n *NeutrinoNotifier) GetBlock(hash chainhash.Hash) ( *btcutil.Block, error) { n.blockCache.HashMutex.Lock(lntypes.Hash(hash)) defer n.blockCache.HashMutex.Unlock(lntypes.Hash(hash)) return n.p2pNode.GetBlock(hash) } // blockEpochRegistration represents a client's intent to receive a // notification with each newly connected block. type blockEpochRegistration struct { epochID uint64 epochChan chan *chainntnfs.BlockEpoch epochQueue *queue.ConcurrentQueue cancelChan chan struct{} bestBlock *chainntnfs.BlockEpoch errorChan chan error wg sync.WaitGroup } // epochCancel is a message sent to the NeutrinoNotifier when a client wishes // to cancel an outstanding epoch notification that has yet to be dispatched. type epochCancel struct { epochID uint64 } // RegisterBlockEpochNtfn returns a BlockEpochEvent which subscribes the // caller to receive notifications, of each new block connected to the main // chain. Clients have the option of passing in their best known block, which // the notifier uses to check if they are behind on blocks and catch them up. If // they do not provide one, then a notification will be dispatched immediately // for the current tip of the chain upon a successful registration. func (n *NeutrinoNotifier) RegisterBlockEpochNtfn( bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) { reg := &blockEpochRegistration{ epochQueue: queue.NewConcurrentQueue(20), epochChan: make(chan *chainntnfs.BlockEpoch, 20), cancelChan: make(chan struct{}), epochID: atomic.AddUint64(&n.epochClientCounter, 1), bestBlock: bestBlock, errorChan: make(chan error, 1), } reg.epochQueue.Start() // Before we send the request to the main goroutine, we'll launch a new // goroutine to proxy items added to our queue to the client itself. // This ensures that all notifications are received *in order*. reg.wg.Add(1) go func() { defer reg.wg.Done() for { select { case ntfn := <-reg.epochQueue.ChanOut(): blockNtfn := ntfn.(*chainntnfs.BlockEpoch) select { case reg.epochChan <- blockNtfn: case <-reg.cancelChan: return case <-n.quit: return } case <-reg.cancelChan: return case <-n.quit: return } } }() select { case <-n.quit: // As we're exiting before the registration could be sent, // we'll stop the queue now ourselves. reg.epochQueue.Stop() return nil, errors.New("chainntnfs: system interrupt while " + "attempting to register for block epoch notification.") case n.notificationRegistry <- reg: return &chainntnfs.BlockEpochEvent{ Epochs: reg.epochChan, Cancel: func() { cancel := &epochCancel{ epochID: reg.epochID, } // Submit epoch cancellation to notification dispatcher. select { case n.notificationCancels <- cancel: // Cancellation is being handled, drain the epoch channel until it is // closed before yielding to caller. for { select { case _, ok := <-reg.epochChan: if !ok { return } case <-n.quit: return } } case <-n.quit: } }, }, nil } } // NeutrinoChainConn is a wrapper around neutrino's chain backend in order // to satisfy the chainntnfs.ChainConn interface. type NeutrinoChainConn struct { p2pNode *neutrino.ChainService } // GetBlockHeader returns the block header for a hash. func (n *NeutrinoChainConn) GetBlockHeader(blockHash *chainhash.Hash) (*wire.BlockHeader, error) { return n.p2pNode.GetBlockHeader(blockHash) } // GetBlockHeaderVerbose returns a verbose block header result for a hash. This // result only contains the height with a nil hash. func (n *NeutrinoChainConn) GetBlockHeaderVerbose(blockHash *chainhash.Hash) ( *btcjson.GetBlockHeaderVerboseResult, error) { height, err := n.p2pNode.GetBlockHeight(blockHash) if err != nil { return nil, err } // Since only the height is used from the result, leave the hash nil. return &btcjson.GetBlockHeaderVerboseResult{Height: int32(height)}, nil } // GetBlockHash returns the hash from a block height. func (n *NeutrinoChainConn) GetBlockHash(blockHeight int64) (*chainhash.Hash, error) { return n.p2pNode.GetBlockHash(blockHeight) }