// +build dev package chainntnfs_test import ( "bytes" "fmt" "io/ioutil" "log" "sync" "testing" "time" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/integration/rpctest" "github.com/btcsuite/btcd/rpcclient" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcwallet/chain" _ "github.com/btcsuite/btcwallet/walletdb/bdb" // Required to auto-register the boltdb walletdb implementation. "github.com/lightninglabs/neutrino" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/chainntnfs/bitcoindnotify" "github.com/lightningnetwork/lnd/chainntnfs/btcdnotify" "github.com/lightningnetwork/lnd/chainntnfs/neutrinonotify" "github.com/lightningnetwork/lnd/channeldb" ) func testSingleConfirmationNotification(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test the case of being notified once a txid reaches // a *single* confirmation. // // So first, let's send some coins to "ourself", obtaining a txid. // We're spending from a coinbase output here, so we use the dedicated // function. txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Now that we have a txid, register a confirmation notification with // the chainntfn source. numConfs := uint32(1) var confIntent *chainntnfs.ConfirmationEvent if scriptDispatch { confIntent, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { confIntent, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } // Now generate a single block, the transaction should be included which // should trigger a notification event. blockHash, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate single block: %v", err) } select { case confInfo := <-confIntent.Confirmed: if !confInfo.BlockHash.IsEqual(blockHash[0]) { t.Fatalf("mismatched block hashes: expected %v, got %v", blockHash[0], confInfo.BlockHash) } // Finally, we'll verify that the tx index returned is the exact same // as the tx index of the transaction within the block itself. msgBlock, err := miner.Node.GetBlock(blockHash[0]) if err != nil { t.Fatalf("unable to fetch block: %v", err) } block := btcutil.NewBlock(msgBlock) specifiedTxHash, err := block.TxHash(int(confInfo.TxIndex)) if err != nil { t.Fatalf("unable to index into block: %v", err) } if !specifiedTxHash.IsEqual(txid) { t.Fatalf("mismatched tx indexes: expected %v, got %v", txid, specifiedTxHash) } case <-time.After(20 * time.Second): t.Fatalf("confirmation notification never received") } } func testMultiConfirmationNotification(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test the case of being notified once a txid reaches // N confirmations, where N > 1. // // Again, we'll begin by creating a fresh transaction, so we can obtain // a fresh txid. txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test addr: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } numConfs := uint32(6) var confIntent *chainntnfs.ConfirmationEvent if scriptDispatch { confIntent, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { confIntent, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } // Now generate a six blocks. The transaction should be included in the // first block, which will be built upon by the other 5 blocks. if _, err := miner.Node.Generate(6); err != nil { t.Fatalf("unable to generate single block: %v", err) } // TODO(roasbeef): reduce all timeouts after neutrino sync tightended // up select { case <-confIntent.Confirmed: break case <-time.After(20 * time.Second): t.Fatalf("confirmation notification never received") } } func testBatchConfirmationNotification(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test a case of serving notifications to multiple // clients, each requesting to be notified once a txid receives // various numbers of confirmations. confSpread := [6]uint32{1, 2, 3, 6, 20, 22} confIntents := make([]*chainntnfs.ConfirmationEvent, len(confSpread)) _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Create a new txid spending miner coins for each confirmation entry // in confSpread, we collect each conf intent into a slice so we can // verify they're each notified at the proper number of confirmations // below. for i, numConfs := range confSpread { txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test addr: %v", err) } var confIntent *chainntnfs.ConfirmationEvent if scriptDispatch { confIntent, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { confIntent, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } confIntents[i] = confIntent if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } } initialConfHeight := uint32(currentHeight + 1) // Now, for each confirmation intent, generate the delta number of blocks // needed to trigger the confirmation notification. A goroutine is // spawned in order to verify the proper notification is triggered. for i, numConfs := range confSpread { var blocksToGen uint32 // If this is the last instance, manually index to generate the // proper block delta in order to avoid a panic. if i == len(confSpread)-1 { blocksToGen = confSpread[len(confSpread)-1] - confSpread[len(confSpread)-2] } else { blocksToGen = confSpread[i+1] - confSpread[i] } // Generate the number of blocks necessary to trigger this // current confirmation notification. if _, err := miner.Node.Generate(blocksToGen); err != nil { t.Fatalf("unable to generate single block: %v", err) } select { case conf := <-confIntents[i].Confirmed: // All of the notifications above were originally // confirmed in the same block. The returned // notification should list the initial confirmation // height rather than the height they were _fully_ // confirmed. if conf.BlockHeight != initialConfHeight { t.Fatalf("notification has incorrect initial "+ "conf height: expected %v, got %v", initialConfHeight, conf.BlockHeight) } continue case <-time.After(20 * time.Second): t.Fatalf("confirmation notification never received: %v", numConfs) } } } func checkNotificationFields(ntfn *chainntnfs.SpendDetail, outpoint *wire.OutPoint, spenderSha *chainhash.Hash, height int32, t *testing.T) { t.Helper() if *ntfn.SpentOutPoint != *outpoint { t.Fatalf("ntfn includes wrong output, reports "+ "%v instead of %v", ntfn.SpentOutPoint, outpoint) } if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) { t.Fatalf("ntfn includes wrong spender tx sha, "+ "reports %v instead of %v", ntfn.SpenderTxHash[:], spenderSha[:]) } if ntfn.SpenderInputIndex != 0 { t.Fatalf("ntfn includes wrong spending input "+ "index, reports %v, should be %v", ntfn.SpenderInputIndex, 0) } if ntfn.SpendingHeight != height { t.Fatalf("ntfn has wrong spending height: "+ "expected %v, got %v", height, ntfn.SpendingHeight) } } func testSpendNotification(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test the spend notifications for all ChainNotifier // concrete implementations. // // To do so, we first create a new output to our test target address. outpoint, output, privKey := chainntnfs.CreateSpendableOutput(t, miner) _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Now that we have an output index and the pkScript, register for a // spentness notification for the newly created output with multiple // clients in order to ensure the implementation can support // multi-client spend notifications. const numClients = 5 spendClients := make([]*chainntnfs.SpendEvent, numClients) for i := 0; i < numClients; i++ { var spentIntent *chainntnfs.SpendEvent if scriptDispatch { spentIntent, err = notifier.RegisterSpendNtfn( nil, output.PkScript, uint32(currentHeight), ) } else { spentIntent, err = notifier.RegisterSpendNtfn( outpoint, output.PkScript, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register for spend ntfn: %v", err) } spendClients[i] = spentIntent } // Next, create a new transaction spending that output. spendingTx := chainntnfs.CreateSpendTx(t, outpoint, output, privKey) // Broadcast our spending transaction. spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true) if err != nil { t.Fatalf("unable to broadcast tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, spenderSha); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Make sure notifications are not yet sent. We launch a go routine for // all the spend clients, such that we can wait for them all in // parallel. // // Since bitcoind is at times very slow at notifying about txs in the // mempool, we use a quite large timeout of 10 seconds. // TODO(halseth): change this when mempool spends are removed. mempoolSpendTimeout := 10 * time.Second mempoolSpends := make(chan *chainntnfs.SpendDetail, numClients) for _, c := range spendClients { go func(client *chainntnfs.SpendEvent) { select { case s := <-client.Spend: mempoolSpends <- s case <-time.After(mempoolSpendTimeout): } }(c) } select { case <-mempoolSpends: t.Fatalf("did not expect to get notification before " + "block was mined") case <-time.After(mempoolSpendTimeout): } // Make sure registering a client after the tx is in the mempool still // doesn't trigger a notification. var spentIntent *chainntnfs.SpendEvent if scriptDispatch { spentIntent, err = notifier.RegisterSpendNtfn( nil, output.PkScript, uint32(currentHeight), ) } else { spentIntent, err = notifier.RegisterSpendNtfn( outpoint, output.PkScript, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register for spend ntfn: %v", err) } select { case <-spentIntent.Spend: t.Fatalf("did not expect to get notification before " + "block was mined") case <-time.After(mempoolSpendTimeout): } spendClients = append(spendClients, spentIntent) // Now we mine a single block, which should include our spend. The // notification should also be sent off. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate single block: %v", err) } _, currentHeight, err = miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } for _, c := range spendClients { select { case ntfn := <-c.Spend: // We've received the spend nftn. So now verify all the // fields have been set properly. checkNotificationFields(ntfn, outpoint, spenderSha, currentHeight, t) case <-time.After(30 * time.Second): t.Fatalf("spend ntfn never received") } } } func testBlockEpochNotification(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) { // We'd like to test the case of multiple registered clients receiving // block epoch notifications. const numBlocks = 10 const numClients = 5 var wg sync.WaitGroup // Create numClients clients which will listen for block notifications. We // expect each client to receive 10 notifications for each of the ten // blocks we generate below. So we'll use a WaitGroup to synchronize the // test. for i := 0; i < numClients; i++ { epochClient, err := notifier.RegisterBlockEpochNtfn(nil) if err != nil { t.Fatalf("unable to register for epoch notification") } wg.Add(numBlocks) go func() { for i := 0; i < numBlocks; i++ { <-epochClient.Epochs wg.Done() } }() } epochsSent := make(chan struct{}) go func() { wg.Wait() close(epochsSent) }() // Now generate 10 blocks, the clients above should each receive 10 // notifications, thereby unblocking the goroutine above. if _, err := miner.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate blocks: %v", err) } select { case <-epochsSent: case <-time.After(30 * time.Second): t.Fatalf("all notifications not sent") } } func testMultiClientConfirmationNotification(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test the case of a multiple clients registered to // receive a confirmation notification for the same transaction. txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } var wg sync.WaitGroup const ( numConfsClients = 5 numConfs = 1 ) _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Register for a conf notification for the above generated txid with // numConfsClients distinct clients. for i := 0; i < numConfsClients; i++ { var confClient *chainntnfs.ConfirmationEvent if scriptDispatch { confClient, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { confClient, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register for confirmation: %v", err) } wg.Add(1) go func() { <-confClient.Confirmed wg.Done() }() } confsSent := make(chan struct{}) go func() { wg.Wait() close(confsSent) }() // Finally, generate a single block which should trigger the unblocking // of all numConfsClients blocked on the channel read above. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } select { case <-confsSent: case <-time.After(30 * time.Second): t.Fatalf("all confirmation notifications not sent") } } // Tests the case in which a confirmation notification is requested for a // transaction that has already been included in a block. In this case, the // confirmation notification should be dispatched immediately. func testTxConfirmedBeforeNtfnRegistration(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // First, let's send some coins to "ourself", obtaining a txid. We're // spending from a coinbase output here, so we use the dedicated // function. txid3, pkScript3, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid3); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Generate another block containing tx 3, but we won't register conf // notifications for this tx until much later. The notifier must check // older blocks when the confirmation event is registered below to ensure // that the TXID hasn't already been included in the chain, otherwise the // notification will never be sent. _, err = miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate block: %v", err) } txid1, pkScript1, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid1); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } txid2, pkScript2, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid2); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Now generate another block containing txs 1 & 2. blockHash, err := miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate block: %v", err) } // Register a confirmation notification with the chainntfn source for tx2, // which is included in the last block. The height hint is the height before // the block is included. This notification should fire immediately since // only 1 confirmation is required. var ntfn1 *chainntnfs.ConfirmationEvent if scriptDispatch { ntfn1, err = notifier.RegisterConfirmationsNtfn( nil, pkScript1, 1, uint32(currentHeight), ) } else { ntfn1, err = notifier.RegisterConfirmationsNtfn( txid1, pkScript1, 1, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } select { case confInfo := <-ntfn1.Confirmed: // Finally, we'll verify that the tx index returned is the exact same // as the tx index of the transaction within the block itself. msgBlock, err := miner.Node.GetBlock(blockHash[0]) if err != nil { t.Fatalf("unable to fetch block: %v", err) } block := btcutil.NewBlock(msgBlock) specifiedTxHash, err := block.TxHash(int(confInfo.TxIndex)) if err != nil { t.Fatalf("unable to index into block: %v", err) } if !specifiedTxHash.IsEqual(txid1) { t.Fatalf("mismatched tx indexes: expected %v, got %v", txid1, specifiedTxHash) } // We'll also ensure that the block height has been set // properly. if confInfo.BlockHeight != uint32(currentHeight+1) { t.Fatalf("incorrect block height: expected %v, got %v", confInfo.BlockHeight, currentHeight) } break case <-time.After(20 * time.Second): t.Fatalf("confirmation notification never received") } // Register a confirmation notification for tx2, requiring 3 confirmations. // This transaction is only partially confirmed, so the notification should // not fire yet. var ntfn2 *chainntnfs.ConfirmationEvent if scriptDispatch { ntfn2, err = notifier.RegisterConfirmationsNtfn( nil, pkScript2, 3, uint32(currentHeight), ) } else { ntfn2, err = notifier.RegisterConfirmationsNtfn( txid2, pkScript2, 3, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } // Fully confirm tx3. _, err = miner.Node.Generate(2) if err != nil { t.Fatalf("unable to generate block: %v", err) } select { case <-ntfn2.Confirmed: case <-time.After(10 * time.Second): t.Fatalf("confirmation notification never received") } select { case <-ntfn1.Confirmed: t.Fatalf("received multiple confirmations for tx") case <-time.After(1 * time.Second): } // Finally register a confirmation notification for tx3, requiring 1 // confirmation. Ensure that conf notifications do not refire on txs // 1 or 2. var ntfn3 *chainntnfs.ConfirmationEvent if scriptDispatch { ntfn3, err = notifier.RegisterConfirmationsNtfn( nil, pkScript3, 1, uint32(currentHeight-1), ) } else { ntfn3, err = notifier.RegisterConfirmationsNtfn( txid3, pkScript3, 1, uint32(currentHeight-1), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } select { case <-ntfn3.Confirmed: case <-time.After(10 * time.Second): t.Fatalf("confirmation notification never received") } time.Sleep(1 * time.Second) select { case <-ntfn1.Confirmed: t.Fatalf("received multiple confirmations for tx") default: } select { case <-ntfn2.Confirmed: t.Fatalf("received multiple confirmations for tx") default: } } // Test the case of a notification consumer having forget or being delayed in // checking for a confirmation. This should not cause the notifier to stop // working func testLazyNtfnConsumer(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // Create a transaction to be notified about. We'll register for // notifications on this transaction but won't be prompt in checking them txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } numConfs := uint32(3) // Add a block right before registering, this makes race conditions // between the historical dispatcher and the normal dispatcher more obvious if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate blocks: %v", err) } var firstConfIntent *chainntnfs.ConfirmationEvent if scriptDispatch { firstConfIntent, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { firstConfIntent, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } // Generate another 2 blocks, this should dispatch the confirm notification if _, err := miner.Node.Generate(2); err != nil { t.Fatalf("unable to generate blocks: %v", err) } // Now make another transaction, just because we haven't checked to see // if the first transaction has confirmed doesn't mean that we shouldn't // be able to see if this transaction confirms first txid, pkScript, err = chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, currentHeight, err = miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } numConfs = 1 var secondConfIntent *chainntnfs.ConfirmationEvent if scriptDispatch { secondConfIntent, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { secondConfIntent, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate blocks: %v", err) } select { case <-secondConfIntent.Confirmed: // Successfully receive the second notification break case <-time.After(30 * time.Second): t.Fatalf("Second confirmation notification never received") } // Make sure the first tx confirmed successfully select { case <-firstConfIntent.Confirmed: break case <-time.After(30 * time.Second): t.Fatalf("First confirmation notification never received") } } // Tests the case in which a spend notification is requested for a spend that // has already been included in a block. In this case, the spend notification // should be dispatched immediately. func testSpendBeforeNtfnRegistration(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test the spend notifications for all ChainNotifier // concrete implementations. // // To do so, we first create a new output to our test target address. outpoint, output, privKey := chainntnfs.CreateSpendableOutput(t, miner) _, heightHint, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // We'll then spend this output and broadcast the spend transaction. spendingTx := chainntnfs.CreateSpendTx(t, outpoint, output, privKey) spenderSha, err := miner.Node.SendRawTransaction(spendingTx, true) if err != nil { t.Fatalf("unable to broadcast tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, spenderSha); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // We create an epoch client we can use to make sure the notifier is // caught up to the mining node's chain. epochClient, err := notifier.RegisterBlockEpochNtfn(nil) if err != nil { t.Fatalf("unable to register for block epoch: %v", err) } // Now we mine an additional block, which should include our spend. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate single block: %v", err) } _, spendHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // checkSpends registers two clients to be notified of a spend that has // already happened. The notifier should dispatch a spend notification // immediately. checkSpends := func() { t.Helper() const numClients = 2 spendClients := make([]*chainntnfs.SpendEvent, numClients) for i := 0; i < numClients; i++ { var spentIntent *chainntnfs.SpendEvent if scriptDispatch { spentIntent, err = notifier.RegisterSpendNtfn( nil, output.PkScript, uint32(heightHint), ) } else { spentIntent, err = notifier.RegisterSpendNtfn( outpoint, output.PkScript, uint32(heightHint), ) } if err != nil { t.Fatalf("unable to register for spend ntfn: %v", err) } spendClients[i] = spentIntent } for _, client := range spendClients { select { case ntfn := <-client.Spend: // We've received the spend nftn. So now verify // all the fields have been set properly. checkNotificationFields( ntfn, outpoint, spenderSha, spendHeight, t, ) case <-time.After(30 * time.Second): t.Fatalf("spend ntfn never received") } } } // Wait for the notifier to have caught up to the mined block. select { case _, ok := <-epochClient.Epochs: if !ok { t.Fatalf("epoch channel was closed") } case <-time.After(15 * time.Second): t.Fatalf("did not receive block epoch") } // Check that the spend clients gets immediately notified for the spend // in the previous block. checkSpends() // Bury the spend even deeper, and do the same check. const numBlocks = 10 if _, err := miner.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate single block: %v", err) } // Wait for the notifier to have caught up with the new blocks. for i := 0; i < numBlocks; i++ { select { case _, ok := <-epochClient.Epochs: if !ok { t.Fatalf("epoch channel was closed") } case <-time.After(15 * time.Second): t.Fatalf("did not receive block epoch") } } // The clients should still be notified immediately. checkSpends() } func testCancelSpendNtfn(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'd like to test that once a spend notification is registered, it // can be cancelled before the notification is dispatched. // First, we'll start by creating a new output that we can spend // ourselves. outpoint, output, privKey := chainntnfs.CreateSpendableOutput(t, node) _, currentHeight, err := node.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Create two clients that each registered to the spend notification. // We'll cancel the notification for the first client and leave the // notification for the second client enabled. const numClients = 2 spendClients := make([]*chainntnfs.SpendEvent, numClients) for i := 0; i < numClients; i++ { var spentIntent *chainntnfs.SpendEvent if scriptDispatch { spentIntent, err = notifier.RegisterSpendNtfn( nil, output.PkScript, uint32(currentHeight), ) } else { spentIntent, err = notifier.RegisterSpendNtfn( outpoint, output.PkScript, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register for spend ntfn: %v", err) } spendClients[i] = spentIntent } // Next, create a new transaction spending that output. spendingTx := chainntnfs.CreateSpendTx(t, outpoint, output, privKey) // Before we broadcast the spending transaction, we'll cancel the // notification of the first client. spendClients[1].Cancel() // Broadcast our spending transaction. spenderSha, err := node.Node.SendRawTransaction(spendingTx, true) if err != nil { t.Fatalf("unable to broadcast tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(node, spenderSha); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } // Now we mine a single block, which should include our spend. The // notification should also be sent off. if _, err := node.Node.Generate(1); err != nil { t.Fatalf("unable to generate single block: %v", err) } // The spend notification for the first client should have been // dispatched. select { case ntfn := <-spendClients[0].Spend: // We've received the spend nftn. So now verify all the // fields have been set properly. if *ntfn.SpentOutPoint != *outpoint { t.Fatalf("ntfn includes wrong output, reports "+ "%v instead of %v", ntfn.SpentOutPoint, outpoint) } if !bytes.Equal(ntfn.SpenderTxHash[:], spenderSha[:]) { t.Fatalf("ntfn includes wrong spender tx sha, "+ "reports %v instead of %v", ntfn.SpenderTxHash[:], spenderSha[:]) } if ntfn.SpenderInputIndex != 0 { t.Fatalf("ntfn includes wrong spending input "+ "index, reports %v, should be %v", ntfn.SpenderInputIndex, 0) } case <-time.After(20 * time.Second): t.Fatalf("spend ntfn never received") } // However, the spend notification of the second client should NOT have // been dispatched. select { case _, ok := <-spendClients[1].Spend: if ok { t.Fatalf("spend ntfn should have been cancelled") } case <-time.After(20 * time.Second): t.Fatalf("spend ntfn never cancelled") } } func testCancelEpochNtfn(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) { // We'd like to ensure that once a client cancels their block epoch // notifications, no further notifications are sent over the channel // if/when new blocks come in. const numClients = 2 epochClients := make([]*chainntnfs.BlockEpochEvent, numClients) for i := 0; i < numClients; i++ { epochClient, err := notifier.RegisterBlockEpochNtfn(nil) if err != nil { t.Fatalf("unable to register for epoch notification") } epochClients[i] = epochClient } // Now before we mine any blocks, cancel the notification for the first // epoch client. epochClients[0].Cancel() // Now mine a single block, this should trigger the logic to dispatch // epoch notifications. if _, err := node.Node.Generate(1); err != nil { t.Fatalf("unable to generate blocks: %v", err) } // The epoch notification for the first client shouldn't have been // dispatched. select { case _, ok := <-epochClients[0].Epochs: if ok { t.Fatalf("epoch notification should have been cancelled") } case <-time.After(2 * time.Second): t.Fatalf("epoch notification not sent") } // However, the epoch notification for the second client should have // been dispatched as normal. select { case _, ok := <-epochClients[1].Epochs: if !ok { t.Fatalf("epoch was cancelled") } case <-time.After(20 * time.Second): t.Fatalf("epoch notification not sent") } } func testReorgConf(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // Set up a new miner that we can use to cause a reorg. miner2, err := rpctest.New(chainntnfs.NetParams, nil, []string{"--txindex"}) if err != nil { t.Fatalf("unable to create mining node: %v", err) } if err := miner2.SetUp(false, 0); err != nil { t.Fatalf("unable to set up mining node: %v", err) } defer miner2.TearDown() // We start by connecting the new miner to our original miner, // such that it will sync to our original chain. if err := rpctest.ConnectNode(miner, miner2); err != nil { t.Fatalf("unable to connect harnesses: %v", err) } nodeSlice := []*rpctest.Harness{miner, miner2} if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil { t.Fatalf("unable to join node on blocks: %v", err) } // The two should be on the same blockheight. _, nodeHeight1, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } _, nodeHeight2, err := miner2.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } if nodeHeight1 != nodeHeight2 { t.Fatalf("expected both miners to be on the same height: %v vs %v", nodeHeight1, nodeHeight2) } // We disconnect the two nodes, such that we can start mining on them // individually without the other one learning about the new blocks. err = miner.Node.AddNode(miner2.P2PAddress(), rpcclient.ANRemove) if err != nil { t.Fatalf("unable to remove node: %v", err) } txid, pkScript, err := chainntnfs.GetTestTxidAndScript(miner) if err != nil { t.Fatalf("unable to create test tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, currentHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current height: %v", err) } // Now that we have a txid, register a confirmation notification with // the chainntfn source. numConfs := uint32(2) var confIntent *chainntnfs.ConfirmationEvent if scriptDispatch { confIntent, err = notifier.RegisterConfirmationsNtfn( nil, pkScript, numConfs, uint32(currentHeight), ) } else { confIntent, err = notifier.RegisterConfirmationsNtfn( txid, pkScript, numConfs, uint32(currentHeight), ) } if err != nil { t.Fatalf("unable to register ntfn: %v", err) } // Now generate a single block, the transaction should be included. _, err = miner.Node.Generate(1) if err != nil { t.Fatalf("unable to generate single block: %v", err) } // Transaction only has one confirmation, and the notification is registered // with 2 confirmations, so we should not be notified yet. select { case <-confIntent.Confirmed: t.Fatal("tx was confirmed unexpectedly") case <-time.After(1 * time.Second): } // Reorganize transaction out of the chain by generating a longer fork // from the other miner. The transaction is not included in this fork. miner2.Node.Generate(2) // Reconnect nodes to reach consensus on the longest chain. miner2's chain // should win and become active on miner1. if err := rpctest.ConnectNode(miner, miner2); err != nil { t.Fatalf("unable to connect harnesses: %v", err) } nodeSlice = []*rpctest.Harness{miner, miner2} if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil { t.Fatalf("unable to join node on blocks: %v", err) } _, nodeHeight1, err = miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } _, nodeHeight2, err = miner2.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } if nodeHeight1 != nodeHeight2 { t.Fatalf("expected both miners to be on the same height: %v vs %v", nodeHeight1, nodeHeight2) } // Even though there is one block above the height of the block that the // transaction was included in, it is not the active chain so the // notification should not be sent. select { case <-confIntent.Confirmed: t.Fatal("tx was confirmed unexpectedly") case <-time.After(1 * time.Second): } // Now confirm the transaction on the longest chain and verify that we // receive the notification. tx, err := miner.Node.GetRawTransaction(txid) if err != nil { t.Fatalf("unable to get raw tx: %v", err) } txid, err = miner2.Node.SendRawTransaction(tx.MsgTx(), false) if err != nil { t.Fatalf("unable to get send tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, txid); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } _, err = miner.Node.Generate(3) if err != nil { t.Fatalf("unable to generate single block: %v", err) } select { case <-confIntent.Confirmed: case <-time.After(20 * time.Second): t.Fatalf("confirmation notification never received") } } // testReorgSpend ensures that the different ChainNotifier implementations // correctly handle outpoints whose spending transaction has been reorged out of // the chain. func testReorgSpend(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) { // We'll start by creating an output and registering a spend // notification for it. outpoint, output, privKey := chainntnfs.CreateSpendableOutput(t, miner) _, heightHint, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to retrieve current height: %v", err) } var spendIntent *chainntnfs.SpendEvent if scriptDispatch { spendIntent, err = notifier.RegisterSpendNtfn( nil, output.PkScript, uint32(heightHint), ) } else { spendIntent, err = notifier.RegisterSpendNtfn( outpoint, output.PkScript, uint32(heightHint), ) } if err != nil { t.Fatalf("unable to register for spend: %v", err) } // Set up a new miner that we can use to cause a reorg. miner2, err := rpctest.New(chainntnfs.NetParams, nil, []string{"--txindex"}) if err != nil { t.Fatalf("unable to create mining node: %v", err) } if err := miner2.SetUp(false, 0); err != nil { t.Fatalf("unable to set up mining node: %v", err) } defer miner2.TearDown() // We start by connecting the new miner to our original miner, in order // to have a consistent view of the chain from both miners. They should // be on the same block height. if err := rpctest.ConnectNode(miner, miner2); err != nil { t.Fatalf("unable to connect miners: %v", err) } nodeSlice := []*rpctest.Harness{miner, miner2} if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil { t.Fatalf("unable to sync miners: %v", err) } _, minerHeight1, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get miner1's current height: %v", err) } _, minerHeight2, err := miner2.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get miner2's current height: %v", err) } if minerHeight1 != minerHeight2 { t.Fatalf("expected both miners to be on the same height: "+ "%v vs %v", minerHeight1, minerHeight2) } // We disconnect the two nodes, such that we can start mining on them // individually without the other one learning about the new blocks. err = miner.Node.AddNode(miner2.P2PAddress(), rpcclient.ANRemove) if err != nil { t.Fatalf("unable to disconnect miners: %v", err) } // Craft the spending transaction for the outpoint created above and // confirm it under the chain of the original miner. spendTx := chainntnfs.CreateSpendTx(t, outpoint, output, privKey) spendTxHash, err := miner.Node.SendRawTransaction(spendTx, true) if err != nil { t.Fatalf("unable to broadcast spend tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, spendTxHash); err != nil { t.Fatalf("spend tx not relayed to miner: %v", err) } const numBlocks = 1 if _, err := miner.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate blocks: %v", err) } _, spendHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get spend height: %v", err) } // We should see a spend notification dispatched with the correct spend // details. select { case spendDetails := <-spendIntent.Spend: checkNotificationFields( spendDetails, outpoint, spendTxHash, spendHeight, t, ) case <-time.After(5 * time.Second): t.Fatal("expected spend notification to be dispatched") } // Now, with the other miner, we'll generate one more block than the // other miner and connect them to cause a reorg. if _, err := miner2.Node.Generate(numBlocks + 1); err != nil { t.Fatalf("unable to generate blocks: %v", err) } if err := rpctest.ConnectNode(miner, miner2); err != nil { t.Fatalf("unable to connect miners: %v", err) } nodeSlice = []*rpctest.Harness{miner2, miner} if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil { t.Fatalf("unable to sync miners: %v", err) } _, minerHeight1, err = miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get miner1's current height: %v", err) } _, minerHeight2, err = miner2.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get miner2's current height: %v", err) } if minerHeight1 != minerHeight2 { t.Fatalf("expected both miners to be on the same height: "+ "%v vs %v", minerHeight1, minerHeight2) } // We should receive a reorg notification. select { case _, ok := <-spendIntent.Reorg: if !ok { t.Fatal("unexpected reorg channel closed") } case <-time.After(5 * time.Second): t.Fatal("expected to receive reorg notification") } // Now that both miners are on the same chain, we'll confirm the // spending transaction of the outpoint and receive a notification for // it. if _, err = miner2.Node.SendRawTransaction(spendTx, true); err != nil { t.Fatalf("unable to broadcast spend tx: %v", err) } if err := chainntnfs.WaitForMempoolTx(miner, spendTxHash); err != nil { t.Fatalf("tx not relayed to miner: %v", err) } if _, err := miner.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate single block: %v", err) } _, spendHeight, err = miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to retrieve current height: %v", err) } select { case spendDetails := <-spendIntent.Spend: checkNotificationFields( spendDetails, outpoint, spendTxHash, spendHeight, t, ) case <-time.After(5 * time.Second): t.Fatal("expected spend notification to be dispatched") } } // testCatchUpClientOnMissedBlocks tests the case of multiple registered client // receiving historical block epoch notifications due to their best known block // being out of date. func testCatchUpClientOnMissedBlocks(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) { const numBlocks = 10 const numClients = 5 var wg sync.WaitGroup outdatedHash, outdatedHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to retrieve current height: %v", err) } // This function is used by UnsafeStart to ensure all notifications // are fully drained before clients register for notifications. generateBlocks := func() error { _, err = miner.Node.Generate(numBlocks) return err } // We want to ensure that when a client registers for block notifications, // the notifier's best block is at the tip of the chain. If it isn't, the // client may not receive all historical notifications. bestHeight := outdatedHeight + numBlocks err = notifier.UnsafeStart(bestHeight, nil, bestHeight, generateBlocks) if err != nil { t.Fatalf("unable to unsafe start the notifier: %v", err) } defer notifier.Stop() // Create numClients clients whose best known block is 10 blocks behind // the tip of the chain. We expect each client to receive numBlocks // notifications, 1 for each block they're behind. clients := make([]*chainntnfs.BlockEpochEvent, 0, numClients) outdatedBlock := &chainntnfs.BlockEpoch{ Height: outdatedHeight, Hash: outdatedHash, } for i := 0; i < numClients; i++ { epochClient, err := notifier.RegisterBlockEpochNtfn(outdatedBlock) if err != nil { t.Fatalf("unable to register for epoch notification: %v", err) } clients = append(clients, epochClient) } for expectedHeight := outdatedHeight + 1; expectedHeight <= bestHeight; expectedHeight++ { for _, epochClient := range clients { select { case block := <-epochClient.Epochs: if block.Height != expectedHeight { t.Fatalf("received block of height: %d, "+ "expected: %d", block.Height, expectedHeight) } case <-time.After(20 * time.Second): t.Fatalf("did not receive historical notification "+ "for height %d", expectedHeight) } } } // Finally, ensure that an extra block notification wasn't received. anyExtras := make(chan struct{}, len(clients)) for _, epochClient := range clients { wg.Add(1) go func(epochClient *chainntnfs.BlockEpochEvent) { defer wg.Done() select { case <-epochClient.Epochs: anyExtras <- struct{}{} case <-time.After(5 * time.Second): } }(epochClient) } wg.Wait() close(anyExtras) var extraCount int for range anyExtras { extraCount++ } if extraCount > 0 { t.Fatalf("received %d unexpected block notification", extraCount) } } // testCatchUpOnMissedBlocks the case of multiple registered clients receiving // historical block epoch notifications due to the notifier's best known block // being out of date. func testCatchUpOnMissedBlocks(miner *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) { const numBlocks = 10 const numClients = 5 var wg sync.WaitGroup _, bestHeight, err := miner.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } // This function is used by UnsafeStart to ensure all notifications // are fully drained before clients register for notifications. generateBlocks := func() error { _, err = miner.Node.Generate(numBlocks) return err } // Next, start the notifier with outdated best block information. err = notifier.UnsafeStart( bestHeight, nil, bestHeight+numBlocks, generateBlocks, ) if err != nil { t.Fatalf("unable to unsafe start the notifier: %v", err) } defer notifier.Stop() // Create numClients clients who will listen for block notifications. clients := make([]*chainntnfs.BlockEpochEvent, 0, numClients) for i := 0; i < numClients; i++ { epochClient, err := notifier.RegisterBlockEpochNtfn(nil) if err != nil { t.Fatalf("unable to register for epoch notification: %v", err) } clients = append(clients, epochClient) } // Generate a single block to trigger the backlog of historical // notifications for the previously mined blocks. if _, err := miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate blocks: %v", err) } // We expect each client to receive numBlocks + 1 notifications, 1 for // each block that the notifier has missed out on. for expectedHeight := bestHeight + 1; expectedHeight <= bestHeight+numBlocks+1; expectedHeight++ { for _, epochClient := range clients { select { case block := <-epochClient.Epochs: if block.Height != expectedHeight { t.Fatalf("received block of height: %d, "+ "expected: %d", block.Height, expectedHeight) } case <-time.After(20 * time.Second): t.Fatalf("did not receive historical notification "+ "for height %d", expectedHeight) } } } // Finally, ensure that an extra block notification wasn't received. anyExtras := make(chan struct{}, len(clients)) for _, epochClient := range clients { wg.Add(1) go func(epochClient *chainntnfs.BlockEpochEvent) { defer wg.Done() select { case <-epochClient.Epochs: anyExtras <- struct{}{} case <-time.After(5 * time.Second): } }(epochClient) } wg.Wait() close(anyExtras) var extraCount int for range anyExtras { extraCount++ } if extraCount > 0 { t.Fatalf("received %d unexpected block notification", extraCount) } } // testCatchUpOnMissedBlocks tests that a client will still receive all valid // block notifications in the case where a notifier's best block has been reorged // out of the chain. func testCatchUpOnMissedBlocksWithReorg(miner1 *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) { const numBlocks = 10 const numClients = 5 var wg sync.WaitGroup // Set up a new miner that we can use to cause a reorg. miner2, err := rpctest.New(chainntnfs.NetParams, nil, []string{"--txindex"}) if err != nil { t.Fatalf("unable to create mining node: %v", err) } if err := miner2.SetUp(false, 0); err != nil { t.Fatalf("unable to set up mining node: %v", err) } defer miner2.TearDown() // We start by connecting the new miner to our original miner, // such that it will sync to our original chain. if err := rpctest.ConnectNode(miner1, miner2); err != nil { t.Fatalf("unable to connect harnesses: %v", err) } nodeSlice := []*rpctest.Harness{miner1, miner2} if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil { t.Fatalf("unable to join node on blocks: %v", err) } // The two should be on the same blockheight. _, nodeHeight1, err := miner1.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } _, nodeHeight2, err := miner2.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current blockheight %v", err) } if nodeHeight1 != nodeHeight2 { t.Fatalf("expected both miners to be on the same height: %v vs %v", nodeHeight1, nodeHeight2) } // We disconnect the two nodes, such that we can start mining on them // individually without the other one learning about the new blocks. err = miner1.Node.AddNode(miner2.P2PAddress(), rpcclient.ANRemove) if err != nil { t.Fatalf("unable to remove node: %v", err) } // Now mine on each chain separately blocks, err := miner1.Node.Generate(numBlocks) if err != nil { t.Fatalf("unable to generate single block: %v", err) } // We generate an extra block on miner 2's chain to ensure it is the // longer chain. _, err = miner2.Node.Generate(numBlocks + 1) if err != nil { t.Fatalf("unable to generate single block: %v", err) } // Sync the two chains to ensure they will sync to miner2's chain. if err := rpctest.ConnectNode(miner1, miner2); err != nil { t.Fatalf("unable to connect harnesses: %v", err) } nodeSlice = []*rpctest.Harness{miner1, miner2} if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil { t.Fatalf("unable to join node on blocks: %v", err) } // The two should be on the same block hash. timeout := time.After(10 * time.Second) for { nodeHash1, _, err := miner1.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current block hash: %v", err) } nodeHash2, _, err := miner2.Node.GetBestBlock() if err != nil { t.Fatalf("unable to get current block hash: %v", err) } if *nodeHash1 == *nodeHash2 { break } select { case <-timeout: t.Fatalf("Unable to sync two chains") case <-time.After(50 * time.Millisecond): continue } } // Next, start the notifier with outdated best block information. // We set the notifier's best block to be the last block mined on the // shorter chain, to test that the notifier correctly rewinds to // the common ancestor between the two chains. syncHeight := nodeHeight1 + numBlocks + 1 err = notifier.UnsafeStart( nodeHeight1+numBlocks, blocks[numBlocks-1], syncHeight, nil, ) if err != nil { t.Fatalf("Unable to unsafe start the notifier: %v", err) } defer notifier.Stop() // Create numClients clients who will listen for block notifications. clients := make([]*chainntnfs.BlockEpochEvent, 0, numClients) for i := 0; i < numClients; i++ { epochClient, err := notifier.RegisterBlockEpochNtfn(nil) if err != nil { t.Fatalf("unable to register for epoch notification: %v", err) } clients = append(clients, epochClient) } // Generate a single block, which should trigger the notifier to rewind // to the common ancestor and dispatch notifications from there. _, err = miner2.Node.Generate(1) if err != nil { t.Fatalf("unable to generate single block: %v", err) } // If the chain backend to the notifier stores information about reorged // blocks, the notifier is able to rewind the chain to the common // ancestor between the chain tip and its outdated best known block. // In this case, the client is expected to receive numBlocks + 2 // notifications, 1 for each block the notifier has missed out on from // the longer chain. // // If the chain backend does not store information about reorged blocks, // the notifier has no way of knowing where to rewind to and therefore // the client is only expected to receive notifications for blocks // whose height is greater than the notifier's best known height: 2 // notifications, in this case. var startingHeight int32 switch notifier.(type) { case *neutrinonotify.NeutrinoNotifier: startingHeight = nodeHeight1 + numBlocks + 1 default: startingHeight = nodeHeight1 + 1 } for expectedHeight := startingHeight; expectedHeight <= nodeHeight1+numBlocks+2; expectedHeight++ { for _, epochClient := range clients { select { case block := <-epochClient.Epochs: if block.Height != expectedHeight { t.Fatalf("received block of height: %d, "+ "expected: %d", block.Height, expectedHeight) } case <-time.After(20 * time.Second): t.Fatalf("did not receive historical notification "+ "for height %d", expectedHeight) } } } // Finally, ensure that an extra block notification wasn't received. anyExtras := make(chan struct{}, len(clients)) for _, epochClient := range clients { wg.Add(1) go func(epochClient *chainntnfs.BlockEpochEvent) { defer wg.Done() select { case <-epochClient.Epochs: anyExtras <- struct{}{} case <-time.After(5 * time.Second): } }(epochClient) } wg.Wait() close(anyExtras) var extraCount int for range anyExtras { extraCount++ } if extraCount > 0 { t.Fatalf("received %d unexpected block notification", extraCount) } } type txNtfnTestCase struct { name string test func(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier, scriptDispatch bool, t *testing.T) } type blockNtfnTestCase struct { name string test func(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) } type blockCatchupTestCase struct { name string test func(node *rpctest.Harness, notifier chainntnfs.TestChainNotifier, t *testing.T) } var txNtfnTests = []txNtfnTestCase{ { name: "single conf ntfn", test: testSingleConfirmationNotification, }, { name: "multi conf ntfn", test: testMultiConfirmationNotification, }, { name: "batch conf ntfn", test: testBatchConfirmationNotification, }, { name: "multi client conf", test: testMultiClientConfirmationNotification, }, { name: "lazy ntfn consumer", test: testLazyNtfnConsumer, }, { name: "historical conf dispatch", test: testTxConfirmedBeforeNtfnRegistration, }, { name: "reorg conf", test: testReorgConf, }, { name: "spend ntfn", test: testSpendNotification, }, { name: "historical spend dispatch", test: testSpendBeforeNtfnRegistration, }, { name: "reorg spend", test: testReorgSpend, }, { name: "cancel spend ntfn", test: testCancelSpendNtfn, }, } var blockNtfnTests = []blockNtfnTestCase{ { name: "block epoch", test: testBlockEpochNotification, }, { name: "cancel epoch ntfn", test: testCancelEpochNtfn, }, } var blockCatchupTests = []blockCatchupTestCase{ { name: "catch up client on historical block epoch ntfns", test: testCatchUpClientOnMissedBlocks, }, { name: "test catch up on missed blocks", test: testCatchUpOnMissedBlocks, }, { name: "test catch up on missed blocks w/ reorged best block", test: testCatchUpOnMissedBlocksWithReorg, }, } // TestInterfaces tests all registered interfaces with a unified set of tests // which exercise each of the required methods found within the ChainNotifier // interface. // // NOTE: In the future, when additional implementations of the ChainNotifier // interface have been implemented, in order to ensure the new concrete // implementation is automatically tested, two steps must be undertaken. First, // one needs add a "non-captured" (_) import from the new sub-package. This // import should trigger an init() method within the package which registers // the interface. Second, an additional case in the switch within the main loop // below needs to be added which properly initializes the interface. func TestInterfaces(t *testing.T) { // Initialize the harness around a btcd node which will serve as our // dedicated miner to generate blocks, cause re-orgs, etc. We'll set up // this node with a chain length of 125, so we have plenty of BTC to // play around with. miner, tearDown := chainntnfs.NewMiner(t, nil, true, 25) defer tearDown() rpcConfig := miner.RPCConfig() p2pAddr := miner.P2PAddress() log.Printf("Running %v ChainNotifier interface tests", 2*len(txNtfnTests)+len(blockNtfnTests)+len(blockCatchupTests)) for _, notifierDriver := range chainntnfs.RegisteredNotifiers() { // Initialize a height hint cache for each notifier. tempDir, err := ioutil.TempDir("", "channeldb") if err != nil { t.Fatalf("unable to create temp dir: %v", err) } db, err := channeldb.Open(tempDir) if err != nil { t.Fatalf("unable to create db: %v", err) } hintCache, err := chainntnfs.NewHeightHintCache(db) if err != nil { t.Fatalf("unable to create height hint cache: %v", err) } var ( cleanUp func() newNotifier func() (chainntnfs.TestChainNotifier, error) notifierType = notifierDriver.NotifierType ) switch notifierType { case "bitcoind": var bitcoindConn *chain.BitcoindConn bitcoindConn, cleanUp = chainntnfs.NewBitcoindBackend( t, p2pAddr, true, ) newNotifier = func() (chainntnfs.TestChainNotifier, error) { return bitcoindnotify.New( bitcoindConn, chainntnfs.NetParams, hintCache, hintCache, ), nil } case "btcd": newNotifier = func() (chainntnfs.TestChainNotifier, error) { return btcdnotify.New( &rpcConfig, chainntnfs.NetParams, hintCache, hintCache, ) } case "neutrino": var spvNode *neutrino.ChainService spvNode, cleanUp = chainntnfs.NewNeutrinoBackend( t, p2pAddr, ) newNotifier = func() (chainntnfs.TestChainNotifier, error) { return neutrinonotify.New( spvNode, hintCache, hintCache, ), nil } } log.Printf("Running ChainNotifier interface tests for: %v", notifierType) notifier, err := newNotifier() if err != nil { t.Fatalf("unable to create %v notifier: %v", notifierType, err) } if err := notifier.Start(); err != nil { t.Fatalf("unable to start notifier %v: %v", notifierType, err) } for _, txNtfnTest := range txNtfnTests { for _, scriptDispatch := range []bool{false, true} { testName := fmt.Sprintf("%v %v", notifierType, txNtfnTest.name) if scriptDispatch { testName += " with script dispatch" } success := t.Run(testName, func(t *testing.T) { txNtfnTest.test( miner, notifier, scriptDispatch, t, ) }) if !success { break } } } for _, blockNtfnTest := range blockNtfnTests { testName := fmt.Sprintf("%v %v", notifierType, blockNtfnTest.name) success := t.Run(testName, func(t *testing.T) { blockNtfnTest.test(miner, notifier, t) }) if !success { break } } notifier.Stop() // Run catchup tests separately since they require restarting // the notifier every time. for _, blockCatchupTest := range blockCatchupTests { notifier, err = newNotifier() if err != nil { t.Fatalf("unable to create %v notifier: %v", notifierType, err) } testName := fmt.Sprintf("%v %v", notifierType, blockCatchupTest.name) success := t.Run(testName, func(t *testing.T) { blockCatchupTest.test(miner, notifier, t) }) if !success { break } } if cleanUp != nil { cleanUp() } } }