package main import ( "bytes" "crypto/rand" "crypto/sha256" "crypto/tls" "encoding/hex" "errors" "fmt" "io" "math" "net/http" "sort" "strings" "sync" "sync/atomic" "time" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcwallet/waddrmgr" "github.com/coreos/bbolt" "github.com/davecgh/go-spew/spew" proxy "github.com/grpc-ecosystem/grpc-gateway/runtime" "github.com/lightningnetwork/lnd/autopilot" "github.com/lightningnetwork/lnd/build" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/invoices" "github.com/lightningnetwork/lnd/lncfg" "github.com/lightningnetwork/lnd/lnrpc" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/macaroons" "github.com/lightningnetwork/lnd/routing" "github.com/lightningnetwork/lnd/signal" "github.com/lightningnetwork/lnd/sweep" "github.com/lightningnetwork/lnd/zpay32" "github.com/tv42/zbase32" "golang.org/x/net/context" "google.golang.org/grpc" "gopkg.in/macaroon-bakery.v2/bakery" ) const ( // maxBtcPaymentMSat is the maximum allowed Bitcoin payment currently // permitted as defined in BOLT-0002. maxBtcPaymentMSat = lnwire.MilliSatoshi(math.MaxUint32) // maxLtcPaymentMSat is the maximum allowed Litecoin payment currently // permitted. maxLtcPaymentMSat = lnwire.MilliSatoshi(math.MaxUint32) * btcToLtcConversionRate ) var ( zeroHash [32]byte // maxPaymentMSat is the maximum allowed payment currently permitted as // defined in BOLT-002. This value depends on which chain is active. // It is set to the value under the Bitcoin chain as default. maxPaymentMSat = maxBtcPaymentMSat defaultAccount uint32 = waddrmgr.DefaultAccountNum // readPermissions is a slice of all entities that allow read // permissions for authorization purposes, all lowercase. readPermissions = []bakery.Op{ { Entity: "onchain", Action: "read", }, { Entity: "offchain", Action: "read", }, { Entity: "address", Action: "read", }, { Entity: "message", Action: "read", }, { Entity: "peers", Action: "read", }, { Entity: "info", Action: "read", }, { Entity: "invoices", Action: "read", }, } // writePermissions is a slice of all entities that allow write // permissions for authorization purposes, all lowercase. writePermissions = []bakery.Op{ { Entity: "onchain", Action: "write", }, { Entity: "offchain", Action: "write", }, { Entity: "address", Action: "write", }, { Entity: "message", Action: "write", }, { Entity: "peers", Action: "write", }, { Entity: "info", Action: "write", }, { Entity: "invoices", Action: "write", }, { Entity: "signer", Action: "generate", }, } // invoicePermissions is a slice of all the entities that allows a user // to only access calls that are related to invoices, so: streaming // RPCs, generating, and listening invoices. invoicePermissions = []bakery.Op{ { Entity: "invoices", Action: "read", }, { Entity: "invoices", Action: "write", }, { Entity: "address", Action: "read", }, { Entity: "address", Action: "write", }, } // permissions maps RPC calls to the permissions they require. permissions = map[string][]bakery.Op{ "/lnrpc.Lightning/SendCoins": {{ Entity: "onchain", Action: "write", }}, "/lnrpc.Lightning/ListUnspent": {{ Entity: "onchain", Action: "read", }}, "/lnrpc.Lightning/SendMany": {{ Entity: "onchain", Action: "write", }}, "/lnrpc.Lightning/NewAddress": {{ Entity: "address", Action: "write", }}, "/lnrpc.Lightning/SignMessage": {{ Entity: "message", Action: "write", }}, "/lnrpc.Lightning/VerifyMessage": {{ Entity: "message", Action: "read", }}, "/lnrpc.Lightning/ConnectPeer": {{ Entity: "peers", Action: "write", }}, "/lnrpc.Lightning/DisconnectPeer": {{ Entity: "peers", Action: "write", }}, "/lnrpc.Lightning/OpenChannel": {{ Entity: "onchain", Action: "write", }, { Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/OpenChannelSync": {{ Entity: "onchain", Action: "write", }, { Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/CloseChannel": {{ Entity: "onchain", Action: "write", }, { Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/AbandonChannel": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/GetInfo": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/ListPeers": {{ Entity: "peers", Action: "read", }}, "/lnrpc.Lightning/WalletBalance": {{ Entity: "onchain", Action: "read", }}, "/lnrpc.Lightning/ChannelBalance": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/PendingChannels": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/ListChannels": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/ClosedChannels": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/SendPayment": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/SendPaymentSync": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/SendToRoute": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/SendToRouteSync": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/AddInvoice": {{ Entity: "invoices", Action: "write", }}, "/lnrpc.Lightning/LookupInvoice": {{ Entity: "invoices", Action: "read", }}, "/lnrpc.Lightning/ListInvoices": {{ Entity: "invoices", Action: "read", }}, "/lnrpc.Lightning/SubscribeInvoices": {{ Entity: "invoices", Action: "read", }}, "/lnrpc.Lightning/SubscribeTransactions": {{ Entity: "onchain", Action: "read", }}, "/lnrpc.Lightning/GetTransactions": {{ Entity: "onchain", Action: "read", }}, "/lnrpc.Lightning/DescribeGraph": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/GetChanInfo": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/GetNodeInfo": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/QueryRoutes": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/GetNetworkInfo": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/StopDaemon": {{ Entity: "info", Action: "write", }}, "/lnrpc.Lightning/SubscribeChannelGraph": {{ Entity: "info", Action: "read", }}, "/lnrpc.Lightning/ListPayments": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/DeleteAllPayments": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/DebugLevel": {{ Entity: "info", Action: "write", }}, "/lnrpc.Lightning/DecodePayReq": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/FeeReport": {{ Entity: "offchain", Action: "read", }}, "/lnrpc.Lightning/UpdateChannelPolicy": {{ Entity: "offchain", Action: "write", }}, "/lnrpc.Lightning/ForwardingHistory": {{ Entity: "offchain", Action: "read", }}, } ) // rpcServer is a gRPC, RPC front end to the lnd daemon. // TODO(roasbeef): pagination support for the list-style calls type rpcServer struct { started int32 // To be used atomically. shutdown int32 // To be used atomically. server *server wg sync.WaitGroup // subServers are a set of sub-RPC servers that use the same gRPC and // listening sockets as the main RPC server, but which maintain their // own independent service. This allows us to expose a set of // micro-service like abstractions to the outside world for users to // consume. subServers []lnrpc.SubServer // grpcServer is the main gRPC server that this RPC server, and all the // sub-servers will use to register themselves and accept client // requests from. grpcServer *grpc.Server // listenerCleanUp are a set of closures functions that will allow this // main RPC server to clean up all the listening socket created for the // server. listenerCleanUp []func() // restServerOpts are a set of gRPC dial options that the REST server // proxy will use to connect to the main gRPC server. restServerOpts []grpc.DialOption // tlsCfg is the TLS config that allows the REST server proxy to // connect to the main gRPC server to proxy all incoming requests. tlsCfg *tls.Config quit chan struct{} } // A compile time check to ensure that rpcServer fully implements the // LightningServer gRPC service. var _ lnrpc.LightningServer = (*rpcServer)(nil) // newRPCServer creates and returns a new instance of the rpcServer. The // rpcServer will handle creating all listening sockets needed by it, and any // of the sub-servers that it maintains. The set of serverOpts should be the // base level options passed to the grPC server. This typically includes things // like requiring TLS, etc. func newRPCServer(s *server, macService *macaroons.Service, subServerCgs *subRPCServerConfigs, serverOpts []grpc.ServerOption, restServerOpts []grpc.DialOption, atpl *autopilot.Manager, tlsCfg *tls.Config) (*rpcServer, error) { var ( subServers []lnrpc.SubServer subServerPerms []lnrpc.MacaroonPerms ) // Before we create any of the sub-servers, we need to ensure that all // the dependencies they need are properly populated within each sub // server configuration struct. err := subServerCgs.PopulateDependencies( s.cc, networkDir, macService, atpl, ) if err != nil { return nil, err } // Now that the sub-servers have all their dependencies in place, we // can create each sub-server! registeredSubServers := lnrpc.RegisteredSubServers() for _, subServer := range registeredSubServers { subServerInstance, macPerms, err := subServer.New(subServerCgs) if err != nil { return nil, err } // We'll collect the sub-server, and also the set of // permissions it needs for macaroons so we can apply the // interceptors below. subServers = append(subServers, subServerInstance) subServerPerms = append(subServerPerms, macPerms) } // Next, we need to merge the set of sub server macaroon permissions // with the main RPC server permissions so we can unite them under a // single set of interceptors. for _, subServerPerm := range subServerPerms { for method, ops := range subServerPerm { // For each new method:ops combo, we also ensure that // non of the sub-servers try to override each other. if _, ok := permissions[method]; ok { return nil, fmt.Errorf("detected duplicate "+ "macaroon constraints for path: %v", method) } permissions[method] = ops } } // If macaroons aren't disabled (a non-nil service), then we'll set up // our set of interceptors which will allow us handle the macaroon // authentication in a single location . if macService != nil { unaryInterceptor := grpc.UnaryInterceptor( macService.UnaryServerInterceptor(permissions), ) streamInterceptor := grpc.StreamInterceptor( macService.StreamServerInterceptor(permissions), ) serverOpts = append(serverOpts, unaryInterceptor, streamInterceptor, ) } // Finally, with all the pre-set up complete, we can create the main // gRPC server, and register the main lnrpc server along side. grpcServer := grpc.NewServer(serverOpts...) rootRPCServer := &rpcServer{ restServerOpts: restServerOpts, subServers: subServers, tlsCfg: tlsCfg, grpcServer: grpcServer, server: s, quit: make(chan struct{}, 1), } lnrpc.RegisterLightningServer(grpcServer, rootRPCServer) // Now the main RPC server has been registered, we'll iterate through // all the sub-RPC servers and register them to ensure that requests // are properly routed towards them. for _, subServer := range subServers { err := subServer.RegisterWithRootServer(grpcServer) if err != nil { return nil, fmt.Errorf("unable to register "+ "sub-server %v with root: %v", subServer.Name(), err) } } return rootRPCServer, nil } // Start launches any helper goroutines required for the rpcServer to function. func (r *rpcServer) Start() error { if atomic.AddInt32(&r.started, 1) != 1 { return nil } // First, we'll start all the sub-servers to ensure that they're ready // to take new requests in. // // TODO(roasbeef): some may require that the entire daemon be started // at that point for _, subServer := range r.subServers { rpcsLog.Debugf("Starting sub RPC server: %v", subServer.Name()) if err := subServer.Start(); err != nil { return err } } // With all the sub-servers started, we'll spin up the listeners for // the main RPC server itself. for _, listener := range cfg.RPCListeners { lis, err := lncfg.ListenOnAddress(listener) if err != nil { ltndLog.Errorf( "RPC server unable to listen on %s", listener, ) return err } r.listenerCleanUp = append(r.listenerCleanUp, func() { lis.Close() }) go func() { rpcsLog.Infof("RPC server listening on %s", lis.Addr()) r.grpcServer.Serve(lis) }() } // Finally, start the REST proxy for our gRPC server above. // // TODO(roasbeef): eventually also allow the sub-servers to themselves // have a REST proxy. mux := proxy.NewServeMux() err := lnrpc.RegisterLightningHandlerFromEndpoint( context.Background(), mux, cfg.RPCListeners[0].String(), r.restServerOpts, ) if err != nil { return err } for _, restEndpoint := range cfg.RESTListeners { lis, err := lncfg.TLSListenOnAddress(restEndpoint, r.tlsCfg) if err != nil { ltndLog.Errorf( "gRPC proxy unable to listen on %s", restEndpoint, ) return err } r.listenerCleanUp = append(r.listenerCleanUp, func() { lis.Close() }) go func() { rpcsLog.Infof("gRPC proxy started at %s", lis.Addr()) http.Serve(lis, mux) }() } return nil } // Stop signals any active goroutines for a graceful closure. func (r *rpcServer) Stop() error { if atomic.AddInt32(&r.shutdown, 1) != 1 { return nil } rpcsLog.Infof("Stopping RPC Server") close(r.quit) // After we've signalled all of our active goroutines to exit, we'll // then do the same to signal a graceful shutdown of all the sub // servers. for _, subServer := range r.subServers { rpcsLog.Infof("Stopping %v Sub-RPC Server", subServer.Name()) if err := subServer.Stop(); err != nil { rpcsLog.Errorf("unable to stop sub-server %v: %v", subServer.Name(), err) continue } } // Finally, we can clean up all the listening sockets to ensure that we // give the file descriptors back to the OS. for _, cleanUp := range r.listenerCleanUp { cleanUp() } return nil } // addrPairsToOutputs converts a map describing a set of outputs to be created, // the outputs themselves. The passed map pairs up an address, to a desired // output value amount. Each address is converted to its corresponding pkScript // to be used within the constructed output(s). func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) { outputs := make([]*wire.TxOut, 0, len(addrPairs)) for addr, amt := range addrPairs { addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params) if err != nil { return nil, err } pkscript, err := txscript.PayToAddrScript(addr) if err != nil { return nil, err } outputs = append(outputs, wire.NewTxOut(amt, pkscript)) } return outputs, nil } // sendCoinsOnChain makes an on-chain transaction in or to send coins to one or // more addresses specified in the passed payment map. The payment map maps an // address to a specified output value to be sent to that address. func (r *rpcServer) sendCoinsOnChain(paymentMap map[string]int64, feeRate lnwallet.SatPerKWeight) (*chainhash.Hash, error) { outputs, err := addrPairsToOutputs(paymentMap) if err != nil { return nil, err } tx, err := r.server.cc.wallet.SendOutputs(outputs, feeRate) if err != nil { return nil, err } txHash := tx.TxHash() return &txHash, nil } // ListUnspent returns useful information about each unspent output owned by // the wallet, as reported by the underlying `ListUnspentWitness`; the // information returned is: outpoint, amount in satoshis, address, address // type, scriptPubKey in hex and number of confirmations. The result is // filtered to contain outputs whose number of confirmations is between a // minimum and maximum number of confirmations specified by the user, with 0 // meaning unconfirmed. func (r *rpcServer) ListUnspent(ctx context.Context, in *lnrpc.ListUnspentRequest) (*lnrpc.ListUnspentResponse, error) { minConfs := in.MinConfs maxConfs := in.MaxConfs switch { // Ensure that the user didn't attempt to specify a negative number of // confirmations, as that isn't possible. case minConfs < 0: return nil, fmt.Errorf("min confirmations must be >= 0") // We'll also ensure that the min number of confs is strictly less than // or equal to the max number of confs for sanity. case minConfs > maxConfs: return nil, fmt.Errorf("max confirmations must be >= min " + "confirmations") } // With our arguments validated, we'll query the internal wallet for // the set of UTXOs that match our query. utxos, err := r.server.cc.wallet.ListUnspentWitness(minConfs, maxConfs) if err != nil { return nil, err } resp := &lnrpc.ListUnspentResponse{ Utxos: make([]*lnrpc.Utxo, 0, len(utxos)), } for _, utxo := range utxos { // Translate lnwallet address type to the proper gRPC proto // address type. var addrType lnrpc.AddressType switch utxo.AddressType { case lnwallet.WitnessPubKey: addrType = lnrpc.AddressType_WITNESS_PUBKEY_HASH case lnwallet.NestedWitnessPubKey: addrType = lnrpc.AddressType_NESTED_PUBKEY_HASH case lnwallet.UnknownAddressType: rpcsLog.Warnf("[listunspent] utxo with address of "+ "unknown type ignored: %v", utxo.OutPoint.String()) continue default: return nil, fmt.Errorf("invalid utxo address type") } // Now that we know we have a proper mapping to an address, // we'll convert the regular outpoint to an lnrpc variant. outpoint := &lnrpc.ChannelPoint{ FundingTxid: &lnrpc.ChannelPoint_FundingTxidStr{ FundingTxidStr: utxo.OutPoint.Hash.String(), }, OutputIndex: utxo.OutPoint.Index, } utxoResp := lnrpc.Utxo{ Type: addrType, AmountSat: int64(utxo.Value), ScriptPubkey: hex.EncodeToString(utxo.PkScript), Outpoint: outpoint, Confirmations: utxo.Confirmations, } // Finally, we'll attempt to extract the raw address from the // script so we can display a human friendly address to the end // user. _, outAddresses, _, err := txscript.ExtractPkScriptAddrs( utxo.PkScript, activeNetParams.Params, ) if err != nil { return nil, err } // If we can't properly locate a single address, then this was // an error in our mapping, and we'll return an error back to // the user. if len(outAddresses) != 1 { return nil, fmt.Errorf("an output was unexpectedly " + "multisig") } utxoResp.Address = outAddresses[0].String() resp.Utxos = append(resp.Utxos, &utxoResp) } maxStr := "" if maxConfs != math.MaxInt32 { maxStr = " max=" + fmt.Sprintf("%d", maxConfs) } rpcsLog.Debugf("[listunspent] min=%v%v, generated utxos: %v", minConfs, maxStr, utxos) return resp, nil } // SendCoins executes a request to send coins to a particular address. Unlike // SendMany, this RPC call only allows creating a single output at a time. func (r *rpcServer) SendCoins(ctx context.Context, in *lnrpc.SendCoinsRequest) (*lnrpc.SendCoinsResponse, error) { // Based on the passed fee related parameters, we'll determine an // appropriate fee rate for this transaction. satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight() feePerKw, err := sweep.DetermineFeePerKw( r.server.cc.feeEstimator, sweep.FeePreference{ ConfTarget: uint32(in.TargetConf), FeeRate: satPerKw, }, ) if err != nil { return nil, err } rpcsLog.Infof("[sendcoins] addr=%v, amt=%v, sat/kw=%v, sweep_all=%v", in.Addr, btcutil.Amount(in.Amount), int64(feePerKw), in.SendAll) var txid *chainhash.Hash wallet := r.server.cc.wallet // If the send all flag is active, then we'll attempt to sweep all the // coins in the wallet in a single transaction (if possible), // otherwise, we'll respect the amount, and attempt a regular 2-output // send. if in.SendAll { // At this point, the amount shouldn't be set since we've been // instructed to sweep all the coins from the wallet. if in.Amount != 0 { return nil, fmt.Errorf("amount set while SendAll is " + "active") } // Additionally, we'll need to convert the sweep address passed // into a useable struct, and also query for the latest block // height so we can properly construct the transaction. sweepAddr, err := btcutil.DecodeAddress( in.Addr, activeNetParams.Params, ) if err != nil { return nil, err } _, bestHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return nil, err } // With the sweeper instance created, we can now generate a // transaction that will sweep ALL outputs from the wallet in a // single transaction. This will be generated in a concurrent // safe manner, so no need to worry about locking. sweepTxPkg, err := sweep.CraftSweepAllTx( feePerKw, uint32(bestHeight), sweepAddr, wallet, wallet.WalletController, wallet.WalletController, r.server.cc.feeEstimator, r.server.cc.signer, ) if err != nil { return nil, err } rpcsLog.Debugf("Sweeping all coins from wallet to addr=%v, "+ "with tx=%v", in.Addr, spew.Sdump(sweepTxPkg.SweepTx)) // As our sweep transaction was created, successfully, we'll // now attempt to publish it, cancelling the sweep pkg to // return all outputs if it fails. err = wallet.PublishTransaction(sweepTxPkg.SweepTx) if err != nil { sweepTxPkg.CancelSweepAttempt() return nil, fmt.Errorf("unable to broadcast sweep "+ "transaction: %v", err) } sweepTXID := sweepTxPkg.SweepTx.TxHash() txid = &sweepTXID } else { // We'll now construct out payment map, and use the wallet's // coin selection synchronization method to ensure that no coin // selection (funding, sweep alls, other sends) can proceed // while we instruct the wallet to send this transaction. paymentMap := map[string]int64{in.Addr: in.Amount} err := wallet.WithCoinSelectLock(func() error { newTXID, err := r.sendCoinsOnChain(paymentMap, feePerKw) if err != nil { return err } txid = newTXID return nil }) if err != nil { return nil, err } } rpcsLog.Infof("[sendcoins] spend generated txid: %v", txid.String()) return &lnrpc.SendCoinsResponse{Txid: txid.String()}, nil } // SendMany handles a request for a transaction create multiple specified // outputs in parallel. func (r *rpcServer) SendMany(ctx context.Context, in *lnrpc.SendManyRequest) (*lnrpc.SendManyResponse, error) { // Based on the passed fee related parameters, we'll determine an // appropriate fee rate for this transaction. satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight() feePerKw, err := sweep.DetermineFeePerKw( r.server.cc.feeEstimator, sweep.FeePreference{ ConfTarget: uint32(in.TargetConf), FeeRate: satPerKw, }, ) if err != nil { return nil, err } rpcsLog.Infof("[sendmany] outputs=%v, sat/kw=%v", spew.Sdump(in.AddrToAmount), int64(feePerKw)) var txid *chainhash.Hash // We'll attempt to send to the target set of outputs, ensuring that we // synchronize with any other ongoing coin selection attempts which // happen to also be concurrently executing. wallet := r.server.cc.wallet err = wallet.WithCoinSelectLock(func() error { sendManyTXID, err := r.sendCoinsOnChain( in.AddrToAmount, feePerKw, ) if err != nil { return err } txid = sendManyTXID return nil }) if err != nil { return nil, err } rpcsLog.Infof("[sendmany] spend generated txid: %v", txid.String()) return &lnrpc.SendManyResponse{Txid: txid.String()}, nil } // NewAddress creates a new address under control of the local wallet. func (r *rpcServer) NewAddress(ctx context.Context, in *lnrpc.NewAddressRequest) (*lnrpc.NewAddressResponse, error) { // Translate the gRPC proto address type to the wallet controller's // available address types. var addrType lnwallet.AddressType switch in.Type { case lnrpc.AddressType_WITNESS_PUBKEY_HASH: addrType = lnwallet.WitnessPubKey case lnrpc.AddressType_NESTED_PUBKEY_HASH: addrType = lnwallet.NestedWitnessPubKey } addr, err := r.server.cc.wallet.NewAddress(addrType, false) if err != nil { return nil, err } rpcsLog.Infof("[newaddress] addr=%v", addr.String()) return &lnrpc.NewAddressResponse{Address: addr.String()}, nil } var ( // signedMsgPrefix is a special prefix that we'll prepend to any // messages we sign/verify. We do this to ensure that we don't // accidentally sign a sighash, or other sensitive material. By // prepending this fragment, we mind message signing to our particular // context. signedMsgPrefix = []byte("Lightning Signed Message:") ) // SignMessage signs a message with the resident node's private key. The // returned signature string is zbase32 encoded and pubkey recoverable, meaning // that only the message digest and signature are needed for verification. func (r *rpcServer) SignMessage(ctx context.Context, in *lnrpc.SignMessageRequest) (*lnrpc.SignMessageResponse, error) { if in.Msg == nil { return nil, fmt.Errorf("need a message to sign") } in.Msg = append(signedMsgPrefix, in.Msg...) sigBytes, err := r.server.nodeSigner.SignCompact(in.Msg) if err != nil { return nil, err } sig := zbase32.EncodeToString(sigBytes) return &lnrpc.SignMessageResponse{Signature: sig}, nil } // VerifyMessage verifies a signature over a msg. The signature must be zbase32 // encoded and signed by an active node in the resident node's channel // database. In addition to returning the validity of the signature, // VerifyMessage also returns the recovered pubkey from the signature. func (r *rpcServer) VerifyMessage(ctx context.Context, in *lnrpc.VerifyMessageRequest) (*lnrpc.VerifyMessageResponse, error) { if in.Msg == nil { return nil, fmt.Errorf("need a message to verify") } // The signature should be zbase32 encoded sig, err := zbase32.DecodeString(in.Signature) if err != nil { return nil, fmt.Errorf("failed to decode signature: %v", err) } // The signature is over the double-sha256 hash of the message. in.Msg = append(signedMsgPrefix, in.Msg...) digest := chainhash.DoubleHashB(in.Msg) // RecoverCompact both recovers the pubkey and validates the signature. pubKey, _, err := btcec.RecoverCompact(btcec.S256(), sig, digest) if err != nil { return &lnrpc.VerifyMessageResponse{Valid: false}, nil } pubKeyHex := hex.EncodeToString(pubKey.SerializeCompressed()) var pub [33]byte copy(pub[:], pubKey.SerializeCompressed()) // Query the channel graph to ensure a node in the network with active // channels signed the message. // // TODO(phlip9): Require valid nodes to have capital in active channels. graph := r.server.chanDB.ChannelGraph() _, active, err := graph.HasLightningNode(pub) if err != nil { return nil, fmt.Errorf("failed to query graph: %v", err) } return &lnrpc.VerifyMessageResponse{ Valid: active, Pubkey: pubKeyHex, }, nil } // ConnectPeer attempts to establish a connection to a remote peer. func (r *rpcServer) ConnectPeer(ctx context.Context, in *lnrpc.ConnectPeerRequest) (*lnrpc.ConnectPeerResponse, error) { // The server hasn't yet started, so it won't be able to service any of // our requests, so we'll bail early here. if !r.server.Started() { return nil, fmt.Errorf("chain backend is still syncing, server " + "not active yet") } if in.Addr == nil { return nil, fmt.Errorf("need: lnc pubkeyhash@hostname") } pubkeyHex, err := hex.DecodeString(in.Addr.Pubkey) if err != nil { return nil, err } pubKey, err := btcec.ParsePubKey(pubkeyHex, btcec.S256()) if err != nil { return nil, err } // Connections to ourselves are disallowed for obvious reasons. if pubKey.IsEqual(r.server.identityPriv.PubKey()) { return nil, fmt.Errorf("cannot make connection to self") } addr, err := parseAddr(in.Addr.Host) if err != nil { return nil, err } peerAddr := &lnwire.NetAddress{ IdentityKey: pubKey, Address: addr, ChainNet: activeNetParams.Net, } rpcsLog.Debugf("[connectpeer] requested connection to %x@%s", peerAddr.IdentityKey.SerializeCompressed(), peerAddr.Address) if err := r.server.ConnectToPeer(peerAddr, in.Perm); err != nil { rpcsLog.Errorf("[connectpeer]: error connecting to peer: %v", err) return nil, err } rpcsLog.Debugf("Connected to peer: %v", peerAddr.String()) return &lnrpc.ConnectPeerResponse{}, nil } // DisconnectPeer attempts to disconnect one peer from another identified by a // given pubKey. In the case that we currently have a pending or active channel // with the target peer, this action will be disallowed. func (r *rpcServer) DisconnectPeer(ctx context.Context, in *lnrpc.DisconnectPeerRequest) (*lnrpc.DisconnectPeerResponse, error) { rpcsLog.Debugf("[disconnectpeer] from peer(%s)", in.PubKey) if !r.server.Started() { return nil, fmt.Errorf("chain backend is still syncing, server " + "not active yet") } // First we'll validate the string passed in within the request to // ensure that it's a valid hex-string, and also a valid compressed // public key. pubKeyBytes, err := hex.DecodeString(in.PubKey) if err != nil { return nil, fmt.Errorf("unable to decode pubkey bytes: %v", err) } peerPubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { return nil, fmt.Errorf("unable to parse pubkey: %v", err) } // Next, we'll fetch the pending/active channels we have with a // particular peer. nodeChannels, err := r.server.chanDB.FetchOpenChannels(peerPubKey) if err != nil { return nil, fmt.Errorf("unable to fetch channels for peer: %v", err) } // In order to avoid erroneously disconnecting from a peer that we have // an active channel with, if we have any channels active with this // peer, then we'll disallow disconnecting from them. if len(nodeChannels) > 0 && !cfg.UnsafeDisconnect { return nil, fmt.Errorf("cannot disconnect from peer(%x), "+ "all active channels with the peer need to be closed "+ "first", pubKeyBytes) } // With all initial validation complete, we'll now request that the // server disconnects from the peer. if err := r.server.DisconnectPeer(peerPubKey); err != nil { return nil, fmt.Errorf("unable to disconnect peer: %v", err) } return &lnrpc.DisconnectPeerResponse{}, nil } // extractOpenChannelMinConfs extracts the minimum number of confirmations from // the OpenChannelRequest that each output used to fund the channel's funding // transaction should satisfy. func extractOpenChannelMinConfs(in *lnrpc.OpenChannelRequest) (int32, error) { switch { // Ensure that the MinConfs parameter is non-negative. case in.MinConfs < 0: return 0, errors.New("minimum number of confirmations must " + "be a non-negative number") // The funding transaction should not be funded with unconfirmed outputs // unless explicitly specified by SpendUnconfirmed. We do this to // provide sane defaults to the OpenChannel RPC, as otherwise, if the // MinConfs field isn't explicitly set by the caller, we'll use // unconfirmed outputs without the caller being aware. case in.MinConfs == 0 && !in.SpendUnconfirmed: return 1, nil // In the event that the caller set MinConfs > 0 and SpendUnconfirmed to // true, we'll return an error to indicate the conflict. case in.MinConfs > 0 && in.SpendUnconfirmed: return 0, errors.New("SpendUnconfirmed set to true with " + "MinConfs > 0") // The funding transaction of the new channel to be created can be // funded with unconfirmed outputs. case in.SpendUnconfirmed: return 0, nil // If none of the above cases matched, we'll return the value set // explicitly by the caller. default: return in.MinConfs, nil } } // OpenChannel attempts to open a singly funded channel specified in the // request to a remote peer. func (r *rpcServer) OpenChannel(in *lnrpc.OpenChannelRequest, updateStream lnrpc.Lightning_OpenChannelServer) error { rpcsLog.Tracef("[openchannel] request to NodeKey(%v) "+ "allocation(us=%v, them=%v)", in.NodePubkeyString, in.LocalFundingAmount, in.PushSat) if !r.server.Started() { return fmt.Errorf("chain backend is still syncing, server " + "not active yet") } localFundingAmt := btcutil.Amount(in.LocalFundingAmount) remoteInitialBalance := btcutil.Amount(in.PushSat) minHtlc := lnwire.MilliSatoshi(in.MinHtlcMsat) remoteCsvDelay := uint16(in.RemoteCsvDelay) // Ensure that the initial balance of the remote party (if pushing // satoshis) does not exceed the amount the local party has requested // for funding. // // TODO(roasbeef): incorporate base fee? if remoteInitialBalance >= localFundingAmt { return fmt.Errorf("amount pushed to remote peer for initial " + "state must be below the local funding amount") } // Ensure that the user doesn't exceed the current soft-limit for // channel size. If the funding amount is above the soft-limit, then // we'll reject the request. if localFundingAmt > maxFundingAmount { return fmt.Errorf("funding amount is too large, the max "+ "channel size is: %v", maxFundingAmount) } // Restrict the size of the channel we'll actually open. At a later // level, we'll ensure that the output we create after accounting for // fees that a dust output isn't created. if localFundingAmt < minChanFundingSize { return fmt.Errorf("channel is too small, the minimum channel "+ "size is: %v SAT", int64(minChanFundingSize)) } // Then, we'll extract the minimum number of confirmations that each // output we use to fund the channel's funding transaction should // satisfy. minConfs, err := extractOpenChannelMinConfs(in) if err != nil { return err } var ( nodePubKey *btcec.PublicKey nodePubKeyBytes []byte ) // TODO(roasbeef): also return channel ID? // Ensure that the NodePubKey is set before attempting to use it if len(in.NodePubkey) == 0 { return fmt.Errorf("NodePubKey is not set") } // Parse the raw bytes of the node key into a pubkey object so we // can easily manipulate it. nodePubKey, err = btcec.ParsePubKey(in.NodePubkey, btcec.S256()) if err != nil { return err } // Making a channel to ourselves wouldn't be of any use, so we // explicitly disallow them. if nodePubKey.IsEqual(r.server.identityPriv.PubKey()) { return fmt.Errorf("cannot open channel to self") } nodePubKeyBytes = nodePubKey.SerializeCompressed() // Based on the passed fee related parameters, we'll determine an // appropriate fee rate for the funding transaction. satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight() feeRate, err := sweep.DetermineFeePerKw( r.server.cc.feeEstimator, sweep.FeePreference{ ConfTarget: uint32(in.TargetConf), FeeRate: satPerKw, }, ) if err != nil { return err } rpcsLog.Debugf("[openchannel]: using fee of %v sat/kw for funding tx", int64(feeRate)) // Instruct the server to trigger the necessary events to attempt to // open a new channel. A stream is returned in place, this stream will // be used to consume updates of the state of the pending channel. req := &openChanReq{ targetPubkey: nodePubKey, chainHash: *activeNetParams.GenesisHash, localFundingAmt: localFundingAmt, pushAmt: lnwire.NewMSatFromSatoshis(remoteInitialBalance), minHtlc: minHtlc, fundingFeePerKw: feeRate, private: in.Private, remoteCsvDelay: remoteCsvDelay, minConfs: minConfs, } updateChan, errChan := r.server.OpenChannel(req) var outpoint wire.OutPoint out: for { select { case err := <-errChan: rpcsLog.Errorf("unable to open channel to NodeKey(%x): %v", nodePubKeyBytes, err) return err case fundingUpdate := <-updateChan: rpcsLog.Tracef("[openchannel] sending update: %v", fundingUpdate) if err := updateStream.Send(fundingUpdate); err != nil { return err } // If a final channel open update is being sent, then // we can break out of our recv loop as we no longer // need to process any further updates. switch update := fundingUpdate.Update.(type) { case *lnrpc.OpenStatusUpdate_ChanOpen: chanPoint := update.ChanOpen.ChannelPoint txidHash, err := getChanPointFundingTxid(chanPoint) if err != nil { return err } h, err := chainhash.NewHash(txidHash) if err != nil { return err } outpoint = wire.OutPoint{ Hash: *h, Index: chanPoint.OutputIndex, } break out } case <-r.quit: return nil } } rpcsLog.Tracef("[openchannel] success NodeKey(%x), ChannelPoint(%v)", nodePubKeyBytes, outpoint) return nil } // OpenChannelSync is a synchronous version of the OpenChannel RPC call. This // call is meant to be consumed by clients to the REST proxy. As with all other // sync calls, all byte slices are instead to be populated as hex encoded // strings. func (r *rpcServer) OpenChannelSync(ctx context.Context, in *lnrpc.OpenChannelRequest) (*lnrpc.ChannelPoint, error) { rpcsLog.Tracef("[openchannel] request to NodeKey(%v) "+ "allocation(us=%v, them=%v)", in.NodePubkeyString, in.LocalFundingAmount, in.PushSat) // We don't allow new channels to be open while the server is still // syncing, as otherwise we may not be able to obtain the relevant // notifications. if !r.server.Started() { return nil, fmt.Errorf("chain backend is still syncing, server " + "not active yet") } // Creation of channels before the wallet syncs up is currently // disallowed. isSynced, _, err := r.server.cc.wallet.IsSynced() if err != nil { return nil, err } if !isSynced { return nil, errors.New("channels cannot be created before the " + "wallet is fully synced") } // Decode the provided target node's public key, parsing it into a pub // key object. For all sync call, byte slices are expected to be // encoded as hex strings. keyBytes, err := hex.DecodeString(in.NodePubkeyString) if err != nil { return nil, err } nodepubKey, err := btcec.ParsePubKey(keyBytes, btcec.S256()) if err != nil { return nil, err } localFundingAmt := btcutil.Amount(in.LocalFundingAmount) remoteInitialBalance := btcutil.Amount(in.PushSat) minHtlc := lnwire.MilliSatoshi(in.MinHtlcMsat) remoteCsvDelay := uint16(in.RemoteCsvDelay) // Ensure that the initial balance of the remote party (if pushing // satoshis) does not exceed the amount the local party has requested // for funding. if remoteInitialBalance >= localFundingAmt { return nil, fmt.Errorf("amount pushed to remote peer for " + "initial state must be below the local funding amount") } // Restrict the size of the channel we'll actually open. At a later // level, we'll ensure that the output we create after accounting for // fees that a dust output isn't created. if localFundingAmt < minChanFundingSize { return nil, fmt.Errorf("channel is too small, the minimum channel "+ "size is: %v SAT", int64(minChanFundingSize)) } // Then, we'll extract the minimum number of confirmations that each // output we use to fund the channel's funding transaction should // satisfy. minConfs, err := extractOpenChannelMinConfs(in) if err != nil { return nil, err } // Based on the passed fee related parameters, we'll determine an // appropriate fee rate for the funding transaction. satPerKw := lnwallet.SatPerKVByte(in.SatPerByte * 1000).FeePerKWeight() feeRate, err := sweep.DetermineFeePerKw( r.server.cc.feeEstimator, sweep.FeePreference{ ConfTarget: uint32(in.TargetConf), FeeRate: satPerKw, }, ) if err != nil { return nil, err } rpcsLog.Tracef("[openchannel] target sat/kw for funding tx: %v", int64(feeRate)) req := &openChanReq{ targetPubkey: nodepubKey, chainHash: *activeNetParams.GenesisHash, localFundingAmt: localFundingAmt, pushAmt: lnwire.NewMSatFromSatoshis(remoteInitialBalance), minHtlc: minHtlc, fundingFeePerKw: feeRate, private: in.Private, remoteCsvDelay: remoteCsvDelay, minConfs: minConfs, } updateChan, errChan := r.server.OpenChannel(req) select { // If an error occurs them immediately return the error to the client. case err := <-errChan: rpcsLog.Errorf("unable to open channel to NodeKey(%x): %v", nodepubKey, err) return nil, err // Otherwise, wait for the first channel update. The first update sent // is when the funding transaction is broadcast to the network. case fundingUpdate := <-updateChan: rpcsLog.Tracef("[openchannel] sending update: %v", fundingUpdate) // Parse out the txid of the pending funding transaction. The // sync client can use this to poll against the list of // PendingChannels. openUpdate := fundingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending) chanUpdate := openUpdate.ChanPending return &lnrpc.ChannelPoint{ FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{ FundingTxidBytes: chanUpdate.Txid, }, OutputIndex: chanUpdate.OutputIndex, }, nil case <-r.quit: return nil, nil } } // getChanPointFundingTxid returns the given channel point's funding txid in // raw bytes. func getChanPointFundingTxid(chanPoint *lnrpc.ChannelPoint) ([]byte, error) { var txid []byte // A channel point's funding txid can be get/set as a byte slice or a // string. In the case it is a string, decode it. switch chanPoint.GetFundingTxid().(type) { case *lnrpc.ChannelPoint_FundingTxidBytes: txid = chanPoint.GetFundingTxidBytes() case *lnrpc.ChannelPoint_FundingTxidStr: s := chanPoint.GetFundingTxidStr() h, err := chainhash.NewHashFromStr(s) if err != nil { return nil, err } txid = h[:] } return txid, nil } // CloseChannel attempts to close an active channel identified by its channel // point. The actions of this method can additionally be augmented to attempt // a force close after a timeout period in the case of an inactive peer. func (r *rpcServer) CloseChannel(in *lnrpc.CloseChannelRequest, updateStream lnrpc.Lightning_CloseChannelServer) error { // If the user didn't specify a channel point, then we'll reject this // request all together. if in.GetChannelPoint() == nil { return fmt.Errorf("must specify channel point in close channel") } force := in.Force index := in.ChannelPoint.OutputIndex txidHash, err := getChanPointFundingTxid(in.GetChannelPoint()) if err != nil { rpcsLog.Errorf("[closechannel] unable to get funding txid: %v", err) return err } txid, err := chainhash.NewHash(txidHash) if err != nil { rpcsLog.Errorf("[closechannel] invalid txid: %v", err) return err } chanPoint := wire.NewOutPoint(txid, index) rpcsLog.Tracef("[closechannel] request for ChannelPoint(%v), force=%v", chanPoint, force) var ( updateChan chan interface{} errChan chan error ) // TODO(roasbeef): if force and peer online then don't force? // First, we'll fetch the channel as is, as we'll need to examine it // regardless of if this is a force close or not. channel, err := r.fetchActiveChannel(*chanPoint) if err != nil { return err } // If a force closure was requested, then we'll handle all the details // around the creation and broadcast of the unilateral closure // transaction here rather than going to the switch as we don't require // interaction from the peer. if force { _, bestHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return err } // As we're force closing this channel, as a precaution, we'll // ensure that the switch doesn't continue to see this channel // as eligible for forwarding HTLC's. If the peer is online, // then we'll also purge all of its indexes. remotePub := &channel.StateSnapshot().RemoteIdentity if peer, err := r.server.FindPeer(remotePub); err == nil { // TODO(roasbeef): actually get the active channel // instead too? // * so only need to grab from database peer.WipeChannel(channel.ChannelPoint()) } else { chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint()) r.server.htlcSwitch.RemoveLink(chanID) } // With the necessary indexes cleaned up, we'll now force close // the channel. chainArbitrator := r.server.chainArb closingTx, err := chainArbitrator.ForceCloseContract( *chanPoint, ) if err != nil { rpcsLog.Errorf("unable to force close transaction: %v", err) return err } closingTxid := closingTx.TxHash() // With the transaction broadcast, we send our first update to // the client. updateChan = make(chan interface{}, 2) updateChan <- &pendingUpdate{ Txid: closingTxid[:], } errChan = make(chan error, 1) notifier := r.server.cc.chainNotifier go waitForChanToClose(uint32(bestHeight), notifier, errChan, chanPoint, &closingTxid, closingTx.TxOut[0].PkScript, func() { // Respond to the local subsystem which // requested the channel closure. updateChan <- &channelCloseUpdate{ ClosingTxid: closingTxid[:], Success: true, } }) } else { // If the link is not known by the switch, we cannot gracefully close // the channel. channelID := lnwire.NewChanIDFromOutPoint(chanPoint) if _, err := r.server.htlcSwitch.GetLink(channelID); err != nil { rpcsLog.Debugf("Trying to non-force close offline channel with "+ "chan_point=%v", chanPoint) return fmt.Errorf("unable to gracefully close channel while peer "+ "is offline (try force closing it instead): %v", err) } // Based on the passed fee related parameters, we'll determine // an appropriate fee rate for the cooperative closure // transaction. satPerKw := lnwallet.SatPerKVByte( in.SatPerByte * 1000, ).FeePerKWeight() feeRate, err := sweep.DetermineFeePerKw( r.server.cc.feeEstimator, sweep.FeePreference{ ConfTarget: uint32(in.TargetConf), FeeRate: satPerKw, }, ) if err != nil { return err } rpcsLog.Debugf("Target sat/kw for closing transaction: %v", int64(feeRate)) // Before we attempt the cooperative channel closure, we'll // examine the channel to ensure that it doesn't have a // lingering HTLC. if len(channel.ActiveHtlcs()) != 0 { return fmt.Errorf("cannot co-op close channel " + "with active htlcs") } // Otherwise, the caller has requested a regular interactive // cooperative channel closure. So we'll forward the request to // the htlc switch which will handle the negotiation and // broadcast details. updateChan, errChan = r.server.htlcSwitch.CloseLink( chanPoint, htlcswitch.CloseRegular, feeRate, ) } out: for { select { case err := <-errChan: rpcsLog.Errorf("[closechannel] unable to close "+ "ChannelPoint(%v): %v", chanPoint, err) return err case closingUpdate := <-updateChan: rpcClosingUpdate, err := createRPCCloseUpdate( closingUpdate, ) if err != nil { return err } rpcsLog.Tracef("[closechannel] sending update: %v", rpcClosingUpdate) if err := updateStream.Send(rpcClosingUpdate); err != nil { return err } // If a final channel closing updates is being sent, // then we can break out of our dispatch loop as we no // longer need to process any further updates. switch closeUpdate := closingUpdate.(type) { case *channelCloseUpdate: h, _ := chainhash.NewHash(closeUpdate.ClosingTxid) rpcsLog.Infof("[closechannel] close completed: "+ "txid(%v)", h) break out } case <-r.quit: return nil } } return nil } func createRPCCloseUpdate(update interface{}) ( *lnrpc.CloseStatusUpdate, error) { switch u := update.(type) { case *channelCloseUpdate: return &lnrpc.CloseStatusUpdate{ Update: &lnrpc.CloseStatusUpdate_ChanClose{ ChanClose: &lnrpc.ChannelCloseUpdate{ ClosingTxid: u.ClosingTxid, }, }, }, nil case *pendingUpdate: return &lnrpc.CloseStatusUpdate{ Update: &lnrpc.CloseStatusUpdate_ClosePending{ ClosePending: &lnrpc.PendingUpdate{ Txid: u.Txid, OutputIndex: u.OutputIndex, }, }, }, nil } return nil, errors.New("unknown close status update") } // AbandonChannel removes all channel state from the database except for a // close summary. This method can be used to get rid of permanently unusable // channels due to bugs fixed in newer versions of lnd. func (r *rpcServer) AbandonChannel(ctx context.Context, in *lnrpc.AbandonChannelRequest) (*lnrpc.AbandonChannelResponse, error) { // If this isn't the dev build, then we won't allow the RPC to be // executed, as it's an advanced feature and won't be activated in // regular production/release builds. if !build.IsDevBuild() { return nil, fmt.Errorf("AbandonChannel RPC call only " + "available in dev builds") } // We'll parse out the arguments to we can obtain the chanPoint of the // target channel. txidHash, err := getChanPointFundingTxid(in.GetChannelPoint()) if err != nil { return nil, err } txid, err := chainhash.NewHash(txidHash) if err != nil { return nil, err } index := in.ChannelPoint.OutputIndex chanPoint := wire.NewOutPoint(txid, index) // With the chanPoint constructed, we'll attempt to find the target // channel in the database. If we can't find the channel, then we'll // return the error back to the caller. dbChan, err := r.fetchOpenDbChannel(*chanPoint) if err != nil { return nil, err } // Now that we've found the channel, we'll populate a close summary for // the channel, so we can store as much information for this abounded // channel as possible. We also ensure that we set Pending to false, to // indicate that this channel has been "fully" closed. _, bestHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return nil, err } summary := &channeldb.ChannelCloseSummary{ CloseType: channeldb.Abandoned, ChanPoint: *chanPoint, ChainHash: dbChan.ChainHash, CloseHeight: uint32(bestHeight), RemotePub: dbChan.IdentityPub, Capacity: dbChan.Capacity, SettledBalance: dbChan.LocalCommitment.LocalBalance.ToSatoshis(), ShortChanID: dbChan.ShortChanID(), RemoteCurrentRevocation: dbChan.RemoteCurrentRevocation, RemoteNextRevocation: dbChan.RemoteNextRevocation, LocalChanConfig: dbChan.LocalChanCfg, } // Finally, we'll close the channel in the DB, and return back to the // caller. err = dbChan.CloseChannel(summary) if err != nil { return nil, err } return &lnrpc.AbandonChannelResponse{}, nil } // fetchOpenDbChannel attempts to locate a channel identified by its channel // point from the database's set of all currently opened channels. func (r *rpcServer) fetchOpenDbChannel(chanPoint wire.OutPoint) ( *channeldb.OpenChannel, error) { dbChannels, err := r.server.chanDB.FetchAllChannels() if err != nil { return nil, err } // With the channels fetched, attempt to locate the target channel // according to its channel point. var dbChan *channeldb.OpenChannel for _, dbChannel := range dbChannels { if dbChannel.FundingOutpoint == chanPoint { dbChan = dbChannel break } } // If the channel cannot be located, then we exit with an error to the // caller. if dbChan == nil { return nil, fmt.Errorf("unable to find channel") } return dbChan, nil } // fetchActiveChannel attempts to locate a channel identified by its channel // point from the database's set of all currently opened channels and // return it as a fully populated state machine func (r *rpcServer) fetchActiveChannel(chanPoint wire.OutPoint) ( *lnwallet.LightningChannel, error) { dbChan, err := r.fetchOpenDbChannel(chanPoint) if err != nil { return nil, err } // If the channel is successfully fetched from the database, // we create a fully populated channel state machine which // uses the db channel as backing storage. return lnwallet.NewLightningChannel( r.server.cc.wallet.Cfg.Signer, nil, dbChan, nil, ) } // GetInfo returns general information concerning the lightning node including // its identity pubkey, alias, the chains it is connected to, and information // concerning the number of open+pending channels. func (r *rpcServer) GetInfo(ctx context.Context, in *lnrpc.GetInfoRequest) (*lnrpc.GetInfoResponse, error) { var activeChannels uint32 serverPeers := r.server.Peers() for _, serverPeer := range serverPeers { activeChannels += uint32(len(serverPeer.ChannelSnapshots())) } openChannels, err := r.server.chanDB.FetchAllOpenChannels() if err != nil { return nil, err } inactiveChannels := uint32(len(openChannels)) - activeChannels pendingChannels, err := r.server.chanDB.FetchPendingChannels() if err != nil { return nil, fmt.Errorf("unable to get retrieve pending "+ "channels: %v", err) } nPendingChannels := uint32(len(pendingChannels)) idPub := r.server.identityPriv.PubKey().SerializeCompressed() encodedIDPub := hex.EncodeToString(idPub) bestHash, bestHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return nil, fmt.Errorf("unable to get best block info: %v", err) } isSynced, bestHeaderTimestamp, err := r.server.cc.wallet.IsSynced() if err != nil { return nil, fmt.Errorf("unable to sync PoV of the wallet "+ "with current best block in the main chain: %v", err) } network := normalizeNetwork(activeNetParams.Name) activeChains := make([]*lnrpc.Chain, registeredChains.NumActiveChains()) for i, chain := range registeredChains.ActiveChains() { activeChains[i] = &lnrpc.Chain{ Chain: chain.String(), Network: network, } } // Check if external IP addresses were provided to lnd and use them // to set the URIs. nodeAnn, err := r.server.genNodeAnnouncement(false) if err != nil { return nil, fmt.Errorf("unable to retrieve current fully signed "+ "node announcement: %v", err) } addrs := nodeAnn.Addresses uris := make([]string, len(addrs)) for i, addr := range addrs { uris[i] = fmt.Sprintf("%s@%s", encodedIDPub, addr.String()) } // TODO(roasbeef): add synced height n stuff return &lnrpc.GetInfoResponse{ IdentityPubkey: encodedIDPub, NumPendingChannels: nPendingChannels, NumActiveChannels: activeChannels, NumInactiveChannels: inactiveChannels, NumPeers: uint32(len(serverPeers)), BlockHeight: uint32(bestHeight), BlockHash: bestHash.String(), SyncedToChain: isSynced, Testnet: isTestnet(&activeNetParams), Chains: activeChains, Uris: uris, Alias: nodeAnn.Alias.String(), BestHeaderTimestamp: int64(bestHeaderTimestamp), Version: build.Version(), }, nil } // ListPeers returns a verbose listing of all currently active peers. func (r *rpcServer) ListPeers(ctx context.Context, in *lnrpc.ListPeersRequest) (*lnrpc.ListPeersResponse, error) { rpcsLog.Tracef("[listpeers] request") serverPeers := r.server.Peers() resp := &lnrpc.ListPeersResponse{ Peers: make([]*lnrpc.Peer, 0, len(serverPeers)), } for _, serverPeer := range serverPeers { var ( satSent int64 satRecv int64 ) // In order to display the total number of satoshis of outbound // (sent) and inbound (recv'd) satoshis that have been // transported through this peer, we'll sum up the sent/recv'd // values for each of the active channels we have with the // peer. chans := serverPeer.ChannelSnapshots() for _, c := range chans { satSent += int64(c.TotalMSatSent.ToSatoshis()) satRecv += int64(c.TotalMSatReceived.ToSatoshis()) } nodePub := serverPeer.addr.IdentityKey.SerializeCompressed() peer := &lnrpc.Peer{ PubKey: hex.EncodeToString(nodePub), Address: serverPeer.conn.RemoteAddr().String(), Inbound: serverPeer.inbound, BytesRecv: atomic.LoadUint64(&serverPeer.bytesReceived), BytesSent: atomic.LoadUint64(&serverPeer.bytesSent), SatSent: satSent, SatRecv: satRecv, PingTime: serverPeer.PingTime(), } resp.Peers = append(resp.Peers, peer) } rpcsLog.Debugf("[listpeers] yielded %v peers", serverPeers) return resp, nil } // WalletBalance returns total unspent outputs(confirmed and unconfirmed), all // confirmed unspent outputs and all unconfirmed unspent outputs under control // by the wallet. This method can be modified by having the request specify // only witness outputs should be factored into the final output sum. // TODO(roasbeef): add async hooks into wallet balance changes func (r *rpcServer) WalletBalance(ctx context.Context, in *lnrpc.WalletBalanceRequest) (*lnrpc.WalletBalanceResponse, error) { // Get total balance, from txs that have >= 0 confirmations. totalBal, err := r.server.cc.wallet.ConfirmedBalance(0) if err != nil { return nil, err } // Get confirmed balance, from txs that have >= 1 confirmations. confirmedBal, err := r.server.cc.wallet.ConfirmedBalance(1) if err != nil { return nil, err } // Get unconfirmed balance, from txs with 0 confirmations. unconfirmedBal := totalBal - confirmedBal rpcsLog.Debugf("[walletbalance] Total balance=%v", totalBal) return &lnrpc.WalletBalanceResponse{ TotalBalance: int64(totalBal), ConfirmedBalance: int64(confirmedBal), UnconfirmedBalance: int64(unconfirmedBal), }, nil } // ChannelBalance returns the total available channel flow across all open // channels in satoshis. func (r *rpcServer) ChannelBalance(ctx context.Context, in *lnrpc.ChannelBalanceRequest) (*lnrpc.ChannelBalanceResponse, error) { openChannels, err := r.server.chanDB.FetchAllOpenChannels() if err != nil { return nil, err } var balance btcutil.Amount for _, channel := range openChannels { balance += channel.LocalCommitment.LocalBalance.ToSatoshis() } pendingChannels, err := r.server.chanDB.FetchPendingChannels() if err != nil { return nil, err } var pendingOpenBalance btcutil.Amount for _, channel := range pendingChannels { pendingOpenBalance += channel.LocalCommitment.LocalBalance.ToSatoshis() } return &lnrpc.ChannelBalanceResponse{ Balance: int64(balance), PendingOpenBalance: int64(pendingOpenBalance), }, nil } // PendingChannels returns a list of all the channels that are currently // considered "pending". A channel is pending if it has finished the funding // workflow and is waiting for confirmations for the funding txn, or is in the // process of closure, either initiated cooperatively or non-cooperatively. func (r *rpcServer) PendingChannels(ctx context.Context, in *lnrpc.PendingChannelsRequest) (*lnrpc.PendingChannelsResponse, error) { rpcsLog.Debugf("[pendingchannels]") resp := &lnrpc.PendingChannelsResponse{} // First, we'll populate the response with all the channels that are // soon to be opened. We can easily fetch this data from the database // and map the db struct to the proto response. pendingOpenChannels, err := r.server.chanDB.FetchPendingChannels() if err != nil { rpcsLog.Errorf("unable to fetch pending channels: %v", err) return nil, err } resp.PendingOpenChannels = make([]*lnrpc.PendingChannelsResponse_PendingOpenChannel, len(pendingOpenChannels)) for i, pendingChan := range pendingOpenChannels { pub := pendingChan.IdentityPub.SerializeCompressed() // As this is required for display purposes, we'll calculate // the weight of the commitment transaction. We also add on the // estimated weight of the witness to calculate the weight of // the transaction if it were to be immediately unilaterally // broadcast. // TODO(roasbeef): query for funding tx from wallet, display // that also? localCommitment := pendingChan.LocalCommitment utx := btcutil.NewTx(localCommitment.CommitTx) commitBaseWeight := blockchain.GetTransactionWeight(utx) commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight resp.PendingOpenChannels[i] = &lnrpc.PendingChannelsResponse_PendingOpenChannel{ Channel: &lnrpc.PendingChannelsResponse_PendingChannel{ RemoteNodePub: hex.EncodeToString(pub), ChannelPoint: pendingChan.FundingOutpoint.String(), Capacity: int64(pendingChan.Capacity), LocalBalance: int64(localCommitment.LocalBalance.ToSatoshis()), RemoteBalance: int64(localCommitment.RemoteBalance.ToSatoshis()), }, CommitWeight: commitWeight, CommitFee: int64(localCommitment.CommitFee), FeePerKw: int64(localCommitment.FeePerKw), // TODO(roasbeef): need to track confirmation height } } _, currentHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return nil, err } // Next, we'll examine the channels that are soon to be closed so we // can populate these fields within the response. pendingCloseChannels, err := r.server.chanDB.FetchClosedChannels(true) if err != nil { rpcsLog.Errorf("unable to fetch closed channels: %v", err) return nil, err } for _, pendingClose := range pendingCloseChannels { // First construct the channel struct itself, this will be // needed regardless of how this channel was closed. pub := pendingClose.RemotePub.SerializeCompressed() chanPoint := pendingClose.ChanPoint channel := &lnrpc.PendingChannelsResponse_PendingChannel{ RemoteNodePub: hex.EncodeToString(pub), ChannelPoint: chanPoint.String(), Capacity: int64(pendingClose.Capacity), LocalBalance: int64(pendingClose.SettledBalance), } closeTXID := pendingClose.ClosingTXID.String() switch pendingClose.CloseType { // If the channel was closed cooperatively, then we'll only // need to tack on the closing txid. // TODO(halseth): remove. After recent changes, a coop closed // channel should never be in the "pending close" state. // Keeping for now to let someone that upgraded in the middle // of a close let their closing tx confirm. case channeldb.CooperativeClose: resp.PendingClosingChannels = append( resp.PendingClosingChannels, &lnrpc.PendingChannelsResponse_ClosedChannel{ Channel: channel, ClosingTxid: closeTXID, }, ) resp.TotalLimboBalance += channel.LocalBalance // If the channel was force closed, then we'll need to query // the utxoNursery for additional information. // TODO(halseth): distinguish remote and local case? case channeldb.LocalForceClose, channeldb.RemoteForceClose: forceClose := &lnrpc.PendingChannelsResponse_ForceClosedChannel{ Channel: channel, ClosingTxid: closeTXID, } // Query for the maturity state for this force closed // channel. If we didn't have any time-locked outputs, // then the nursery may not know of the contract. nurseryInfo, err := r.server.utxoNursery.NurseryReport(&chanPoint) if err != nil && err != ErrContractNotFound { return nil, fmt.Errorf("unable to obtain "+ "nursery report for ChannelPoint(%v): %v", chanPoint, err) } // If the nursery knows of this channel, then we can // populate information detailing exactly how much // funds are time locked and also the height in which // we can ultimately sweep the funds into the wallet. if nurseryInfo != nil { forceClose.LimboBalance = int64(nurseryInfo.limboBalance) forceClose.RecoveredBalance = int64(nurseryInfo.recoveredBalance) forceClose.MaturityHeight = nurseryInfo.maturityHeight // If the transaction has been confirmed, then // we can compute how many blocks it has left. if forceClose.MaturityHeight != 0 { forceClose.BlocksTilMaturity = int32(forceClose.MaturityHeight) - currentHeight } for _, htlcReport := range nurseryInfo.htlcs { // TODO(conner) set incoming flag // appropriately after handling incoming // incubation htlc := &lnrpc.PendingHTLC{ Incoming: false, Amount: int64(htlcReport.amount), Outpoint: htlcReport.outpoint.String(), MaturityHeight: htlcReport.maturityHeight, Stage: htlcReport.stage, } if htlc.MaturityHeight != 0 { htlc.BlocksTilMaturity = int32(htlc.MaturityHeight) - currentHeight } forceClose.PendingHtlcs = append(forceClose.PendingHtlcs, htlc) } resp.TotalLimboBalance += int64(nurseryInfo.limboBalance) } resp.PendingForceClosingChannels = append( resp.PendingForceClosingChannels, forceClose, ) } } // We'll also fetch all channels that are open, but have had their // commitment broadcasted, meaning they are waiting for the closing // transaction to confirm. waitingCloseChans, err := r.server.chanDB.FetchWaitingCloseChannels() if err != nil { rpcsLog.Errorf("unable to fetch channels waiting close: %v", err) return nil, err } for _, waitingClose := range waitingCloseChans { pub := waitingClose.IdentityPub.SerializeCompressed() chanPoint := waitingClose.FundingOutpoint channel := &lnrpc.PendingChannelsResponse_PendingChannel{ RemoteNodePub: hex.EncodeToString(pub), ChannelPoint: chanPoint.String(), Capacity: int64(waitingClose.Capacity), LocalBalance: int64(waitingClose.LocalCommitment.LocalBalance.ToSatoshis()), } // A close tx has been broadcasted, all our balance will be in // limbo until it confirms. resp.WaitingCloseChannels = append( resp.WaitingCloseChannels, &lnrpc.PendingChannelsResponse_WaitingCloseChannel{ Channel: channel, LimboBalance: channel.LocalBalance, }, ) resp.TotalLimboBalance += channel.LocalBalance } return resp, nil } // ClosedChannels returns a list of all the channels have been closed. // This does not include channels that are still in the process of closing. func (r *rpcServer) ClosedChannels(ctx context.Context, in *lnrpc.ClosedChannelsRequest) (*lnrpc.ClosedChannelsResponse, error) { // Show all channels when no filter flags are set. filterResults := in.Cooperative || in.LocalForce || in.RemoteForce || in.Breach || in.FundingCanceled || in.Abandoned resp := &lnrpc.ClosedChannelsResponse{} dbChannels, err := r.server.chanDB.FetchClosedChannels(false) if err != nil { return nil, err } // In order to make the response easier to parse for clients, we'll // sort the set of closed channels by their closing height before // serializing the proto response. sort.Slice(dbChannels, func(i, j int) bool { return dbChannels[i].CloseHeight < dbChannels[j].CloseHeight }) for _, dbChannel := range dbChannels { if dbChannel.IsPending { continue } nodePub := dbChannel.RemotePub nodeID := hex.EncodeToString(nodePub.SerializeCompressed()) var closeType lnrpc.ChannelCloseSummary_ClosureType switch dbChannel.CloseType { case channeldb.CooperativeClose: if filterResults && !in.Cooperative { continue } closeType = lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE case channeldb.LocalForceClose: if filterResults && !in.LocalForce { continue } closeType = lnrpc.ChannelCloseSummary_LOCAL_FORCE_CLOSE case channeldb.RemoteForceClose: if filterResults && !in.RemoteForce { continue } closeType = lnrpc.ChannelCloseSummary_REMOTE_FORCE_CLOSE case channeldb.BreachClose: if filterResults && !in.Breach { continue } closeType = lnrpc.ChannelCloseSummary_BREACH_CLOSE case channeldb.FundingCanceled: if filterResults && !in.FundingCanceled { continue } closeType = lnrpc.ChannelCloseSummary_FUNDING_CANCELED case channeldb.Abandoned: if filterResults && !in.Abandoned { continue } closeType = lnrpc.ChannelCloseSummary_ABANDONED } channel := &lnrpc.ChannelCloseSummary{ Capacity: int64(dbChannel.Capacity), RemotePubkey: nodeID, CloseHeight: dbChannel.CloseHeight, CloseType: closeType, ChannelPoint: dbChannel.ChanPoint.String(), ChanId: dbChannel.ShortChanID.ToUint64(), SettledBalance: int64(dbChannel.SettledBalance), TimeLockedBalance: int64(dbChannel.TimeLockedBalance), ChainHash: dbChannel.ChainHash.String(), ClosingTxHash: dbChannel.ClosingTXID.String(), } resp.Channels = append(resp.Channels, channel) } return resp, nil } // ListChannels returns a description of all the open channels that this node // is a participant in. func (r *rpcServer) ListChannels(ctx context.Context, in *lnrpc.ListChannelsRequest) (*lnrpc.ListChannelsResponse, error) { if in.ActiveOnly && in.InactiveOnly { return nil, fmt.Errorf("either `active_only` or " + "`inactive_only` can be set, but not both") } if in.PublicOnly && in.PrivateOnly { return nil, fmt.Errorf("either `public_only` or " + "`private_only` can be set, but not both") } resp := &lnrpc.ListChannelsResponse{} graph := r.server.chanDB.ChannelGraph() dbChannels, err := r.server.chanDB.FetchAllOpenChannels() if err != nil { return nil, err } rpcsLog.Infof("[listchannels] fetched %v channels from DB", len(dbChannels)) for _, dbChannel := range dbChannels { nodePub := dbChannel.IdentityPub nodeID := hex.EncodeToString(nodePub.SerializeCompressed()) chanPoint := dbChannel.FundingOutpoint // With the channel point known, retrieve the network channel // ID from the database. var chanID uint64 chanID, _ = graph.ChannelID(&chanPoint) var peerOnline bool if _, err := r.server.FindPeer(nodePub); err == nil { peerOnline = true } channelID := lnwire.NewChanIDFromOutPoint(&chanPoint) var linkActive bool if link, err := r.server.htlcSwitch.GetLink(channelID); err == nil { // A channel is only considered active if it is known // by the switch *and* able to forward // incoming/outgoing payments. linkActive = link.EligibleToForward() } // Next, we'll determine whether we should add this channel to // our list depending on the type of channels requested to us. isActive := peerOnline && linkActive isPublic := dbChannel.ChannelFlags&lnwire.FFAnnounceChannel != 0 // We'll only skip returning this channel if we were requested // for a specific kind and this channel doesn't satisfy it. switch { case in.ActiveOnly && !isActive: continue case in.InactiveOnly && isActive: continue case in.PublicOnly && !isPublic: continue case in.PrivateOnly && isPublic: continue } // As this is required for display purposes, we'll calculate // the weight of the commitment transaction. We also add on the // estimated weight of the witness to calculate the weight of // the transaction if it were to be immediately unilaterally // broadcast. localCommit := dbChannel.LocalCommitment utx := btcutil.NewTx(localCommit.CommitTx) commitBaseWeight := blockchain.GetTransactionWeight(utx) commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight localBalance := localCommit.LocalBalance remoteBalance := localCommit.RemoteBalance // As an artifact of our usage of mSAT internally, either party // may end up in a state where they're holding a fractional // amount of satoshis which can't be expressed within the // actual commitment output. Since we round down when going // from mSAT -> SAT, we may at any point be adding an // additional SAT to miners fees. As a result, we display a // commitment fee that accounts for this externally. var sumOutputs btcutil.Amount for _, txOut := range localCommit.CommitTx.TxOut { sumOutputs += btcutil.Amount(txOut.Value) } externalCommitFee := dbChannel.Capacity - sumOutputs channel := &lnrpc.Channel{ Active: isActive, Private: !isPublic, RemotePubkey: nodeID, ChannelPoint: chanPoint.String(), ChanId: chanID, Capacity: int64(dbChannel.Capacity), LocalBalance: int64(localBalance.ToSatoshis()), RemoteBalance: int64(remoteBalance.ToSatoshis()), CommitFee: int64(externalCommitFee), CommitWeight: commitWeight, FeePerKw: int64(localCommit.FeePerKw), TotalSatoshisSent: int64(dbChannel.TotalMSatSent.ToSatoshis()), TotalSatoshisReceived: int64(dbChannel.TotalMSatReceived.ToSatoshis()), NumUpdates: localCommit.CommitHeight, PendingHtlcs: make([]*lnrpc.HTLC, len(localCommit.Htlcs)), CsvDelay: uint32(dbChannel.LocalChanCfg.CsvDelay), Initiator: dbChannel.IsInitiator, } for i, htlc := range localCommit.Htlcs { var rHash [32]byte copy(rHash[:], htlc.RHash[:]) channel.PendingHtlcs[i] = &lnrpc.HTLC{ Incoming: htlc.Incoming, Amount: int64(htlc.Amt.ToSatoshis()), HashLock: rHash[:], ExpirationHeight: htlc.RefundTimeout, } // Add the Pending Htlc Amount to UnsettledBalance field. channel.UnsettledBalance += channel.PendingHtlcs[i].Amount } resp.Channels = append(resp.Channels, channel) } return resp, nil } // savePayment saves a successfully completed payment to the database for // historical record keeping. func (r *rpcServer) savePayment(route *routing.Route, amount lnwire.MilliSatoshi, preImage []byte) error { paymentPath := make([][33]byte, len(route.Hops)) for i, hop := range route.Hops { hopPub := hop.PubKeyBytes copy(paymentPath[i][:], hopPub[:]) } payment := &channeldb.OutgoingPayment{ Invoice: channeldb.Invoice{ Terms: channeldb.ContractTerm{ Value: amount, }, CreationDate: time.Now(), }, Path: paymentPath, Fee: route.TotalFees, TimeLockLength: route.TotalTimeLock, } copy(payment.PaymentPreimage[:], preImage) return r.server.chanDB.AddPayment(payment) } // validatePayReqExpiry checks if the passed payment request has expired. In // the case it has expired, an error will be returned. func validatePayReqExpiry(payReq *zpay32.Invoice) error { expiry := payReq.Expiry() validUntil := payReq.Timestamp.Add(expiry) if time.Now().After(validUntil) { return fmt.Errorf("invoice expired. Valid until %v", validUntil) } return nil } // paymentStream enables different types of payment streams, such as: // lnrpc.Lightning_SendPaymentServer and lnrpc.Lightning_SendToRouteServer to // execute sendPayment. We use this struct as a sort of bridge to enable code // re-use between SendPayment and SendToRoute. type paymentStream struct { recv func() (*rpcPaymentRequest, error) send func(*lnrpc.SendResponse) error } // rpcPaymentRequest wraps lnrpc.SendRequest so that routes from // lnrpc.SendToRouteRequest can be passed to sendPayment. type rpcPaymentRequest struct { *lnrpc.SendRequest routes []*routing.Route } // calculateFeeLimit returns the fee limit in millisatoshis. If a percentage // based fee limit has been requested, we'll factor in the ratio provided with // the amount of the payment. func calculateFeeLimit(feeLimit *lnrpc.FeeLimit, amount lnwire.MilliSatoshi) lnwire.MilliSatoshi { switch feeLimit.GetLimit().(type) { case *lnrpc.FeeLimit_Fixed: return lnwire.NewMSatFromSatoshis( btcutil.Amount(feeLimit.GetFixed()), ) case *lnrpc.FeeLimit_Percent: return amount * lnwire.MilliSatoshi(feeLimit.GetPercent()) / 100 default: // If a fee limit was not specified, we'll use the payment's // amount as an upper bound in order to avoid payment attempts // from incurring fees higher than the payment amount itself. return amount } } // SendPayment dispatches a bi-directional streaming RPC for sending payments // through the Lightning Network. A single RPC invocation creates a persistent // bi-directional stream allowing clients to rapidly send payments through the // Lightning Network with a single persistent connection. func (r *rpcServer) SendPayment(stream lnrpc.Lightning_SendPaymentServer) error { var lock sync.Mutex return r.sendPayment(&paymentStream{ recv: func() (*rpcPaymentRequest, error) { req, err := stream.Recv() if err != nil { return nil, err } return &rpcPaymentRequest{ SendRequest: req, }, nil }, send: func(r *lnrpc.SendResponse) error { // Calling stream.Send concurrently is not safe. lock.Lock() defer lock.Unlock() return stream.Send(r) }, }) } // SendToRoute dispatches a bi-directional streaming RPC for sending payments // through the Lightning Network via predefined routes passed in. A single RPC // invocation creates a persistent bi-directional stream allowing clients to // rapidly send payments through the Lightning Network with a single persistent // connection. func (r *rpcServer) SendToRoute(stream lnrpc.Lightning_SendToRouteServer) error { var lock sync.Mutex return r.sendPayment(&paymentStream{ recv: func() (*rpcPaymentRequest, error) { req, err := stream.Recv() if err != nil { return nil, err } graph := r.server.chanDB.ChannelGraph() if len(req.Routes) == 0 { return nil, fmt.Errorf("unable to send, no routes provided") } routes := make([]*routing.Route, len(req.Routes)) for i, rpcroute := range req.Routes { route, err := r.unmarshallRoute(rpcroute, graph) if err != nil { return nil, err } routes[i] = route } return &rpcPaymentRequest{ SendRequest: &lnrpc.SendRequest{ PaymentHash: req.PaymentHash, }, routes: routes, }, nil }, send: func(r *lnrpc.SendResponse) error { // Calling stream.Send concurrently is not safe. lock.Lock() defer lock.Unlock() return stream.Send(r) }, }) } // rpcPaymentIntent is a small wrapper struct around the of values we can // receive from a client over RPC if they wish to send a payment. We'll either // extract these fields from a payment request (which may include routing // hints), or we'll get a fully populated route from the user that we'll pass // directly to the channel router for dispatching. type rpcPaymentIntent struct { msat lnwire.MilliSatoshi feeLimit lnwire.MilliSatoshi dest *btcec.PublicKey rHash [32]byte cltvDelta uint16 routeHints [][]routing.HopHint routes []*routing.Route } // extractPaymentIntent attempts to parse the complete details required to // dispatch a client from the information presented by an RPC client. There are // three ways a client can specify their payment details: a payment request, // via manual details, or via a complete route. func extractPaymentIntent(rpcPayReq *rpcPaymentRequest) (rpcPaymentIntent, error) { var err error payIntent := rpcPaymentIntent{} // If a route was specified, then we can use that directly. if len(rpcPayReq.routes) != 0 { // If the user is using the REST interface, then they'll be // passing the payment hash as a hex encoded string. if rpcPayReq.PaymentHashString != "" { paymentHash, err := hex.DecodeString( rpcPayReq.PaymentHashString, ) if err != nil { return payIntent, err } copy(payIntent.rHash[:], paymentHash) } else { copy(payIntent.rHash[:], rpcPayReq.PaymentHash) } payIntent.routes = rpcPayReq.routes return payIntent, nil } // If the payment request field isn't blank, then the details of the // invoice are encoded entirely within the encoded payReq. So we'll // attempt to decode it, populating the payment accordingly. if rpcPayReq.PaymentRequest != "" { payReq, err := zpay32.Decode( rpcPayReq.PaymentRequest, activeNetParams.Params, ) if err != nil { return payIntent, err } // Next, we'll ensure that this payreq hasn't already expired. err = validatePayReqExpiry(payReq) if err != nil { return payIntent, err } // If the amount was not included in the invoice, then we let // the payee specify the amount of satoshis they wish to send. // We override the amount to pay with the amount provided from // the payment request. if payReq.MilliSat == nil { if rpcPayReq.Amt == 0 { return payIntent, errors.New("amount must be " + "specified when paying a zero amount " + "invoice") } payIntent.msat = lnwire.NewMSatFromSatoshis( btcutil.Amount(rpcPayReq.Amt), ) } else { payIntent.msat = *payReq.MilliSat } // Calculate the fee limit that should be used for this payment. payIntent.feeLimit = calculateFeeLimit( rpcPayReq.FeeLimit, payIntent.msat, ) copy(payIntent.rHash[:], payReq.PaymentHash[:]) payIntent.dest = payReq.Destination payIntent.cltvDelta = uint16(payReq.MinFinalCLTVExpiry()) payIntent.routeHints = payReq.RouteHints return payIntent, nil } // At this point, a destination MUST be specified, so we'll convert it // into the proper representation now. The destination will either be // encoded as raw bytes, or via a hex string. if len(rpcPayReq.Dest) != 0 { payIntent.dest, err = btcec.ParsePubKey( rpcPayReq.Dest, btcec.S256(), ) if err != nil { return payIntent, err } } else { pubBytes, err := hex.DecodeString(rpcPayReq.DestString) if err != nil { return payIntent, err } payIntent.dest, err = btcec.ParsePubKey(pubBytes, btcec.S256()) if err != nil { return payIntent, err } } // Otherwise, If the payment request field was not specified // (and a custom route wasn't specified), construct the payment // from the other fields. payIntent.msat = lnwire.NewMSatFromSatoshis( btcutil.Amount(rpcPayReq.Amt), ) // Calculate the fee limit that should be used for this payment. payIntent.feeLimit = calculateFeeLimit( rpcPayReq.FeeLimit, payIntent.msat, ) payIntent.cltvDelta = uint16(rpcPayReq.FinalCltvDelta) // If the user is manually specifying payment details, then the payment // hash may be encoded as a string. switch { case rpcPayReq.PaymentHashString != "": paymentHash, err := hex.DecodeString( rpcPayReq.PaymentHashString, ) if err != nil { return payIntent, err } copy(payIntent.rHash[:], paymentHash) // If we're in debug HTLC mode, then all outgoing HTLCs will pay to the // same debug rHash. Otherwise, we pay to the rHash specified within // the RPC request. case cfg.DebugHTLC && bytes.Equal(payIntent.rHash[:], zeroHash[:]): copy(payIntent.rHash[:], invoices.DebugHash[:]) default: copy(payIntent.rHash[:], rpcPayReq.PaymentHash) } // Currently, within the bootstrap phase of the network, we limit the // largest payment size allotted to (2^32) - 1 mSAT or 4.29 million // satoshis. if payIntent.msat > maxPaymentMSat { // In this case, we'll send an error to the caller, but // continue our loop for the next payment. return payIntent, fmt.Errorf("payment of %v is too large, "+ "max payment allowed is %v", payIntent.msat, maxPaymentMSat) } return payIntent, nil } type paymentIntentResponse struct { Route *routing.Route Preimage [32]byte Err error } // dispatchPaymentIntent attempts to fully dispatch an RPC payment intent. // We'll either pass the payment as a whole to the channel router, or give it a // pre-built route. The first error this method returns denotes if we were // unable to save the payment. The second error returned denotes if the payment // didn't succeed. func (r *rpcServer) dispatchPaymentIntent( payIntent *rpcPaymentIntent) (*paymentIntentResponse, error) { // Construct a payment request to send to the channel router. If the // payment is successful, the route chosen will be returned. Otherwise, // we'll get a non-nil error. var ( preImage [32]byte route *routing.Route routerErr error ) // If a route was specified, then we'll pass the route directly to the // router, otherwise we'll create a payment session to execute it. if len(payIntent.routes) == 0 { payment := &routing.LightningPayment{ Target: payIntent.dest, Amount: payIntent.msat, FeeLimit: payIntent.feeLimit, PaymentHash: payIntent.rHash, RouteHints: payIntent.routeHints, } // If the final CLTV value was specified, then we'll use that // rather than the default. if payIntent.cltvDelta != 0 { payment.FinalCLTVDelta = &payIntent.cltvDelta } preImage, route, routerErr = r.server.chanRouter.SendPayment( payment, ) } else { payment := &routing.LightningPayment{ PaymentHash: payIntent.rHash, } preImage, route, routerErr = r.server.chanRouter.SendToRoute( payIntent.routes, payment, ) } // If the route failed, then we'll return a nil save err, but a non-nil // routing err. if routerErr != nil { return &paymentIntentResponse{ Err: routerErr, }, nil } // If a route was used to complete this payment, then we'll need to // compute the final amount sent var amt lnwire.MilliSatoshi if len(payIntent.routes) > 0 { amt = route.TotalAmount - route.TotalFees } else { amt = payIntent.msat } // Save the completed payment to the database for record keeping // purposes. err := r.savePayment(route, amt, preImage[:]) if err != nil { // We weren't able to save the payment, so we return the save // err, but a nil routing err. return nil, err } return &paymentIntentResponse{ Route: route, Preimage: preImage, }, nil } // sendPayment takes a paymentStream (a source of pre-built routes or payment // requests) and continually attempt to dispatch payment requests written to // the write end of the stream. Responses will also be streamed back to the // client via the write end of the stream. This method is by both SendToRoute // and SendPayment as the logic is virtually identical. func (r *rpcServer) sendPayment(stream *paymentStream) error { payChan := make(chan *rpcPaymentIntent) errChan := make(chan error, 1) // We don't allow payments to be sent while the daemon itself is still // syncing as we may be trying to sent a payment over a "stale" // channel. if !r.server.Started() { return fmt.Errorf("chain backend is still syncing, server " + "not active yet") } // TODO(roasbeef): check payment filter to see if already used? // In order to limit the level of concurrency and prevent a client from // attempting to OOM the server, we'll set up a semaphore to create an // upper ceiling on the number of outstanding payments. const numOutstandingPayments = 2000 htlcSema := make(chan struct{}, numOutstandingPayments) for i := 0; i < numOutstandingPayments; i++ { htlcSema <- struct{}{} } // Launch a new goroutine to handle reading new payment requests from // the client. This way we can handle errors independently of blocking // and waiting for the next payment request to come through. reqQuit := make(chan struct{}) defer func() { close(reqQuit) }() // TODO(joostjager): Callers expect result to come in in the same order // as the request were sent, but this is far from guarantueed in the // code below. go func() { for { select { case <-reqQuit: return case <-r.quit: errChan <- nil return default: // Receive the next pending payment within the // stream sent by the client. If we read the // EOF sentinel, then the client has closed the // stream, and we can exit normally. nextPayment, err := stream.recv() if err == io.EOF { errChan <- nil return } else if err != nil { select { case errChan <- err: case <-reqQuit: return } return } // Populate the next payment, either from the // payment request, or from the explicitly set // fields. If the payment proto wasn't well // formed, then we'll send an error reply and // wait for the next payment. payIntent, err := extractPaymentIntent(nextPayment) if err != nil { if err := stream.send(&lnrpc.SendResponse{ PaymentError: err.Error(), PaymentHash: payIntent.rHash[:], }); err != nil { select { case errChan <- err: case <-reqQuit: return } } continue } // If the payment was well formed, then we'll // send to the dispatch goroutine, or exit, // which ever comes first select { case payChan <- &payIntent: case <-reqQuit: return } } } }() for { select { case err := <-errChan: return err case payIntent := <-payChan: // We launch a new goroutine to execute the current // payment so we can continue to serve requests while // this payment is being dispatched. go func() { // Attempt to grab a free semaphore slot, using // a defer to eventually release the slot // regardless of payment success. <-htlcSema defer func() { htlcSema <- struct{}{} }() resp, saveErr := r.dispatchPaymentIntent( payIntent, ) switch { // If we were unable to save the state of the // payment, then we'll return the error to the // user, and terminate. case saveErr != nil: errChan <- saveErr return // If we receive payment error than, instead of // terminating the stream, send error response // to the user. case resp.Err != nil: err := stream.send(&lnrpc.SendResponse{ PaymentError: resp.Err.Error(), PaymentHash: payIntent.rHash[:], }) if err != nil { errChan <- err } return } marshalledRouted := r.marshallRoute(resp.Route) err := stream.send(&lnrpc.SendResponse{ PaymentHash: payIntent.rHash[:], PaymentPreimage: resp.Preimage[:], PaymentRoute: marshalledRouted, }) if err != nil { errChan <- err return } }() } } } // SendPaymentSync is the synchronous non-streaming version of SendPayment. // This RPC is intended to be consumed by clients of the REST proxy. // Additionally, this RPC expects the destination's public key and the payment // hash (if any) to be encoded as hex strings. func (r *rpcServer) SendPaymentSync(ctx context.Context, nextPayment *lnrpc.SendRequest) (*lnrpc.SendResponse, error) { return r.sendPaymentSync(ctx, &rpcPaymentRequest{ SendRequest: nextPayment, }) } // SendToRouteSync is the synchronous non-streaming version of SendToRoute. // This RPC is intended to be consumed by clients of the REST proxy. // Additionally, this RPC expects the payment hash (if any) to be encoded as // hex strings. func (r *rpcServer) SendToRouteSync(ctx context.Context, req *lnrpc.SendToRouteRequest) (*lnrpc.SendResponse, error) { if len(req.Routes) == 0 { return nil, fmt.Errorf("unable to send, no routes provided") } graph := r.server.chanDB.ChannelGraph() routes := make([]*routing.Route, len(req.Routes)) for i, route := range req.Routes { route, err := r.unmarshallRoute(route, graph) if err != nil { return nil, err } routes[i] = route } return r.sendPaymentSync(ctx, &rpcPaymentRequest{ SendRequest: &lnrpc.SendRequest{ PaymentHashString: req.PaymentHashString, }, routes: routes, }) } // sendPaymentSync is the synchronous variant of sendPayment. It will block and // wait until the payment has been fully completed. func (r *rpcServer) sendPaymentSync(ctx context.Context, nextPayment *rpcPaymentRequest) (*lnrpc.SendResponse, error) { // We don't allow payments to be sent while the daemon itself is still // syncing as we may be trying to sent a payment over a "stale" // channel. if !r.server.Started() { return nil, fmt.Errorf("chain backend is still syncing, server " + "not active yet") } // First we'll attempt to map the proto describing the next payment to // an intent that we can pass to local sub-systems. payIntent, err := extractPaymentIntent(nextPayment) if err != nil { return nil, err } // With the payment validated, we'll now attempt to dispatch the // payment. resp, saveErr := r.dispatchPaymentIntent(&payIntent) switch { case saveErr != nil: return nil, saveErr case resp.Err != nil: return &lnrpc.SendResponse{ PaymentError: resp.Err.Error(), PaymentHash: payIntent.rHash[:], }, nil } return &lnrpc.SendResponse{ PaymentHash: payIntent.rHash[:], PaymentPreimage: resp.Preimage[:], PaymentRoute: r.marshallRoute(resp.Route), }, nil } // AddInvoice attempts to add a new invoice to the invoice database. Any // duplicated invoices are rejected, therefore all invoices *must* have a // unique payment preimage. func (r *rpcServer) AddInvoice(ctx context.Context, invoice *lnrpc.Invoice) (*lnrpc.AddInvoiceResponse, error) { var paymentPreimage [32]byte switch { // If a preimage wasn't specified, then we'll generate a new preimage // from fresh cryptographic randomness. case len(invoice.RPreimage) == 0: if _, err := rand.Read(paymentPreimage[:]); err != nil { return nil, err } // Otherwise, if a preimage was specified, then it MUST be exactly // 32-bytes. case len(invoice.RPreimage) > 0 && len(invoice.RPreimage) != 32: return nil, fmt.Errorf("payment preimage must be exactly "+ "32 bytes, is instead %v", len(invoice.RPreimage)) // If the preimage meets the size specifications, then it can be used // as is. default: copy(paymentPreimage[:], invoice.RPreimage[:]) } // The size of the memo, receipt and description hash attached must not // exceed the maximum values for either of the fields. if len(invoice.Memo) > channeldb.MaxMemoSize { return nil, fmt.Errorf("memo too large: %v bytes "+ "(maxsize=%v)", len(invoice.Memo), channeldb.MaxMemoSize) } if len(invoice.Receipt) > channeldb.MaxReceiptSize { return nil, fmt.Errorf("receipt too large: %v bytes "+ "(maxsize=%v)", len(invoice.Receipt), channeldb.MaxReceiptSize) } if len(invoice.DescriptionHash) > 0 && len(invoice.DescriptionHash) != 32 { return nil, fmt.Errorf("description hash is %v bytes, must be %v", len(invoice.DescriptionHash), channeldb.MaxPaymentRequestSize) } // The value of the invoice must not be negative. if invoice.Value < 0 { return nil, fmt.Errorf("payments of negative value "+ "are not allowed, value is %v", invoice.Value) } amt := btcutil.Amount(invoice.Value) amtMSat := lnwire.NewMSatFromSatoshis(amt) // The value of the invoice must also not exceed the current soft-limit // on the largest payment within the network. if amtMSat > maxPaymentMSat { return nil, fmt.Errorf("payment of %v is too large, max "+ "payment allowed is %v", amt, maxPaymentMSat.ToSatoshis()) } // Next, generate the payment hash itself from the preimage. This will // be used by clients to query for the state of a particular invoice. rHash := sha256.Sum256(paymentPreimage[:]) // We also create an encoded payment request which allows the // caller to compactly send the invoice to the payer. We'll create a // list of options to be added to the encoded payment request. For now // we only support the required fields description/description_hash, // expiry, fallback address, and the amount field. var options []func(*zpay32.Invoice) // We only include the amount in the invoice if it is greater than 0. // By not including the amount, we enable the creation of invoices that // allow the payee to specify the amount of satoshis they wish to send. if amtMSat > 0 { options = append(options, zpay32.Amount(amtMSat)) } // If specified, add a fallback address to the payment request. if len(invoice.FallbackAddr) > 0 { addr, err := btcutil.DecodeAddress(invoice.FallbackAddr, activeNetParams.Params) if err != nil { return nil, fmt.Errorf("invalid fallback address: %v", err) } options = append(options, zpay32.FallbackAddr(addr)) } // If expiry is set, specify it. If it is not provided, no expiry time // will be explicitly added to this payment request, which will imply // the default 3600 seconds. if invoice.Expiry > 0 { // We'll ensure that the specified expiry is restricted to sane // number of seconds. As a result, we'll reject an invoice with // an expiry greater than 1 year. maxExpiry := time.Hour * 24 * 365 expSeconds := invoice.Expiry if float64(expSeconds) > maxExpiry.Seconds() { return nil, fmt.Errorf("expiry of %v seconds "+ "greater than max expiry of %v seconds", float64(expSeconds), maxExpiry.Seconds()) } expiry := time.Duration(invoice.Expiry) * time.Second options = append(options, zpay32.Expiry(expiry)) } // If the description hash is set, then we add it do the list of options. // If not, use the memo field as the payment request description. if len(invoice.DescriptionHash) > 0 { var descHash [32]byte copy(descHash[:], invoice.DescriptionHash[:]) options = append(options, zpay32.DescriptionHash(descHash)) } else { // Use the memo field as the description. If this is not set // this will just be an empty string. options = append(options, zpay32.Description(invoice.Memo)) } // We'll use our current default CLTV value unless one was specified as // an option on the command line when creating an invoice. switch { case invoice.CltvExpiry > math.MaxUint16: return nil, fmt.Errorf("CLTV delta of %v is too large, max "+ "accepted is: %v", invoice.CltvExpiry, math.MaxUint16) case invoice.CltvExpiry != 0: options = append(options, zpay32.CLTVExpiry(invoice.CltvExpiry)) default: // TODO(roasbeef): assumes set delta between versions defaultDelta := cfg.Bitcoin.TimeLockDelta if registeredChains.PrimaryChain() == litecoinChain { defaultDelta = cfg.Litecoin.TimeLockDelta } options = append(options, zpay32.CLTVExpiry(uint64(defaultDelta))) } // If we were requested to include routing hints in the invoice, then // we'll fetch all of our available private channels and create routing // hints for them. if invoice.Private { openChannels, err := r.server.chanDB.FetchAllChannels() if err != nil { return nil, fmt.Errorf("could not fetch all channels") } graph := r.server.chanDB.ChannelGraph() numHints := 0 for _, channel := range openChannels { // We'll restrict the number of individual route hints // to 20 to avoid creating overly large invoices. if numHints > 20 { break } // Since we're only interested in our private channels, // we'll skip public ones. isPublic := channel.ChannelFlags&lnwire.FFAnnounceChannel != 0 if isPublic { continue } // Make sure the counterparty has enough balance in the // channel for our amount. We do this in order to reduce // payment errors when attempting to use this channel // as a hint. chanPoint := lnwire.NewChanIDFromOutPoint( &channel.FundingOutpoint, ) if amtMSat >= channel.LocalCommitment.RemoteBalance { rpcsLog.Debugf("Skipping channel %v due to "+ "not having enough remote balance", chanPoint) continue } // Make sure the channel is active. link, err := r.server.htlcSwitch.GetLink(chanPoint) if err != nil { rpcsLog.Errorf("Unable to get link for "+ "channel %v: %v", chanPoint, err) continue } if !link.EligibleToForward() { rpcsLog.Debugf("Skipping channel %v due to not "+ "being eligible to forward payments", chanPoint) continue } // To ensure we don't leak unadvertised nodes, we'll // make sure our counterparty is publicly advertised // within the network. Otherwise, we'll end up leaking // information about nodes that intend to stay // unadvertised, like in the case of a node only having // private channels. var remotePub [33]byte copy(remotePub[:], channel.IdentityPub.SerializeCompressed()) isRemoteNodePublic, err := graph.IsPublicNode(remotePub) if err != nil { rpcsLog.Errorf("Unable to determine if node %x "+ "is advertised: %v", remotePub, err) continue } if !isRemoteNodePublic { rpcsLog.Debugf("Skipping channel %v due to "+ "counterparty %x being unadvertised", chanPoint, remotePub) continue } // Fetch the policies for each end of the channel. chanID := channel.ShortChanID().ToUint64() info, p1, p2, err := graph.FetchChannelEdgesByID(chanID) if err != nil { rpcsLog.Errorf("Unable to fetch the routing "+ "policies for the edges of the channel "+ "%v: %v", chanPoint, err) continue } // Now, we'll need to determine which is the correct // policy for HTLCs being sent from the remote node. var remotePolicy *channeldb.ChannelEdgePolicy if bytes.Equal(remotePub[:], info.NodeKey1Bytes[:]) { remotePolicy = p1 } else { remotePolicy = p2 } // If for some reason we don't yet have the edge for // the remote party, then we'll just skip adding this // channel as a routing hint. if remotePolicy == nil { continue } // Finally, create the routing hint for this channel and // add it to our list of route hints. hint := routing.HopHint{ NodeID: channel.IdentityPub, ChannelID: chanID, FeeBaseMSat: uint32(remotePolicy.FeeBaseMSat), FeeProportionalMillionths: uint32( remotePolicy.FeeProportionalMillionths, ), CLTVExpiryDelta: remotePolicy.TimeLockDelta, } // Include the route hint in our set of options that // will be used when creating the invoice. routeHint := []routing.HopHint{hint} options = append(options, zpay32.RouteHint(routeHint)) numHints++ } } // Create and encode the payment request as a bech32 (zpay32) string. creationDate := time.Now() payReq, err := zpay32.NewInvoice( activeNetParams.Params, rHash, creationDate, options..., ) if err != nil { return nil, err } payReqString, err := payReq.Encode( zpay32.MessageSigner{ SignCompact: r.server.nodeSigner.SignDigestCompact, }, ) if err != nil { return nil, err } newInvoice := &channeldb.Invoice{ CreationDate: creationDate, Memo: []byte(invoice.Memo), Receipt: invoice.Receipt, PaymentRequest: []byte(payReqString), Terms: channeldb.ContractTerm{ Value: amtMSat, }, } copy(newInvoice.Terms.PaymentPreimage[:], paymentPreimage[:]) rpcsLog.Tracef("[addinvoice] adding new invoice %v", newLogClosure(func() string { return spew.Sdump(newInvoice) }), ) // With all sanity checks passed, write the invoice to the database. addIndex, err := r.server.invoices.AddInvoice(newInvoice) if err != nil { return nil, err } return &lnrpc.AddInvoiceResponse{ RHash: rHash[:], PaymentRequest: payReqString, AddIndex: addIndex, }, nil } // createRPCInvoice creates an *lnrpc.Invoice from the *channeldb.Invoice. func createRPCInvoice(invoice *channeldb.Invoice) (*lnrpc.Invoice, error) { paymentRequest := string(invoice.PaymentRequest) decoded, err := zpay32.Decode(paymentRequest, activeNetParams.Params) if err != nil { return nil, fmt.Errorf("unable to decode payment request: %v", err) } descHash := []byte("") if decoded.DescriptionHash != nil { descHash = decoded.DescriptionHash[:] } fallbackAddr := "" if decoded.FallbackAddr != nil { fallbackAddr = decoded.FallbackAddr.String() } settleDate := int64(0) if !invoice.SettleDate.IsZero() { settleDate = invoice.SettleDate.Unix() } // Expiry time will default to 3600 seconds if not specified // explicitly. expiry := int64(decoded.Expiry().Seconds()) // The expiry will default to 9 blocks if not specified explicitly. cltvExpiry := decoded.MinFinalCLTVExpiry() // Convert between the `lnrpc` and `routing` types. routeHints := createRPCRouteHints(decoded.RouteHints) preimage := invoice.Terms.PaymentPreimage satAmt := invoice.Terms.Value.ToSatoshis() satAmtPaid := invoice.AmtPaid.ToSatoshis() isSettled := invoice.Terms.State == channeldb.ContractSettled var state lnrpc.Invoice_InvoiceState switch invoice.Terms.State { case channeldb.ContractOpen: state = lnrpc.Invoice_OPEN case channeldb.ContractSettled: state = lnrpc.Invoice_SETTLED default: return nil, fmt.Errorf("unknown invoice state") } return &lnrpc.Invoice{ Memo: string(invoice.Memo[:]), Receipt: invoice.Receipt[:], RHash: decoded.PaymentHash[:], RPreimage: preimage[:], Value: int64(satAmt), CreationDate: invoice.CreationDate.Unix(), SettleDate: settleDate, Settled: isSettled, PaymentRequest: paymentRequest, DescriptionHash: descHash, Expiry: expiry, CltvExpiry: cltvExpiry, FallbackAddr: fallbackAddr, RouteHints: routeHints, AddIndex: invoice.AddIndex, Private: len(routeHints) > 0, SettleIndex: invoice.SettleIndex, AmtPaidSat: int64(satAmtPaid), AmtPaidMsat: int64(invoice.AmtPaid), AmtPaid: int64(invoice.AmtPaid), State: state, }, nil } // createRPCRouteHints takes in the decoded form of an invoice's route hints // and converts them into the lnrpc type. func createRPCRouteHints(routeHints [][]routing.HopHint) []*lnrpc.RouteHint { var res []*lnrpc.RouteHint for _, route := range routeHints { hopHints := make([]*lnrpc.HopHint, 0, len(route)) for _, hop := range route { pubKey := hex.EncodeToString( hop.NodeID.SerializeCompressed(), ) hint := &lnrpc.HopHint{ NodeId: pubKey, ChanId: hop.ChannelID, FeeBaseMsat: hop.FeeBaseMSat, FeeProportionalMillionths: hop.FeeProportionalMillionths, CltvExpiryDelta: uint32(hop.CLTVExpiryDelta), } hopHints = append(hopHints, hint) } routeHint := &lnrpc.RouteHint{HopHints: hopHints} res = append(res, routeHint) } return res } // LookupInvoice attempts to look up an invoice according to its payment hash. // The passed payment hash *must* be exactly 32 bytes, if not an error is // returned. func (r *rpcServer) LookupInvoice(ctx context.Context, req *lnrpc.PaymentHash) (*lnrpc.Invoice, error) { var ( payHash [32]byte rHash []byte err error ) // If the RHash as a raw string was provided, then decode that and use // that directly. Otherwise, we use the raw bytes provided. if req.RHashStr != "" { rHash, err = hex.DecodeString(req.RHashStr) if err != nil { return nil, err } } else { rHash = req.RHash } // Ensure that the payment hash is *exactly* 32-bytes. if len(rHash) != 0 && len(rHash) != 32 { return nil, fmt.Errorf("payment hash must be exactly "+ "32 bytes, is instead %v", len(rHash)) } copy(payHash[:], rHash) rpcsLog.Tracef("[lookupinvoice] searching for invoice %x", payHash[:]) invoice, _, err := r.server.invoices.LookupInvoice(payHash) if err != nil { return nil, err } rpcsLog.Tracef("[lookupinvoice] located invoice %v", newLogClosure(func() string { return spew.Sdump(invoice) })) rpcInvoice, err := createRPCInvoice(&invoice) if err != nil { return nil, err } return rpcInvoice, nil } // ListInvoices returns a list of all the invoices currently stored within the // database. Any active debug invoices are ignored. func (r *rpcServer) ListInvoices(ctx context.Context, req *lnrpc.ListInvoiceRequest) (*lnrpc.ListInvoiceResponse, error) { // If the number of invoices was not specified, then we'll default to // returning the latest 100 invoices. if req.NumMaxInvoices == 0 { req.NumMaxInvoices = 100 } // Next, we'll map the proto request into a format that is understood by // the database. q := channeldb.InvoiceQuery{ IndexOffset: req.IndexOffset, NumMaxInvoices: req.NumMaxInvoices, PendingOnly: req.PendingOnly, Reversed: req.Reversed, } invoiceSlice, err := r.server.chanDB.QueryInvoices(q) if err != nil { return nil, fmt.Errorf("unable to query invoices: %v", err) } // Before returning the response, we'll need to convert each invoice // into it's proto representation. resp := &lnrpc.ListInvoiceResponse{ Invoices: make([]*lnrpc.Invoice, len(invoiceSlice.Invoices)), FirstIndexOffset: invoiceSlice.FirstIndexOffset, LastIndexOffset: invoiceSlice.LastIndexOffset, } for i, invoice := range invoiceSlice.Invoices { resp.Invoices[i], err = createRPCInvoice(&invoice) if err != nil { return nil, err } } return resp, nil } // SubscribeInvoices returns a uni-directional stream (server -> client) for // notifying the client of newly added/settled invoices. func (r *rpcServer) SubscribeInvoices(req *lnrpc.InvoiceSubscription, updateStream lnrpc.Lightning_SubscribeInvoicesServer) error { invoiceClient := r.server.invoices.SubscribeNotifications( req.AddIndex, req.SettleIndex, ) defer invoiceClient.Cancel() for { select { case newInvoice := <-invoiceClient.NewInvoices: rpcInvoice, err := createRPCInvoice(newInvoice) if err != nil { return err } if err := updateStream.Send(rpcInvoice); err != nil { return err } case settledInvoice := <-invoiceClient.SettledInvoices: rpcInvoice, err := createRPCInvoice(settledInvoice) if err != nil { return err } if err := updateStream.Send(rpcInvoice); err != nil { return err } case <-r.quit: return nil } } } // SubscribeTransactions creates a uni-directional stream (server -> client) in // which any newly discovered transactions relevant to the wallet are sent // over. func (r *rpcServer) SubscribeTransactions(req *lnrpc.GetTransactionsRequest, updateStream lnrpc.Lightning_SubscribeTransactionsServer) error { txClient, err := r.server.cc.wallet.SubscribeTransactions() if err != nil { return err } defer txClient.Cancel() for { select { case tx := <-txClient.ConfirmedTransactions(): detail := &lnrpc.Transaction{ TxHash: tx.Hash.String(), Amount: int64(tx.Value), NumConfirmations: tx.NumConfirmations, BlockHash: tx.BlockHash.String(), TimeStamp: tx.Timestamp, TotalFees: tx.TotalFees, } if err := updateStream.Send(detail); err != nil { return err } case tx := <-txClient.UnconfirmedTransactions(): detail := &lnrpc.Transaction{ TxHash: tx.Hash.String(), Amount: int64(tx.Value), TimeStamp: tx.Timestamp, TotalFees: tx.TotalFees, } if err := updateStream.Send(detail); err != nil { return err } case <-r.quit: return nil } } } // GetTransactions returns a list of describing all the known transactions // relevant to the wallet. func (r *rpcServer) GetTransactions(ctx context.Context, _ *lnrpc.GetTransactionsRequest) (*lnrpc.TransactionDetails, error) { // TODO(roasbeef): add pagination support transactions, err := r.server.cc.wallet.ListTransactionDetails() if err != nil { return nil, err } txDetails := &lnrpc.TransactionDetails{ Transactions: make([]*lnrpc.Transaction, len(transactions)), } for i, tx := range transactions { var destAddresses []string for _, destAddress := range tx.DestAddresses { destAddresses = append(destAddresses, destAddress.EncodeAddress()) } // We also get unconfirmed transactions, so BlockHash can be // nil. blockHash := "" if tx.BlockHash != nil { blockHash = tx.BlockHash.String() } txDetails.Transactions[i] = &lnrpc.Transaction{ TxHash: tx.Hash.String(), Amount: int64(tx.Value), NumConfirmations: tx.NumConfirmations, BlockHash: blockHash, BlockHeight: tx.BlockHeight, TimeStamp: tx.Timestamp, TotalFees: tx.TotalFees, DestAddresses: destAddresses, } } return txDetails, nil } // DescribeGraph returns a description of the latest graph state from the PoV // of the node. The graph information is partitioned into two components: all // the nodes/vertexes, and all the edges that connect the vertexes themselves. // As this is a directed graph, the edges also contain the node directional // specific routing policy which includes: the time lock delta, fee // information, etc. func (r *rpcServer) DescribeGraph(ctx context.Context, req *lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) { resp := &lnrpc.ChannelGraph{} includeUnannounced := req.IncludeUnannounced // Obtain the pointer to the global singleton channel graph, this will // provide a consistent view of the graph due to bolt db's // transactional model. graph := r.server.chanDB.ChannelGraph() // First iterate through all the known nodes (connected or unconnected // within the graph), collating their current state into the RPC // response. err := graph.ForEachNode(nil, func(_ *bbolt.Tx, node *channeldb.LightningNode) error { nodeAddrs := make([]*lnrpc.NodeAddress, 0) for _, addr := range node.Addresses { nodeAddr := &lnrpc.NodeAddress{ Network: addr.Network(), Addr: addr.String(), } nodeAddrs = append(nodeAddrs, nodeAddr) } nodeColor := fmt.Sprintf("#%02x%02x%02x", node.Color.R, node.Color.G, node.Color.B) resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{ LastUpdate: uint32(node.LastUpdate.Unix()), PubKey: hex.EncodeToString(node.PubKeyBytes[:]), Addresses: nodeAddrs, Alias: node.Alias, Color: nodeColor, }) return nil }) if err != nil { return nil, err } // Next, for each active channel we know of within the graph, create a // similar response which details both the edge information as well as // the routing policies of th nodes connecting the two edges. err = graph.ForEachChannel(func(edgeInfo *channeldb.ChannelEdgeInfo, c1, c2 *channeldb.ChannelEdgePolicy) error { // Do not include unannounced channels unless specifically // requested. Unannounced channels include both private channels as // well as public channels whose authentication proof were not // confirmed yet, hence were not announced. if !includeUnannounced && edgeInfo.AuthProof == nil { return nil } edge := marshalDbEdge(edgeInfo, c1, c2) resp.Edges = append(resp.Edges, edge) return nil }) if err != nil && err != channeldb.ErrGraphNoEdgesFound { return nil, err } return resp, nil } func marshalDbEdge(edgeInfo *channeldb.ChannelEdgeInfo, c1, c2 *channeldb.ChannelEdgePolicy) *lnrpc.ChannelEdge { var ( lastUpdate int64 ) if c2 != nil { lastUpdate = c2.LastUpdate.Unix() } if c1 != nil { lastUpdate = c1.LastUpdate.Unix() } edge := &lnrpc.ChannelEdge{ ChannelId: edgeInfo.ChannelID, ChanPoint: edgeInfo.ChannelPoint.String(), // TODO(roasbeef): update should be on edge info itself LastUpdate: uint32(lastUpdate), Node1Pub: hex.EncodeToString(edgeInfo.NodeKey1Bytes[:]), Node2Pub: hex.EncodeToString(edgeInfo.NodeKey2Bytes[:]), Capacity: int64(edgeInfo.Capacity), } if c1 != nil { edge.Node1Policy = &lnrpc.RoutingPolicy{ TimeLockDelta: uint32(c1.TimeLockDelta), MinHtlc: int64(c1.MinHTLC), FeeBaseMsat: int64(c1.FeeBaseMSat), FeeRateMilliMsat: int64(c1.FeeProportionalMillionths), Disabled: c1.ChannelFlags&lnwire.ChanUpdateDisabled != 0, } } if c2 != nil { edge.Node2Policy = &lnrpc.RoutingPolicy{ TimeLockDelta: uint32(c2.TimeLockDelta), MinHtlc: int64(c2.MinHTLC), FeeBaseMsat: int64(c2.FeeBaseMSat), FeeRateMilliMsat: int64(c2.FeeProportionalMillionths), Disabled: c2.ChannelFlags&lnwire.ChanUpdateDisabled != 0, } } return edge } // GetChanInfo returns the latest authenticated network announcement for the // given channel identified by its channel ID: an 8-byte integer which uniquely // identifies the location of transaction's funding output within the block // chain. func (r *rpcServer) GetChanInfo(ctx context.Context, in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) { graph := r.server.chanDB.ChannelGraph() edgeInfo, edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId) if err != nil { return nil, err } // Convert the database's edge format into the network/RPC edge format // which couples the edge itself along with the directional node // routing policies of each node involved within the channel. channelEdge := marshalDbEdge(edgeInfo, edge1, edge2) return channelEdge, nil } // GetNodeInfo returns the latest advertised and aggregate authenticated // channel information for the specified node identified by its public key. func (r *rpcServer) GetNodeInfo(ctx context.Context, in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) { graph := r.server.chanDB.ChannelGraph() // First, parse the hex-encoded public key into a full in-memory public // key object we can work with for querying. pubKeyBytes, err := hex.DecodeString(in.PubKey) if err != nil { return nil, err } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { return nil, err } // With the public key decoded, attempt to fetch the node corresponding // to this public key. If the node cannot be found, then an error will // be returned. node, err := graph.FetchLightningNode(pubKey) if err != nil { return nil, err } // With the node obtained, we'll now iterate through all its out going // edges to gather some basic statistics about its out going channels. var ( numChannels uint32 totalCapacity btcutil.Amount ) if err := node.ForEachChannel(nil, func(_ *bbolt.Tx, edge *channeldb.ChannelEdgeInfo, _, _ *channeldb.ChannelEdgePolicy) error { numChannels++ totalCapacity += edge.Capacity return nil }); err != nil { return nil, err } nodeAddrs := make([]*lnrpc.NodeAddress, 0) for _, addr := range node.Addresses { nodeAddr := &lnrpc.NodeAddress{ Network: addr.Network(), Addr: addr.String(), } nodeAddrs = append(nodeAddrs, nodeAddr) } // TODO(roasbeef): list channels as well? nodeColor := fmt.Sprintf("#%02x%02x%02x", node.Color.R, node.Color.G, node.Color.B) return &lnrpc.NodeInfo{ Node: &lnrpc.LightningNode{ LastUpdate: uint32(node.LastUpdate.Unix()), PubKey: in.PubKey, Addresses: nodeAddrs, Alias: node.Alias, Color: nodeColor, }, NumChannels: numChannels, TotalCapacity: int64(totalCapacity), }, nil } // QueryRoutes attempts to query the daemons' Channel Router for a possible // route to a target destination capable of carrying a specific amount of // satoshis within the route's flow. The retuned route contains the full // details required to craft and send an HTLC, also including the necessary // information that should be present within the Sphinx packet encapsulated // within the HTLC. // // TODO(roasbeef): should return a slice of routes in reality // * create separate PR to send based on well formatted route func (r *rpcServer) QueryRoutes(ctx context.Context, in *lnrpc.QueryRoutesRequest) (*lnrpc.QueryRoutesResponse, error) { // First parse the hex-encoded public key into a full public key object // we can properly manipulate. pubKeyBytes, err := hex.DecodeString(in.PubKey) if err != nil { return nil, err } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { return nil, err } // Currently, within the bootstrap phase of the network, we limit the // largest payment size allotted to (2^32) - 1 mSAT or 4.29 million // satoshis. amt := btcutil.Amount(in.Amt) amtMSat := lnwire.NewMSatFromSatoshis(amt) if amtMSat > maxPaymentMSat { return nil, fmt.Errorf("payment of %v is too large, max payment "+ "allowed is %v", amt, maxPaymentMSat.ToSatoshis()) } feeLimit := calculateFeeLimit(in.FeeLimit, amtMSat) // numRoutes will default to 10 if not specified explicitly. numRoutesIn := uint32(in.NumRoutes) if numRoutesIn == 0 { numRoutesIn = 10 } // Query the channel router for a possible path to the destination that // can carry `in.Amt` satoshis _including_ the total fee required on // the route. var ( routes []*routing.Route findErr error ) if in.FinalCltvDelta == 0 { routes, findErr = r.server.chanRouter.FindRoutes( pubKey, amtMSat, feeLimit, numRoutesIn, ) } else { routes, findErr = r.server.chanRouter.FindRoutes( pubKey, amtMSat, feeLimit, numRoutesIn, uint16(in.FinalCltvDelta), ) } if findErr != nil { return nil, findErr } // As the number of returned routes can be less than the number of // requested routes, we'll clamp down the length of the response to the // minimum of the two. numRoutes := uint32(len(routes)) if numRoutesIn < numRoutes { numRoutes = numRoutesIn } // For each valid route, we'll convert the result into the format // required by the RPC system. routeResp := &lnrpc.QueryRoutesResponse{ Routes: make([]*lnrpc.Route, 0, in.NumRoutes), } for i := uint32(0); i < numRoutes; i++ { routeResp.Routes = append( routeResp.Routes, r.marshallRoute(routes[i]), ) } return routeResp, nil } func (r *rpcServer) marshallRoute(route *routing.Route) *lnrpc.Route { resp := &lnrpc.Route{ TotalTimeLock: route.TotalTimeLock, TotalFees: int64(route.TotalFees.ToSatoshis()), TotalFeesMsat: int64(route.TotalFees), TotalAmt: int64(route.TotalAmount.ToSatoshis()), TotalAmtMsat: int64(route.TotalAmount), Hops: make([]*lnrpc.Hop, len(route.Hops)), } graph := r.server.chanDB.ChannelGraph() incomingAmt := route.TotalAmount for i, hop := range route.Hops { fee := route.HopFee(i) // Channel capacity is not a defining property of a route. For // backwards RPC compatibility, we retrieve it here from the // graph. var chanCapacity btcutil.Amount info, _, _, err := graph.FetchChannelEdgesByID(hop.ChannelID) if err == nil { chanCapacity = info.Capacity } else { // If capacity cannot be retrieved, this may be a // not-yet-received or private channel. Then report // amount that is sent through the channel as capacity. chanCapacity = incomingAmt.ToSatoshis() } resp.Hops[i] = &lnrpc.Hop{ ChanId: hop.ChannelID, ChanCapacity: int64(chanCapacity), AmtToForward: int64(hop.AmtToForward.ToSatoshis()), AmtToForwardMsat: int64(hop.AmtToForward), Fee: int64(fee.ToSatoshis()), FeeMsat: int64(fee), Expiry: uint32(hop.OutgoingTimeLock), PubKey: hex.EncodeToString( hop.PubKeyBytes[:]), } incomingAmt = hop.AmtToForward } return resp } // unmarshallHopByChannelLookup unmarshalls an rpc hop for which the pub key is // not known. This function will query the channel graph with channel id to // retrieve both endpoints and determine the hop pubkey using the previous hop // pubkey. If the channel is unknown, an error is returned. func unmarshallHopByChannelLookup(graph *channeldb.ChannelGraph, hop *lnrpc.Hop, prevPubKeyBytes [33]byte) (*routing.Hop, error) { // Discard edge policies, because they may be nil. edgeInfo, _, _, err := graph.FetchChannelEdgesByID(hop.ChanId) if err != nil { return nil, fmt.Errorf("unable to fetch channel edges by "+ "channel ID %d: %v", hop.ChanId, err) } var pubKeyBytes [33]byte switch { case prevPubKeyBytes == edgeInfo.NodeKey1Bytes: pubKeyBytes = edgeInfo.NodeKey2Bytes case prevPubKeyBytes == edgeInfo.NodeKey2Bytes: pubKeyBytes = edgeInfo.NodeKey1Bytes default: return nil, fmt.Errorf("channel edge does not match expected node") } return &routing.Hop{ OutgoingTimeLock: hop.Expiry, AmtToForward: lnwire.MilliSatoshi(hop.AmtToForwardMsat), PubKeyBytes: pubKeyBytes, ChannelID: edgeInfo.ChannelID, }, nil } // unmarshallKnownPubkeyHop unmarshalls an rpc hop that contains the hop pubkey. // The channel graph doesn't need to be queried because all information required // for sending the payment is present. func unmarshallKnownPubkeyHop(hop *lnrpc.Hop) (*routing.Hop, error) { pubKey, err := hex.DecodeString(hop.PubKey) if err != nil { return nil, fmt.Errorf("cannot decode pubkey %s", hop.PubKey) } var pubKeyBytes [33]byte copy(pubKeyBytes[:], pubKey) return &routing.Hop{ OutgoingTimeLock: hop.Expiry, AmtToForward: lnwire.MilliSatoshi(hop.AmtToForwardMsat), PubKeyBytes: pubKeyBytes, ChannelID: hop.ChanId, }, nil } // unmarshallHop unmarshalls an rpc hop that may or may not contain a node // pubkey. func unmarshallHop(graph *channeldb.ChannelGraph, hop *lnrpc.Hop, prevNodePubKey [33]byte) (*routing.Hop, error) { if hop.PubKey == "" { // If no pub key is given of the hop, the local channel // graph needs to be queried to complete the information // necessary for routing. return unmarshallHopByChannelLookup(graph, hop, prevNodePubKey) } return unmarshallKnownPubkeyHop(hop) } // unmarshallRoute unmarshalls an rpc route. For hops that don't specify a // pubkey, the channel graph is queried. func (r *rpcServer) unmarshallRoute(rpcroute *lnrpc.Route, graph *channeldb.ChannelGraph) (*routing.Route, error) { sourceNode, err := graph.SourceNode() if err != nil { return nil, fmt.Errorf("unable to fetch source node from graph "+ "while unmarshaling route. %v", err) } prevNodePubKey := sourceNode.PubKeyBytes hops := make([]*routing.Hop, len(rpcroute.Hops)) for i, hop := range rpcroute.Hops { routeHop, err := unmarshallHop(graph, hop, prevNodePubKey) if err != nil { return nil, err } hops[i] = routeHop prevNodePubKey = routeHop.PubKeyBytes } route, err := routing.NewRouteFromHops( lnwire.MilliSatoshi(rpcroute.TotalAmtMsat), rpcroute.TotalTimeLock, sourceNode.PubKeyBytes, hops, ) if err != nil { return nil, err } return route, nil } // GetNetworkInfo returns some basic stats about the known channel graph from // the PoV of the node. func (r *rpcServer) GetNetworkInfo(ctx context.Context, _ *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) { graph := r.server.chanDB.ChannelGraph() var ( numNodes uint32 numChannels uint32 maxChanOut uint32 totalNetworkCapacity btcutil.Amount minChannelSize btcutil.Amount = math.MaxInt64 maxChannelSize btcutil.Amount ) // We'll use this map to de-duplicate channels during our traversal. // This is needed since channels are directional, so there will be two // edges for each channel within the graph. seenChans := make(map[uint64]struct{}) // We'll run through all the known nodes in the within our view of the // network, tallying up the total number of nodes, and also gathering // each node so we can measure the graph diameter and degree stats // below. if err := graph.ForEachNode(nil, func(tx *bbolt.Tx, node *channeldb.LightningNode) error { // Increment the total number of nodes with each iteration. numNodes++ // For each channel we'll compute the out degree of each node, // and also update our running tallies of the min/max channel // capacity, as well as the total channel capacity. We pass // through the db transaction from the outer view so we can // re-use it within this inner view. var outDegree uint32 if err := node.ForEachChannel(tx, func(_ *bbolt.Tx, edge *channeldb.ChannelEdgeInfo, _, _ *channeldb.ChannelEdgePolicy) error { // Bump up the out degree for this node for each // channel encountered. outDegree++ // If we've already seen this channel, then we'll // return early to ensure that we don't double-count // stats. if _, ok := seenChans[edge.ChannelID]; ok { return nil } // Compare the capacity of this channel against the // running min/max to see if we should update the // extrema. chanCapacity := edge.Capacity if chanCapacity < minChannelSize { minChannelSize = chanCapacity } if chanCapacity > maxChannelSize { maxChannelSize = chanCapacity } // Accumulate the total capacity of this channel to the // network wide-capacity. totalNetworkCapacity += chanCapacity numChannels++ seenChans[edge.ChannelID] = struct{}{} return nil }); err != nil { return err } // Finally, if the out degree of this node is greater than what // we've seen so far, update the maxChanOut variable. if outDegree > maxChanOut { maxChanOut = outDegree } return nil }); err != nil { return nil, err } // If we don't have any channels, then reset the minChannelSize to zero // to avoid outputting NaN in encoded JSON. if numChannels == 0 { minChannelSize = 0 } // TODO(roasbeef): graph diameter // TODO(roasbeef): also add oldest channel? // * also add median channel size netInfo := &lnrpc.NetworkInfo{ MaxOutDegree: maxChanOut, AvgOutDegree: float64(numChannels) / float64(numNodes), NumNodes: numNodes, NumChannels: numChannels, TotalNetworkCapacity: int64(totalNetworkCapacity), AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels), MinChannelSize: int64(minChannelSize), MaxChannelSize: int64(maxChannelSize), } // Similarly, if we don't have any channels, then we'll also set the // average channel size to zero in order to avoid weird JSON encoding // outputs. if numChannels == 0 { netInfo.AvgChannelSize = 0 } return netInfo, nil } // StopDaemon will send a shutdown request to the interrupt handler, triggering // a graceful shutdown of the daemon. func (r *rpcServer) StopDaemon(ctx context.Context, _ *lnrpc.StopRequest) (*lnrpc.StopResponse, error) { signal.RequestShutdown() return &lnrpc.StopResponse{}, nil } // SubscribeChannelGraph launches a streaming RPC that allows the caller to // receive notifications upon any changes the channel graph topology from the // review of the responding node. Events notified include: new nodes coming // online, nodes updating their authenticated attributes, new channels being // advertised, updates in the routing policy for a directional channel edge, // and finally when prior channels are closed on-chain. func (r *rpcServer) SubscribeChannelGraph(req *lnrpc.GraphTopologySubscription, updateStream lnrpc.Lightning_SubscribeChannelGraphServer) error { // First, we start by subscribing to a new intent to receive // notifications from the channel router. client, err := r.server.chanRouter.SubscribeTopology() if err != nil { return err } // Ensure that the resources for the topology update client is cleaned // up once either the server, or client exists. defer client.Cancel() for { select { // A new update has been sent by the channel router, we'll // marshal it into the form expected by the gRPC client, then // send it off. case topChange, ok := <-client.TopologyChanges: // If the second value from the channel read is nil, // then this means that the channel router is exiting // or the notification client was cancelled. So we'll // exit early. if !ok { return errors.New("server shutting down") } // Convert the struct from the channel router into the // form expected by the gRPC service then send it off // to the client. graphUpdate := marshallTopologyChange(topChange) if err := updateStream.Send(graphUpdate); err != nil { return err } // The server is quitting, so we'll exit immediately. Returning // nil will close the clients read end of the stream. case <-r.quit: return nil } } } // marshallTopologyChange performs a mapping from the topology change struct // returned by the router to the form of notifications expected by the current // gRPC service. func marshallTopologyChange(topChange *routing.TopologyChange) *lnrpc.GraphTopologyUpdate { // encodeKey is a simple helper function that converts a live public // key into a hex-encoded version of the compressed serialization for // the public key. encodeKey := func(k *btcec.PublicKey) string { return hex.EncodeToString(k.SerializeCompressed()) } nodeUpdates := make([]*lnrpc.NodeUpdate, len(topChange.NodeUpdates)) for i, nodeUpdate := range topChange.NodeUpdates { addrs := make([]string, len(nodeUpdate.Addresses)) for i, addr := range nodeUpdate.Addresses { addrs[i] = addr.String() } nodeUpdates[i] = &lnrpc.NodeUpdate{ Addresses: addrs, IdentityKey: encodeKey(nodeUpdate.IdentityKey), GlobalFeatures: nodeUpdate.GlobalFeatures, Alias: nodeUpdate.Alias, } } channelUpdates := make([]*lnrpc.ChannelEdgeUpdate, len(topChange.ChannelEdgeUpdates)) for i, channelUpdate := range topChange.ChannelEdgeUpdates { channelUpdates[i] = &lnrpc.ChannelEdgeUpdate{ ChanId: channelUpdate.ChanID, ChanPoint: &lnrpc.ChannelPoint{ FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{ FundingTxidBytes: channelUpdate.ChanPoint.Hash[:], }, OutputIndex: channelUpdate.ChanPoint.Index, }, Capacity: int64(channelUpdate.Capacity), RoutingPolicy: &lnrpc.RoutingPolicy{ TimeLockDelta: uint32(channelUpdate.TimeLockDelta), MinHtlc: int64(channelUpdate.MinHTLC), FeeBaseMsat: int64(channelUpdate.BaseFee), FeeRateMilliMsat: int64(channelUpdate.FeeRate), Disabled: channelUpdate.Disabled, }, AdvertisingNode: encodeKey(channelUpdate.AdvertisingNode), ConnectingNode: encodeKey(channelUpdate.ConnectingNode), } } closedChans := make([]*lnrpc.ClosedChannelUpdate, len(topChange.ClosedChannels)) for i, closedChan := range topChange.ClosedChannels { closedChans[i] = &lnrpc.ClosedChannelUpdate{ ChanId: closedChan.ChanID, Capacity: int64(closedChan.Capacity), ClosedHeight: closedChan.ClosedHeight, ChanPoint: &lnrpc.ChannelPoint{ FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{ FundingTxidBytes: closedChan.ChanPoint.Hash[:], }, OutputIndex: closedChan.ChanPoint.Index, }, } } return &lnrpc.GraphTopologyUpdate{ NodeUpdates: nodeUpdates, ChannelUpdates: channelUpdates, ClosedChans: closedChans, } } // ListPayments returns a list of all outgoing payments. func (r *rpcServer) ListPayments(ctx context.Context, _ *lnrpc.ListPaymentsRequest) (*lnrpc.ListPaymentsResponse, error) { rpcsLog.Debugf("[ListPayments]") payments, err := r.server.chanDB.FetchAllPayments() if err != nil && err != channeldb.ErrNoPaymentsCreated { return nil, err } paymentsResp := &lnrpc.ListPaymentsResponse{ Payments: make([]*lnrpc.Payment, len(payments)), } for i, payment := range payments { path := make([]string, len(payment.Path)) for i, hop := range payment.Path { path[i] = hex.EncodeToString(hop[:]) } msatValue := int64(payment.Terms.Value) satValue := int64(payment.Terms.Value.ToSatoshis()) paymentHash := sha256.Sum256(payment.PaymentPreimage[:]) paymentsResp.Payments[i] = &lnrpc.Payment{ PaymentHash: hex.EncodeToString(paymentHash[:]), Value: satValue, ValueMsat: msatValue, ValueSat: satValue, CreationDate: payment.CreationDate.Unix(), Path: path, Fee: int64(payment.Fee.ToSatoshis()), PaymentPreimage: hex.EncodeToString(payment.PaymentPreimage[:]), } } return paymentsResp, nil } // DeleteAllPayments deletes all outgoing payments from DB. func (r *rpcServer) DeleteAllPayments(ctx context.Context, _ *lnrpc.DeleteAllPaymentsRequest) (*lnrpc.DeleteAllPaymentsResponse, error) { rpcsLog.Debugf("[DeleteAllPayments]") if err := r.server.chanDB.DeleteAllPayments(); err != nil { return nil, err } return &lnrpc.DeleteAllPaymentsResponse{}, nil } // DebugLevel allows a caller to programmatically set the logging verbosity of // lnd. The logging can be targeted according to a coarse daemon-wide logging // level, or in a granular fashion to specify the logging for a target // sub-system. func (r *rpcServer) DebugLevel(ctx context.Context, req *lnrpc.DebugLevelRequest) (*lnrpc.DebugLevelResponse, error) { // If show is set, then we simply print out the list of available // sub-systems. if req.Show { return &lnrpc.DebugLevelResponse{ SubSystems: strings.Join(supportedSubsystems(), " "), }, nil } rpcsLog.Infof("[debuglevel] changing debug level to: %v", req.LevelSpec) // Otherwise, we'll attempt to set the logging level using the // specified level spec. if err := parseAndSetDebugLevels(req.LevelSpec); err != nil { return nil, err } return &lnrpc.DebugLevelResponse{}, nil } // DecodePayReq takes an encoded payment request string and attempts to decode // it, returning a full description of the conditions encoded within the // payment request. func (r *rpcServer) DecodePayReq(ctx context.Context, req *lnrpc.PayReqString) (*lnrpc.PayReq, error) { rpcsLog.Tracef("[decodepayreq] decoding: %v", req.PayReq) // Fist we'll attempt to decode the payment request string, if the // request is invalid or the checksum doesn't match, then we'll exit // here with an error. payReq, err := zpay32.Decode(req.PayReq, activeNetParams.Params) if err != nil { return nil, err } // Let the fields default to empty strings. desc := "" if payReq.Description != nil { desc = *payReq.Description } descHash := []byte("") if payReq.DescriptionHash != nil { descHash = payReq.DescriptionHash[:] } fallbackAddr := "" if payReq.FallbackAddr != nil { fallbackAddr = payReq.FallbackAddr.String() } // Expiry time will default to 3600 seconds if not specified // explicitly. expiry := int64(payReq.Expiry().Seconds()) // Convert between the `lnrpc` and `routing` types. routeHints := createRPCRouteHints(payReq.RouteHints) amt := int64(0) if payReq.MilliSat != nil { amt = int64(payReq.MilliSat.ToSatoshis()) } dest := payReq.Destination.SerializeCompressed() return &lnrpc.PayReq{ Destination: hex.EncodeToString(dest), PaymentHash: hex.EncodeToString(payReq.PaymentHash[:]), NumSatoshis: amt, Timestamp: payReq.Timestamp.Unix(), Description: desc, DescriptionHash: hex.EncodeToString(descHash[:]), FallbackAddr: fallbackAddr, Expiry: expiry, CltvExpiry: int64(payReq.MinFinalCLTVExpiry()), RouteHints: routeHints, }, nil } // feeBase is the fixed point that fee rate computation are performed over. // Nodes on the network advertise their fee rate using this point as a base. // This means that the minimal possible fee rate if 1e-6, or 0.000001, or // 0.0001%. const feeBase = 1000000 // FeeReport allows the caller to obtain a report detailing the current fee // schedule enforced by the node globally for each channel. func (r *rpcServer) FeeReport(ctx context.Context, _ *lnrpc.FeeReportRequest) (*lnrpc.FeeReportResponse, error) { // TODO(roasbeef): use UnaryInterceptor to add automated logging rpcsLog.Debugf("[feereport]") channelGraph := r.server.chanDB.ChannelGraph() selfNode, err := channelGraph.SourceNode() if err != nil { return nil, err } var feeReports []*lnrpc.ChannelFeeReport err = selfNode.ForEachChannel(nil, func(_ *bbolt.Tx, chanInfo *channeldb.ChannelEdgeInfo, edgePolicy, _ *channeldb.ChannelEdgePolicy) error { // Self node should always have policies for its channels. if edgePolicy == nil { return fmt.Errorf("no policy for outgoing channel %v ", chanInfo.ChannelID) } // We'll compute the effective fee rate by converting from a // fixed point fee rate to a floating point fee rate. The fee // rate field in the database the amount of mSAT charged per // 1mil mSAT sent, so will divide by this to get the proper fee // rate. feeRateFixedPoint := edgePolicy.FeeProportionalMillionths feeRate := float64(feeRateFixedPoint) / float64(feeBase) // TODO(roasbeef): also add stats for revenue for each channel feeReports = append(feeReports, &lnrpc.ChannelFeeReport{ ChanPoint: chanInfo.ChannelPoint.String(), BaseFeeMsat: int64(edgePolicy.FeeBaseMSat), FeePerMil: int64(feeRateFixedPoint), FeeRate: feeRate, }) return nil }) if err != nil { return nil, err } fwdEventLog := r.server.chanDB.ForwardingLog() // computeFeeSum is a helper function that computes the total fees for // a particular time slice described by a forwarding event query. computeFeeSum := func(query channeldb.ForwardingEventQuery) (lnwire.MilliSatoshi, error) { var totalFees lnwire.MilliSatoshi // We'll continue to fetch the next query and accumulate the // fees until the next query returns no events. for { timeSlice, err := fwdEventLog.Query(query) if err != nil { return 0, nil } // If the timeslice is empty, then we'll return as // we've retrieved all the entries in this range. if len(timeSlice.ForwardingEvents) == 0 { break } // Otherwise, we'll tally up an accumulate the total // fees for this time slice. for _, event := range timeSlice.ForwardingEvents { fee := event.AmtIn - event.AmtOut totalFees += fee } // We'll now take the last offset index returned as // part of this response, and modify our query to start // at this index. This has a pagination effect in the // case that our query bounds has more than 100k // entries. query.IndexOffset = timeSlice.LastIndexOffset } return totalFees, nil } now := time.Now() // Before we perform the queries below, we'll instruct the switch to // flush any pending events to disk. This ensure we get a complete // snapshot at this particular time. if r.server.htlcSwitch.FlushForwardingEvents(); err != nil { return nil, fmt.Errorf("unable to flush forwarding "+ "events: %v", err) } // In addition to returning the current fee schedule for each channel. // We'll also perform a series of queries to obtain the total fees // earned over the past day, week, and month. dayQuery := channeldb.ForwardingEventQuery{ StartTime: now.Add(-time.Hour * 24), EndTime: now, NumMaxEvents: 1000, } dayFees, err := computeFeeSum(dayQuery) if err != nil { return nil, fmt.Errorf("unable to retrieve day fees: %v", err) } weekQuery := channeldb.ForwardingEventQuery{ StartTime: now.Add(-time.Hour * 24 * 7), EndTime: now, NumMaxEvents: 1000, } weekFees, err := computeFeeSum(weekQuery) if err != nil { return nil, fmt.Errorf("unable to retrieve day fees: %v", err) } monthQuery := channeldb.ForwardingEventQuery{ StartTime: now.Add(-time.Hour * 24 * 30), EndTime: now, NumMaxEvents: 1000, } monthFees, err := computeFeeSum(monthQuery) if err != nil { return nil, fmt.Errorf("unable to retrieve day fees: %v", err) } return &lnrpc.FeeReportResponse{ ChannelFees: feeReports, DayFeeSum: uint64(dayFees.ToSatoshis()), WeekFeeSum: uint64(weekFees.ToSatoshis()), MonthFeeSum: uint64(monthFees.ToSatoshis()), }, nil } // minFeeRate is the smallest permitted fee rate within the network. This is // derived by the fact that fee rates are computed using a fixed point of // 1,000,000. As a result, the smallest representable fee rate is 1e-6, or // 0.000001, or 0.0001%. const minFeeRate = 1e-6 // UpdateChannelPolicy allows the caller to update the channel forwarding policy // for all channels globally, or a particular channel. func (r *rpcServer) UpdateChannelPolicy(ctx context.Context, req *lnrpc.PolicyUpdateRequest) (*lnrpc.PolicyUpdateResponse, error) { var targetChans []wire.OutPoint switch scope := req.Scope.(type) { // If the request is targeting all active channels, then we don't need // target any channels by their channel point. case *lnrpc.PolicyUpdateRequest_Global: // Otherwise, we're targeting an individual channel by its channel // point. case *lnrpc.PolicyUpdateRequest_ChanPoint: txidHash, err := getChanPointFundingTxid(scope.ChanPoint) if err != nil { return nil, err } txid, err := chainhash.NewHash(txidHash) if err != nil { return nil, err } targetChans = append(targetChans, wire.OutPoint{ Hash: *txid, Index: scope.ChanPoint.OutputIndex, }) default: return nil, fmt.Errorf("unknown scope: %v", scope) } // As a sanity check, we'll ensure that the passed fee rate is below // 1e-6, or the lowest allowed fee rate, and that the passed timelock // is large enough. if req.FeeRate < minFeeRate { return nil, fmt.Errorf("fee rate of %v is too small, min fee "+ "rate is %v", req.FeeRate, minFeeRate) } if req.TimeLockDelta < minTimeLockDelta { return nil, fmt.Errorf("time lock delta of %v is too small, "+ "minimum supported is %v", req.TimeLockDelta, minTimeLockDelta) } // We'll also need to convert the floating point fee rate we accept // over RPC to the fixed point rate that we use within the protocol. We // do this by multiplying the passed fee rate by the fee base. This // gives us the fixed point, scaled by 1 million that's used within the // protocol. feeRateFixed := uint32(req.FeeRate * feeBase) baseFeeMsat := lnwire.MilliSatoshi(req.BaseFeeMsat) feeSchema := routing.FeeSchema{ BaseFee: baseFeeMsat, FeeRate: feeRateFixed, } chanPolicy := routing.ChannelPolicy{ FeeSchema: feeSchema, TimeLockDelta: req.TimeLockDelta, } rpcsLog.Debugf("[updatechanpolicy] updating channel policy base_fee=%v, "+ "rate_float=%v, rate_fixed=%v, time_lock_delta: %v, targets=%v", req.BaseFeeMsat, req.FeeRate, feeRateFixed, req.TimeLockDelta, spew.Sdump(targetChans)) // With the scope resolved, we'll now send this to the // AuthenticatedGossiper so it can propagate the new policy for our // target channel(s). err := r.server.authGossiper.PropagateChanPolicyUpdate( chanPolicy, targetChans..., ) if err != nil { return nil, err } // Finally, we'll apply the set of active links amongst the target // channels. // // We create a partially policy as the logic won't overwrite a valid // sub-policy with a "nil" one. p := htlcswitch.ForwardingPolicy{ BaseFee: baseFeeMsat, FeeRate: lnwire.MilliSatoshi(feeRateFixed), TimeLockDelta: req.TimeLockDelta, } err = r.server.htlcSwitch.UpdateForwardingPolicies(p, targetChans...) if err != nil { // If we're unable update the fees due to the links not being // online, then we don't need to fail the call. We'll simply // log the failure. rpcsLog.Warnf("Unable to update link fees: %v", err) } return &lnrpc.PolicyUpdateResponse{}, nil } // ForwardingHistory allows the caller to query the htlcswitch for a record of // all HTLC's forwarded within the target time range, and integer offset within // that time range. If no time-range is specified, then the first chunk of the // past 24 hrs of forwarding history are returned. // A list of forwarding events are returned. The size of each forwarding event // is 40 bytes, and the max message size able to be returned in gRPC is 4 MiB. // In order to safely stay under this max limit, we'll return 50k events per // response. Each response has the index offset of the last entry. The index // offset can be provided to the request to allow the caller to skip a series // of records. func (r *rpcServer) ForwardingHistory(ctx context.Context, req *lnrpc.ForwardingHistoryRequest) (*lnrpc.ForwardingHistoryResponse, error) { rpcsLog.Debugf("[forwardinghistory]") // Before we perform the queries below, we'll instruct the switch to // flush any pending events to disk. This ensure we get a complete // snapshot at this particular time. if err := r.server.htlcSwitch.FlushForwardingEvents(); err != nil { return nil, fmt.Errorf("unable to flush forwarding "+ "events: %v", err) } var ( startTime, endTime time.Time numEvents uint32 ) // If the start and end time were not set, then we'll just return the // records over the past 24 hours. if req.StartTime == 0 && req.EndTime == 0 { now := time.Now() startTime = now.Add(-time.Hour * 24) endTime = now } else { startTime = time.Unix(int64(req.StartTime), 0) endTime = time.Unix(int64(req.EndTime), 0) } // If the number of events wasn't specified, then we'll default to // returning the last 100 events. numEvents = req.NumMaxEvents if numEvents == 0 { numEvents = 100 } // Next, we'll map the proto request into a format the is understood by // the forwarding log. eventQuery := channeldb.ForwardingEventQuery{ StartTime: startTime, EndTime: endTime, IndexOffset: req.IndexOffset, NumMaxEvents: numEvents, } timeSlice, err := r.server.chanDB.ForwardingLog().Query(eventQuery) if err != nil { return nil, fmt.Errorf("unable to query forwarding log: %v", err) } // TODO(roasbeef): add settlement latency? // * use FPE on all records? // With the events retrieved, we'll now map them into the proper proto // response. // // TODO(roasbeef): show in ns for the outside? resp := &lnrpc.ForwardingHistoryResponse{ ForwardingEvents: make([]*lnrpc.ForwardingEvent, len(timeSlice.ForwardingEvents)), LastOffsetIndex: timeSlice.LastIndexOffset, } for i, event := range timeSlice.ForwardingEvents { amtInSat := event.AmtIn.ToSatoshis() amtOutSat := event.AmtOut.ToSatoshis() feeMsat := event.AmtIn - event.AmtOut resp.ForwardingEvents[i] = &lnrpc.ForwardingEvent{ Timestamp: uint64(event.Timestamp.Unix()), ChanIdIn: event.IncomingChanID.ToUint64(), ChanIdOut: event.OutgoingChanID.ToUint64(), AmtIn: uint64(amtInSat), AmtOut: uint64(amtOutSat), Fee: uint64(feeMsat.ToSatoshis()), FeeMsat: uint64(feeMsat), } } return resp, nil }