// +build rpctest

package lnd

import (
	"bytes"
	"crypto/rand"
	"crypto/sha256"
	"encoding/hex"
	"fmt"
	"io"
	"io/ioutil"
	"math"
	"os"
	"path/filepath"
	"reflect"
	"strings"
	"sync"
	"sync/atomic"
	"testing"
	"time"

	"github.com/btcsuite/btcd/btcjson"
	"github.com/btcsuite/btcd/chaincfg"
	"github.com/btcsuite/btcd/chaincfg/chainhash"
	"github.com/btcsuite/btcd/integration/rpctest"
	"github.com/btcsuite/btcd/rpcclient"
	"github.com/btcsuite/btcd/wire"
	"github.com/btcsuite/btcutil"
	"github.com/davecgh/go-spew/spew"
	"github.com/go-errors/errors"
	"github.com/lightningnetwork/lnd/chanbackup"
	"github.com/lightningnetwork/lnd/lnrpc"
	"github.com/lightningnetwork/lnd/lntest"
	"github.com/lightningnetwork/lnd/lnwire"
	"golang.org/x/net/context"
	"google.golang.org/grpc"
)

var (
	harnessNetParams = &chaincfg.SimNetParams
)

const (
	testFeeBase         = 1e+6
	defaultCSV          = lntest.DefaultCSV
	defaultTimeout      = lntest.DefaultTimeout
	minerMempoolTimeout = lntest.MinerMempoolTimeout
	channelOpenTimeout  = lntest.ChannelOpenTimeout
	channelCloseTimeout = lntest.ChannelCloseTimeout
)

// harnessTest wraps a regular testing.T providing enhanced error detection
// and propagation. All error will be augmented with a full stack-trace in
// order to aid in debugging. Additionally, any panics caused by active
// test cases will also be handled and represented as fatals.
type harnessTest struct {
	t *testing.T

	// testCase is populated during test execution and represents the
	// current test case.
	testCase *testCase
}

// newHarnessTest creates a new instance of a harnessTest from a regular
// testing.T instance.
func newHarnessTest(t *testing.T) *harnessTest {
	return &harnessTest{t, nil}
}

// Fatalf causes the current active test case to fail with a fatal error. All
// integration tests should mark test failures solely with this method due to
// the error stack traces it produces.
func (h *harnessTest) Fatalf(format string, a ...interface{}) {
	stacktrace := errors.Wrap(fmt.Sprintf(format, a...), 1).ErrorStack()

	if h.testCase != nil {
		h.t.Fatalf("Failed: (%v): exited with error: \n"+
			"%v", h.testCase.name, stacktrace)
	} else {
		h.t.Fatalf("Error outside of test: %v", stacktrace)
	}
}

// RunTestCase executes a harness test case. Any errors or panics will be
// represented as fatal.
func (h *harnessTest) RunTestCase(testCase *testCase,
	net *lntest.NetworkHarness) {

	h.testCase = testCase
	defer func() {
		h.testCase = nil
	}()

	defer func() {
		if err := recover(); err != nil {
			description := errors.Wrap(err, 2).ErrorStack()
			h.t.Fatalf("Failed: (%v) panicked with: \n%v",
				h.testCase.name, description)
		}
	}()

	testCase.test(net, h)

	return
}

func (h *harnessTest) Logf(format string, args ...interface{}) {
	h.t.Logf(format, args...)
}

func (h *harnessTest) Log(args ...interface{}) {
	h.t.Log(args...)
}

func assertTxInBlock(t *harnessTest, block *wire.MsgBlock, txid *chainhash.Hash) {
	for _, tx := range block.Transactions {
		sha := tx.TxHash()
		if bytes.Equal(txid[:], sha[:]) {
			return
		}
	}

	t.Fatalf("tx was not included in block")
}

func rpcPointToWirePoint(t *harnessTest, chanPoint *lnrpc.ChannelPoint) wire.OutPoint {
	txid, err := getChanPointFundingTxid(chanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}

	return wire.OutPoint{
		Hash:  *txid,
		Index: chanPoint.OutputIndex,
	}
}

// mineBlocks mine 'num' of blocks and check that blocks are present in
// node blockchain. numTxs should be set to the number of transactions
// (excluding the coinbase) we expect to be included in the first mined block.
func mineBlocks(t *harnessTest, net *lntest.NetworkHarness,
	num uint32, numTxs int) []*wire.MsgBlock {

	// If we expect transactions to be included in the blocks we'll mine,
	// we wait here until they are seen in the miner's mempool.
	var txids []*chainhash.Hash
	var err error
	if numTxs > 0 {
		txids, err = waitForNTxsInMempool(
			net.Miner.Node, numTxs, minerMempoolTimeout,
		)
		if err != nil {
			t.Fatalf("unable to find txns in mempool: %v", err)
		}
	}

	blocks := make([]*wire.MsgBlock, num)

	blockHashes, err := net.Miner.Node.Generate(num)
	if err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	for i, blockHash := range blockHashes {
		block, err := net.Miner.Node.GetBlock(blockHash)
		if err != nil {
			t.Fatalf("unable to get block: %v", err)
		}

		blocks[i] = block
	}

	// Finally, assert that all the transactions were included in the first
	// block.
	for _, txid := range txids {
		assertTxInBlock(t, blocks[0], txid)
	}

	return blocks
}

// openChannelAndAssert attempts to open a channel with the specified
// parameters extended from Alice to Bob. Additionally, two items are asserted
// after the channel is considered open: the funding transaction should be
// found within a block, and that Alice can report the status of the new
// channel.
func openChannelAndAssert(ctx context.Context, t *harnessTest,
	net *lntest.NetworkHarness, alice, bob *lntest.HarnessNode,
	p lntest.OpenChannelParams) *lnrpc.ChannelPoint {

	chanOpenUpdate, err := net.OpenChannel(
		ctx, alice, bob, p,
	)
	if err != nil {
		t.Fatalf("unable to open channel: %v", err)
	}

	// Mine 6 blocks, then wait for Alice's node to notify us that the
	// channel has been opened. The funding transaction should be found
	// within the first newly mined block. We mine 6 blocks so that in the
	// case that the channel is public, it is announced to the network.
	block := mineBlocks(t, net, 6, 1)[0]

	fundingChanPoint, err := net.WaitForChannelOpen(ctx, chanOpenUpdate)
	if err != nil {
		t.Fatalf("error while waiting for channel open: %v", err)
	}
	fundingTxID, err := getChanPointFundingTxid(fundingChanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	assertTxInBlock(t, block, fundingTxID)

	// The channel should be listed in the peer information returned by
	// both peers.
	chanPoint := wire.OutPoint{
		Hash:  *fundingTxID,
		Index: fundingChanPoint.OutputIndex,
	}
	if err := net.AssertChannelExists(ctx, alice, &chanPoint); err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}
	if err := net.AssertChannelExists(ctx, bob, &chanPoint); err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}

	return fundingChanPoint
}

// closeChannelAndAssert attempts to close a channel identified by the passed
// channel point owned by the passed Lightning node. A fully blocking channel
// closure is attempted, therefore the passed context should be a child derived
// via timeout from a base parent. Additionally, once the channel has been
// detected as closed, an assertion checks that the transaction is found within
// a block. Finally, this assertion verifies that the node always sends out a
// disable update when closing the channel if the channel was previously enabled.
//
// NOTE: This method assumes that the provided funding point is confirmed
// on-chain AND that the edge exists in the node's channel graph. If the funding
// transactions was reorged out at some point, use closeReorgedChannelAndAssert.
func closeChannelAndAssert(ctx context.Context, t *harnessTest,
	net *lntest.NetworkHarness, node *lntest.HarnessNode,
	fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {

	// Fetch the current channel policy. If the channel is currently
	// enabled, we will register for graph notifications before closing to
	// assert that the node sends out a disabling update as a result of the
	// channel being closed.
	curPolicy := getChannelPolicies(t, node, node.PubKeyStr, fundingChanPoint)[0]
	expectDisable := !curPolicy.Disabled

	// If the current channel policy is enabled, begin subscribing the graph
	// updates before initiating the channel closure.
	var graphSub *graphSubscription
	if expectDisable {
		sub := subscribeGraphNotifications(t, ctx, node)
		graphSub = &sub
		defer close(graphSub.quit)
	}

	closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
	if err != nil {
		t.Fatalf("unable to close channel: %v", err)
	}

	// If the channel policy was enabled prior to the closure, wait until we
	// received the disabled update.
	if expectDisable {
		curPolicy.Disabled = true
		waitForChannelUpdate(
			t, *graphSub,
			[]expectedChanUpdate{
				{node.PubKeyStr, curPolicy, fundingChanPoint},
			},
		)
	}

	return assertChannelClosed(ctx, t, net, node, fundingChanPoint, closeUpdates)
}

// closeReorgedChannelAndAssert attempts to close a channel identified by the
// passed channel point owned by the passed Lightning node. A fully blocking
// channel closure is attempted, therefore the passed context should be a child
// derived via timeout from a base parent. Additionally, once the channel has
// been detected as closed, an assertion checks that the transaction is found
// within a block.
//
// NOTE: This method does not verify that the node sends a disable update for
// the closed channel.
func closeReorgedChannelAndAssert(ctx context.Context, t *harnessTest,
	net *lntest.NetworkHarness, node *lntest.HarnessNode,
	fundingChanPoint *lnrpc.ChannelPoint, force bool) *chainhash.Hash {

	closeUpdates, _, err := net.CloseChannel(ctx, node, fundingChanPoint, force)
	if err != nil {
		t.Fatalf("unable to close channel: %v", err)
	}

	return assertChannelClosed(ctx, t, net, node, fundingChanPoint, closeUpdates)
}

// assertChannelClosed asserts that the channel is properly cleaned up after
// initiating a cooperative or local close.
func assertChannelClosed(ctx context.Context, t *harnessTest,
	net *lntest.NetworkHarness, node *lntest.HarnessNode,
	fundingChanPoint *lnrpc.ChannelPoint,
	closeUpdates lnrpc.Lightning_CloseChannelClient) *chainhash.Hash {

	txid, err := getChanPointFundingTxid(fundingChanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	chanPointStr := fmt.Sprintf("%v:%v", txid, fundingChanPoint.OutputIndex)

	// At this point, the channel should now be marked as being in the
	// state of "waiting close".
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	pendingChanResp, err := node.PendingChannels(ctx, pendingChansRequest)
	if err != nil {
		t.Fatalf("unable to query for pending channels: %v", err)
	}
	var found bool
	for _, pendingClose := range pendingChanResp.WaitingCloseChannels {
		if pendingClose.Channel.ChannelPoint == chanPointStr {
			found = true
			break
		}
	}
	if !found {
		t.Fatalf("channel not marked as waiting close")
	}

	// We'll now, generate a single block, wait for the final close status
	// update, then ensure that the closing transaction was included in the
	// block.
	block := mineBlocks(t, net, 1, 1)[0]

	closingTxid, err := net.WaitForChannelClose(ctx, closeUpdates)
	if err != nil {
		t.Fatalf("error while waiting for channel close: %v", err)
	}

	assertTxInBlock(t, block, closingTxid)

	// Finally, the transaction should no longer be in the waiting close
	// state as we've just mined a block that should include the closing
	// transaction.
	err = lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		pendingChanResp, err := node.PendingChannels(
			ctx, pendingChansRequest,
		)
		if err != nil {
			return false
		}

		for _, pendingClose := range pendingChanResp.WaitingCloseChannels {
			if pendingClose.Channel.ChannelPoint == chanPointStr {
				return false
			}
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("closing transaction not marked as fully closed")
	}

	return closingTxid
}

// waitForChannelPendingForceClose waits for the node to report that the
// channel is pending force close, and that the UTXO nursery is aware of it.
func waitForChannelPendingForceClose(ctx context.Context,
	node *lntest.HarnessNode, fundingChanPoint *lnrpc.ChannelPoint) error {

	txid, err := getChanPointFundingTxid(fundingChanPoint)
	if err != nil {
		return err
	}

	op := wire.OutPoint{
		Hash:  *txid,
		Index: fundingChanPoint.OutputIndex,
	}

	var predErr error
	err = lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		pendingChanResp, err := node.PendingChannels(
			ctx, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to get pending "+
				"channels: %v", err)
			return false
		}

		forceClose, err := findForceClosedChannel(pendingChanResp, &op)
		if err != nil {
			predErr = err
			return false
		}

		// We must wait until the UTXO nursery has received the channel
		// and is aware of its maturity height.
		if forceClose.MaturityHeight == 0 {
			predErr = fmt.Errorf("channel had maturity height of 0")
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		return predErr
	}

	return nil
}

// cleanupForceClose mines a force close commitment found in the mempool and
// the following sweep transaction from the force closing node.
func cleanupForceClose(t *harnessTest, net *lntest.NetworkHarness,
	node *lntest.HarnessNode, chanPoint *lnrpc.ChannelPoint) {
	ctxb := context.Background()

	// Wait for the channel to be marked pending force close.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	err := waitForChannelPendingForceClose(ctxt, node, chanPoint)
	if err != nil {
		t.Fatalf("channel not pending force close: %v", err)
	}

	// Mine enough blocks for the node to sweep its funds from the force
	// closed channel.
	_, err = net.Miner.Node.Generate(defaultCSV)
	if err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// The node should now sweep the funds, clean up by mining the sweeping
	// tx.
	mineBlocks(t, net, 1, 1)
}

// numOpenChannelsPending sends an RPC request to a node to get a count of the
// node's channels that are currently in a pending state (with a broadcast, but
// not confirmed funding transaction).
func numOpenChannelsPending(ctxt context.Context, node *lntest.HarnessNode) (int, error) {
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	resp, err := node.PendingChannels(ctxt, pendingChansRequest)
	if err != nil {
		return 0, err
	}
	return len(resp.PendingOpenChannels), nil
}

// assertNumOpenChannelsPending asserts that a pair of nodes have the expected
// number of pending channels between them.
func assertNumOpenChannelsPending(ctxt context.Context, t *harnessTest,
	alice, bob *lntest.HarnessNode, expected int) {

	err := lntest.WaitNoError(func() error {
		aliceNumChans, err := numOpenChannelsPending(ctxt, alice)
		if err != nil {
			return fmt.Errorf("error fetching alice's node (%v) "+
				"pending channels %v", alice.NodeID, err)
		}
		bobNumChans, err := numOpenChannelsPending(ctxt, bob)
		if err != nil {
			return fmt.Errorf("error fetching bob's node (%v) "+
				"pending channels %v", bob.NodeID, err)
		}

		aliceStateCorrect := aliceNumChans == expected
		if !aliceStateCorrect {
			return fmt.Errorf("number of pending channels for "+
				"alice incorrect. expected %v, got %v",
				expected, aliceNumChans)
		}

		bobStateCorrect := bobNumChans == expected
		if !bobStateCorrect {
			return fmt.Errorf("number of pending channels for bob "+
				"incorrect. expected %v, got %v", expected,
				bobNumChans)
		}

		return nil
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(err.Error())
	}
}

// assertNumConnections asserts number current connections between two peers.
func assertNumConnections(t *harnessTest, alice, bob *lntest.HarnessNode,
	expected int) {
	ctxb := context.Background()

	const nPolls = 10

	tick := time.NewTicker(300 * time.Millisecond)
	defer tick.Stop()

	for i := nPolls - 1; i >= 0; i-- {
		select {
		case <-tick.C:
			ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
			aNumPeers, err := alice.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
			if err != nil {
				t.Fatalf("unable to fetch alice's node (%v) list peers %v",
					alice.NodeID, err)
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			bNumPeers, err := bob.ListPeers(ctxt, &lnrpc.ListPeersRequest{})
			if err != nil {
				t.Fatalf("unable to fetch bob's node (%v) list peers %v",
					bob.NodeID, err)
			}
			if len(aNumPeers.Peers) != expected {
				// Continue polling if this is not the final
				// loop.
				if i > 0 {
					continue
				}
				t.Fatalf("number of peers connected to alice is incorrect: "+
					"expected %v, got %v", expected, len(aNumPeers.Peers))
			}
			if len(bNumPeers.Peers) != expected {
				// Continue polling if this is not the final
				// loop.
				if i > 0 {
					continue
				}
				t.Fatalf("number of peers connected to bob is incorrect: "+
					"expected %v, got %v", expected, len(bNumPeers.Peers))
			}

			// Alice and Bob both have the required number of
			// peers, stop polling and return to caller.
			return
		}
	}
}

// shutdownAndAssert shuts down the given node and asserts that no errors
// occur.
func shutdownAndAssert(net *lntest.NetworkHarness, t *harnessTest,
	node *lntest.HarnessNode) {
	if err := net.ShutdownNode(node); err != nil {
		t.Fatalf("unable to shutdown %v: %v", node.Name(), err)
	}
}

// calcStaticFee calculates appropriate fees for commitment transactions.  This
// function provides a simple way to allow test balance assertions to take fee
// calculations into account.
//
// TODO(bvu): Refactor when dynamic fee estimation is added.
// TODO(conner) remove code duplication
func calcStaticFee(numHTLCs int) btcutil.Amount {
	const (
		commitWeight = btcutil.Amount(724)
		htlcWeight   = 172
		feePerKw     = btcutil.Amount(50 * 1000 / 4)
	)
	return feePerKw * (commitWeight +
		btcutil.Amount(htlcWeight*numHTLCs)) / 1000
}

// completePaymentRequests sends payments from a lightning node to complete all
// payment requests. If the awaitResponse parameter is true, this function
// does not return until all payments successfully complete without errors.
func completePaymentRequests(ctx context.Context, client lnrpc.LightningClient,
	paymentRequests []string, awaitResponse bool) error {

	// We start by getting the current state of the client's channels. This
	// is needed to ensure the payments actually have been committed before
	// we return.
	ctxt, _ := context.WithTimeout(ctx, defaultTimeout)
	req := &lnrpc.ListChannelsRequest{}
	listResp, err := client.ListChannels(ctxt, req)
	if err != nil {
		return err
	}

	ctxc, cancel := context.WithCancel(ctx)
	defer cancel()

	payStream, err := client.SendPayment(ctxc)
	if err != nil {
		return err
	}

	for _, payReq := range paymentRequests {
		sendReq := &lnrpc.SendRequest{
			PaymentRequest: payReq,
		}
		err := payStream.Send(sendReq)
		if err != nil {
			return err
		}
	}

	if awaitResponse {
		for range paymentRequests {
			resp, err := payStream.Recv()
			if err != nil {
				return err
			}
			if resp.PaymentError != "" {
				return fmt.Errorf("received payment error: %v",
					resp.PaymentError)
			}
		}

		return nil
	}

	// We are not waiting for feedback in the form of a response, but we
	// should still wait long enough for the server to receive and handle
	// the send before cancelling the request. We wait for the number of
	// updates to one of our channels has increased before we return.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctx, defaultTimeout)
		newListResp, err := client.ListChannels(ctxt, req)
		if err != nil {
			return false
		}

		for _, c1 := range listResp.Channels {
			for _, c2 := range newListResp.Channels {
				if c1.ChannelPoint != c2.ChannelPoint {
					continue
				}

				// If this channel has an increased numbr of
				// updates, we assume the payments are
				// committed, and we can return.
				if c2.NumUpdates > c1.NumUpdates {
					return true
				}
			}
		}

		return false
	}, time.Second*15)
	if err != nil {
		return err
	}

	return nil
}

// makeFakePayHash creates random pre image hash
func makeFakePayHash(t *harnessTest) []byte {
	randBuf := make([]byte, 32)

	if _, err := rand.Read(randBuf); err != nil {
		t.Fatalf("internal error, cannot generate random string: %v", err)
	}

	return randBuf
}

// createPayReqs is a helper method that will create a slice of payment
// requests for the given node.
func createPayReqs(node *lntest.HarnessNode, paymentAmt btcutil.Amount,
	numInvoices int) ([]string, [][]byte, []*lnrpc.Invoice, error) {

	payReqs := make([]string, numInvoices)
	rHashes := make([][]byte, numInvoices)
	invoices := make([]*lnrpc.Invoice, numInvoices)
	for i := 0; i < numInvoices; i++ {
		preimage := make([]byte, 32)
		_, err := rand.Read(preimage)
		if err != nil {
			return nil, nil, nil, fmt.Errorf("unable to generate "+
				"preimage: %v", err)
		}
		invoice := &lnrpc.Invoice{
			Memo:      "testing",
			RPreimage: preimage,
			Value:     int64(paymentAmt),
		}
		ctxt, _ := context.WithTimeout(
			context.Background(), defaultTimeout,
		)
		resp, err := node.AddInvoice(ctxt, invoice)
		if err != nil {
			return nil, nil, nil, fmt.Errorf("unable to add "+
				"invoice: %v", err)
		}

		payReqs[i] = resp.PaymentRequest
		rHashes[i] = resp.RHash
		invoices[i] = invoice
	}
	return payReqs, rHashes, invoices, nil
}

// getChanInfo is a helper method for getting channel info for a node's sole
// channel.
func getChanInfo(ctx context.Context, node *lntest.HarnessNode) (
	*lnrpc.Channel, error) {

	req := &lnrpc.ListChannelsRequest{}
	channelInfo, err := node.ListChannels(ctx, req)
	if err != nil {
		return nil, err
	}
	if len(channelInfo.Channels) != 1 {
		return nil, fmt.Errorf("node should only have a single "+
			"channel, instead he has %v", len(channelInfo.Channels))
	}

	return channelInfo.Channels[0], nil
}

const (
	AddrTypeWitnessPubkeyHash = lnrpc.AddressType_WITNESS_PUBKEY_HASH
	AddrTypeNestedPubkeyHash  = lnrpc.AddressType_NESTED_PUBKEY_HASH
)

// testOnchainFundRecovery checks lnd's ability to rescan for onchain outputs
// when providing a valid aezeed that owns outputs on the chain. This test
// performs multiple restorations using the same seed and various recovery
// windows to ensure we detect funds properly.
func testOnchainFundRecovery(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, create a new node with strong passphrase and grab the mnemonic
	// used for key derivation. This will bring up Carol with an empty
	// wallet, and such that she is synced up.
	password := []byte("The Magic Words are Squeamish Ossifrage")
	carol, mnemonic, err := net.NewNodeWithSeed("Carol", nil, password)
	if err != nil {
		t.Fatalf("unable to create node with seed; %v", err)
	}
	shutdownAndAssert(net, t, carol)

	// Create a closure for testing the recovery of Carol's wallet. This
	// method takes the expected value of Carol's balance when using the
	// given recovery window. Additionally, the caller can specify an action
	// to perform on the restored node before the node is shutdown.
	restoreCheckBalance := func(expAmount int64, expectedNumUTXOs int,
		recoveryWindow int32, fn func(*lntest.HarnessNode)) {

		// Restore Carol, passing in the password, mnemonic, and
		// desired recovery window.
		node, err := net.RestoreNodeWithSeed(
			"Carol", nil, password, mnemonic, recoveryWindow, nil,
		)
		if err != nil {
			t.Fatalf("unable to restore node: %v", err)
		}

		// Query carol for her current wallet balance, and also that we
		// gain the expected number of UTXOs.
		var (
			currBalance  int64
			currNumUTXOs uint32
		)
		err = lntest.WaitPredicate(func() bool {
			req := &lnrpc.WalletBalanceRequest{}
			ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
			resp, err := node.WalletBalance(ctxt, req)
			if err != nil {
				t.Fatalf("unable to query wallet balance: %v",
					err)
			}

			// Verify that Carol's balance matches our expected
			// amount.
			currBalance = resp.ConfirmedBalance
			if expAmount != currBalance {
				return false
			}

			utxoReq := &lnrpc.ListUnspentRequest{
				MaxConfs: math.MaxInt32,
			}
			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			utxoResp, err := node.ListUnspent(ctxt, utxoReq)
			if err != nil {
				t.Fatalf("unable to query utxos: %v", err)
			}

			currNumUTXOs := len(utxoResp.Utxos)
			if currNumUTXOs != expectedNumUTXOs {
				return false
			}

			return true
		}, 15*time.Second)
		if err != nil {
			t.Fatalf("expected restored node to have %d satoshis, "+
				"instead has %d satoshis, expected %d utxos "+
				"instead has %d", expAmount, currBalance,
				expectedNumUTXOs, currNumUTXOs)
		}

		// If the user provided a callback, execute the commands against
		// the restored Carol.
		if fn != nil {
			fn(node)
		}

		// Lastly, shutdown this Carol so we can move on to the next
		// restoration.
		shutdownAndAssert(net, t, node)
	}

	// Create a closure-factory for building closures that can generate and
	// skip a configurable number of addresses, before finally sending coins
	// to a next generated address. The returned closure will apply the same
	// behavior to both default P2WKH and NP2WKH scopes.
	skipAndSend := func(nskip int) func(*lntest.HarnessNode) {
		return func(node *lntest.HarnessNode) {
			newP2WKHAddrReq := &lnrpc.NewAddressRequest{
				Type: AddrTypeWitnessPubkeyHash,
			}

			newNP2WKHAddrReq := &lnrpc.NewAddressRequest{
				Type: AddrTypeNestedPubkeyHash,
			}

			// Generate and skip the number of addresses requested.
			for i := 0; i < nskip; i++ {
				ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
				_, err = node.NewAddress(ctxt, newP2WKHAddrReq)
				if err != nil {
					t.Fatalf("unable to generate new "+
						"p2wkh address: %v", err)
				}

				ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
				_, err = node.NewAddress(ctxt, newNP2WKHAddrReq)
				if err != nil {
					t.Fatalf("unable to generate new "+
						"np2wkh address: %v", err)
				}
			}

			// Send one BTC to the next P2WKH address.
			ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
			err = net.SendCoins(
				ctxt, btcutil.SatoshiPerBitcoin, node,
			)
			if err != nil {
				t.Fatalf("unable to send coins to node: %v",
					err)
			}

			// And another to the next NP2WKH address.
			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = net.SendCoinsNP2WKH(
				ctxt, btcutil.SatoshiPerBitcoin, node,
			)
			if err != nil {
				t.Fatalf("unable to send coins to node: %v",
					err)
			}
		}
	}

	// Restore Carol with a recovery window of 0. Since no coins have been
	// sent, her balance should be zero.
	//
	// After, one BTC is sent to both her first external P2WKH and NP2WKH
	// addresses.
	restoreCheckBalance(0, 0, 0, skipAndSend(0))

	// Check that restoring without a look-ahead results in having no funds
	// in the wallet, even though they exist on-chain.
	restoreCheckBalance(0, 0, 0, nil)

	// Now, check that using a look-ahead of 1 recovers the balance from
	// the two transactions above. We should also now have 2 UTXOs in the
	// wallet at the end of the recovery attempt.
	//
	// After, we will generate and skip 9 P2WKH and NP2WKH addresses, and
	// send another BTC to the subsequent 10th address in each derivation
	// path.
	restoreCheckBalance(2*btcutil.SatoshiPerBitcoin, 2, 1, skipAndSend(9))

	// Check that using a recovery window of 9 does not find the two most
	// recent txns.
	restoreCheckBalance(2*btcutil.SatoshiPerBitcoin, 2, 9, nil)

	// Extending our recovery window to 10 should find the most recent
	// transactions, leaving the wallet with 4 BTC total. We should also
	// learn of the two additional UTXOs created above.
	//
	// After, we will skip 19 more addrs, sending to the 20th address past
	// our last found address, and repeat the same checks.
	restoreCheckBalance(4*btcutil.SatoshiPerBitcoin, 4, 10, skipAndSend(19))

	// Check that recovering with a recovery window of 19 fails to find the
	// most recent transactions.
	restoreCheckBalance(4*btcutil.SatoshiPerBitcoin, 4, 19, nil)

	// Ensure that using a recovery window of 20 succeeds with all UTXOs
	// found and the final balance reflected.
	restoreCheckBalance(6*btcutil.SatoshiPerBitcoin, 6, 20, nil)
}

// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	chanAmt := maxBtcFundingAmount
	pushAmt := btcutil.Amount(100000)

	// First establish a channel with a capacity of 0.5 BTC between Alice
	// and Bob with Alice pushing 100k satoshis to Bob's side during
	// funding. This function will block until the channel itself is fully
	// open or an error occurs in the funding process. A series of
	// assertions will be executed to ensure the funding process completed
	// successfully.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}

	// With the channel open, ensure that the amount specified above has
	// properly been pushed to Bob.
	balReq := &lnrpc.ChannelBalanceRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceBal, err := net.Alice.ChannelBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get alice's balance: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	bobBal, err := net.Bob.ChannelBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get bobs's balance: %v", err)
	}
	if aliceBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
		t.Fatalf("alice's balance is incorrect: expected %v got %v",
			chanAmt-pushAmt-calcStaticFee(0), aliceBal)
	}
	if bobBal.Balance != int64(pushAmt) {
		t.Fatalf("bob's balance is incorrect: expected %v got %v",
			pushAmt, bobBal.Balance)
	}

	// Finally, immediately close the channel. This function will also
	// block until the channel is closed and will additionally assert the
	// relevant channel closing post conditions.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// testUnconfirmedChannelFunding tests that unconfirmed outputs that pay to us
// can be used to fund channels.
func testUnconfirmedChannelFunding(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt = maxBtcFundingAmount
		pushAmt = btcutil.Amount(100000)
	)

	// We'll start off by creating a node for Carol.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create carol's node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// We'll send her some funds that should not confirm.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoinsUnconfirmed(ctxt, 2*chanAmt, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}

	// Make sure the unconfirmed tx is seen in the mempool.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("failed to find tx in miner mempool: %v", err)
	}

	// Now, we'll connect her to Alice so that they can open a channel
	// together. The funding flow should select Carol's unconfirmed output
	// as she doesn't have any other funds since it's a new node.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanOpenUpdate, err := net.OpenChannel(
		ctxt, carol, net.Alice,
		lntest.OpenChannelParams{
			Amt:              chanAmt,
			PushAmt:          pushAmt,
			SpendUnconfirmed: true,
		},
	)
	if err != nil {
		t.Fatalf("unable to open channel between carol and alice: %v",
			err)
	}

	// Confirm the channel and wait for it to be recognized by both
	// parties. Two transactions should be mined, the unconfirmed spend and
	// the funding tx.
	mineBlocks(t, net, 6, 2)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	chanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
	if err != nil {
		t.Fatalf("error while waiting for channel open: %v", err)
	}

	// With the channel open, we'll check the balances on each side of the
	// channel as a sanity check to ensure things worked out as intended.
	balReq := &lnrpc.ChannelBalanceRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBal, err := carol.ChannelBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceBal, err := net.Alice.ChannelBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get alice's balance: %v", err)
	}
	if carolBal.Balance != int64(chanAmt-pushAmt-calcStaticFee(0)) {
		t.Fatalf("carol's balance is incorrect: expected %v got %v",
			chanAmt-pushAmt-calcStaticFee(0), carolBal)
	}
	if aliceBal.Balance != int64(pushAmt) {
		t.Fatalf("alice's balance is incorrect: expected %v got %v",
			pushAmt, aliceBal.Balance)
	}

	// Now that we're done with the test, the channel can be closed.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPoint, false)
}

// txStr returns the string representation of the channel's funding transaction.
func txStr(chanPoint *lnrpc.ChannelPoint) string {
	fundingTxID, err := getChanPointFundingTxid(chanPoint)
	if err != nil {
		return ""
	}
	cp := wire.OutPoint{
		Hash:  *fundingTxID,
		Index: chanPoint.OutputIndex,
	}
	return cp.String()
}

// expectedChanUpdate houses params we expect a ChannelUpdate to advertise.
type expectedChanUpdate struct {
	advertisingNode string
	expectedPolicy  *lnrpc.RoutingPolicy
	chanPoint       *lnrpc.ChannelPoint
}

// waitForChannelUpdate waits for a node to receive the expected channel
// updates.
func waitForChannelUpdate(t *harnessTest, subscription graphSubscription,
	expUpdates []expectedChanUpdate) {

	// Create an array indicating which expected channel updates we have
	// received.
	found := make([]bool, len(expUpdates))
out:
	for {
		select {
		case graphUpdate := <-subscription.updateChan:
			for _, update := range graphUpdate.ChannelUpdates {
				// For each expected update, check if it matches
				// the update we just received.
				for i, exp := range expUpdates {
					fundingTxStr := txStr(update.ChanPoint)
					if fundingTxStr != txStr(exp.chanPoint) {
						continue
					}

					if update.AdvertisingNode !=
						exp.advertisingNode {
						continue
					}

					err := checkChannelPolicy(
						update.RoutingPolicy,
						exp.expectedPolicy,
					)
					if err != nil {
						continue
					}

					// We got a policy update that matched
					// the values and channel point of what
					// we expected, mark it as found.
					found[i] = true

					// If we have no more channel updates
					// we are waiting for, break out of the
					// loop.
					rem := 0
					for _, f := range found {
						if !f {
							rem++
						}
					}

					if rem == 0 {
						break out
					}

					// Since we found a match among the
					// expected updates, break out of the
					// inner loop.
					break
				}
			}
		case err := <-subscription.errChan:
			t.Fatalf("unable to recv graph update: %v", err)
		case <-time.After(20 * time.Second):
			t.Fatalf("did not receive channel update")
		}
	}
}

// assertNoChannelUpdates ensures that no ChannelUpdates are sent via the
// graphSubscription. This method will block for the provided duration before
// returning to the caller if successful.
func assertNoChannelUpdates(t *harnessTest, subscription graphSubscription,
	duration time.Duration) {

	timeout := time.After(duration)
	for {
		select {
		case graphUpdate := <-subscription.updateChan:
			if len(graphUpdate.ChannelUpdates) > 0 {
				t.Fatalf("received %d channel updates when "+
					"none were expected",
					len(graphUpdate.ChannelUpdates))
			}

		case err := <-subscription.errChan:
			t.Fatalf("graph subscription failure: %v", err)

		case <-timeout:
			// No updates received, success.
			return
		}
	}
}

// getChannelPolicies queries the channel graph and retrieves the current edge
// policies for the provided channel points.
func getChannelPolicies(t *harnessTest, node *lntest.HarnessNode,
	advertisingNode string,
	chanPoints ...*lnrpc.ChannelPoint) []*lnrpc.RoutingPolicy {

	ctxb := context.Background()

	descReq := &lnrpc.ChannelGraphRequest{
		IncludeUnannounced: true,
	}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	chanGraph, err := node.DescribeGraph(ctxt, descReq)
	if err != nil {
		t.Fatalf("unable to query for alice's graph: %v", err)
	}

	var policies []*lnrpc.RoutingPolicy
out:
	for _, chanPoint := range chanPoints {
		for _, e := range chanGraph.Edges {
			if e.ChanPoint != txStr(chanPoint) {
				continue
			}

			if e.Node1Pub == advertisingNode {
				policies = append(policies, e.Node1Policy)
			} else {
				policies = append(policies, e.Node2Policy)
			}

			continue out
		}

		// If we've iterated over all the known edges and we weren't
		// able to find this specific one, then we'll fail.
		t.Fatalf("did not find edge %v", txStr(chanPoint))
	}

	return policies
}

// assertChannelPolicy asserts that the passed node's known channel policy for
// the passed chanPoint is consistent with the expected policy values.
func assertChannelPolicy(t *harnessTest, node *lntest.HarnessNode,
	advertisingNode string, expectedPolicy *lnrpc.RoutingPolicy,
	chanPoints ...*lnrpc.ChannelPoint) {

	policies := getChannelPolicies(t, node, advertisingNode, chanPoints...)
	for _, policy := range policies {
		err := checkChannelPolicy(policy, expectedPolicy)
		if err != nil {
			t.Fatalf(err.Error())
		}
	}
}

// checkChannelPolicy checks that the policy matches the expected one.
func checkChannelPolicy(policy, expectedPolicy *lnrpc.RoutingPolicy) error {
	if policy.FeeBaseMsat != expectedPolicy.FeeBaseMsat {
		return fmt.Errorf("expected base fee %v, got %v",
			expectedPolicy.FeeBaseMsat, policy.FeeBaseMsat)
	}
	if policy.FeeRateMilliMsat != expectedPolicy.FeeRateMilliMsat {
		return fmt.Errorf("expected fee rate %v, got %v",
			expectedPolicy.FeeRateMilliMsat,
			policy.FeeRateMilliMsat)
	}
	if policy.TimeLockDelta != expectedPolicy.TimeLockDelta {
		return fmt.Errorf("expected time lock delta %v, got %v",
			expectedPolicy.TimeLockDelta,
			policy.TimeLockDelta)
	}
	if policy.MinHtlc != expectedPolicy.MinHtlc {
		return fmt.Errorf("expected min htlc %v, got %v",
			expectedPolicy.MinHtlc, policy.MinHtlc)
	}
	if policy.Disabled != expectedPolicy.Disabled {
		return errors.New("edge should be disabled but isn't")
	}

	return nil
}

// testUpdateChannelPolicy tests that policy updates made to a channel
// gets propagated to other nodes in the network.
func testUpdateChannelPolicy(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		defaultFeeBase       = 1000
		defaultFeeRate       = 1
		defaultTimeLockDelta = defaultBitcoinTimeLockDelta
		defaultMinHtlc       = 1000
	)

	// Launch notification clients for all nodes, such that we can
	// get notified when they discover new channels and updates in the
	// graph.
	aliceSub := subscribeGraphNotifications(t, ctxb, net.Alice)
	defer close(aliceSub.quit)
	bobSub := subscribeGraphNotifications(t, ctxb, net.Bob)
	defer close(bobSub.quit)

	chanAmt := maxBtcFundingAmount
	pushAmt := chanAmt / 2

	// Create a channel Alice->Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	// We add all the nodes' update channels to a slice, such that we can
	// make sure they all receive the expected updates.
	graphSubs := []graphSubscription{aliceSub, bobSub}
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob}

	// Alice and Bob should see each other's ChannelUpdates, advertising the
	// default routing policies.
	expectedPolicy := &lnrpc.RoutingPolicy{
		FeeBaseMsat:      defaultFeeBase,
		FeeRateMilliMsat: defaultFeeRate,
		TimeLockDelta:    defaultTimeLockDelta,
		MinHtlc:          defaultMinHtlc,
	}

	for _, graphSub := range graphSubs {
		waitForChannelUpdate(
			t, graphSub,
			[]expectedChanUpdate{
				{net.Alice.PubKeyStr, expectedPolicy, chanPoint},
				{net.Bob.PubKeyStr, expectedPolicy, chanPoint},
			},
		)
	}

	// They should now know about the default policies.
	for _, node := range nodes {
		assertChannelPolicy(
			t, node, net.Alice.PubKeyStr, expectedPolicy, chanPoint,
		)
		assertChannelPolicy(
			t, node, net.Bob.PubKeyStr, expectedPolicy, chanPoint,
		)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}

	// Create Carol and a new channel Bob->Carol.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	carolSub := subscribeGraphNotifications(t, ctxb, carol)
	defer close(carolSub.quit)

	graphSubs = append(graphSubs, carolSub)
	nodes = append(nodes, carol)

	// Send some coins to Carol that can be used for channel funding.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}

	if err := net.ConnectNodes(ctxb, carol, net.Bob); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}

	// Open the channel Carol->Bob with a custom min_htlc value set. Since
	// Carol is opening the channel, she will require Bob to not forward
	// HTLCs smaller than this value, and hence he should advertise it as
	// part of his ChannelUpdate.
	const customMinHtlc = 5000
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint2 := openChannelAndAssert(
		ctxt, t, net, carol, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
			MinHtlc: customMinHtlc,
		},
	)

	expectedPolicyBob := &lnrpc.RoutingPolicy{
		FeeBaseMsat:      defaultFeeBase,
		FeeRateMilliMsat: defaultFeeRate,
		TimeLockDelta:    defaultTimeLockDelta,
		MinHtlc:          customMinHtlc,
	}

	expectedPolicyCarol := &lnrpc.RoutingPolicy{
		FeeBaseMsat:      defaultFeeBase,
		FeeRateMilliMsat: defaultFeeRate,
		TimeLockDelta:    defaultTimeLockDelta,
		MinHtlc:          defaultMinHtlc,
	}

	for _, graphSub := range graphSubs {
		waitForChannelUpdate(
			t, graphSub,
			[]expectedChanUpdate{
				{net.Bob.PubKeyStr, expectedPolicyBob, chanPoint2},
				{carol.PubKeyStr, expectedPolicyCarol, chanPoint2},
			},
		)
	}

	// Check that all nodes now know about the updated policies.
	for _, node := range nodes {
		assertChannelPolicy(
			t, node, net.Bob.PubKeyStr, expectedPolicyBob,
			chanPoint2,
		)
		assertChannelPolicy(
			t, node, carol.PubKeyStr, expectedPolicyCarol,
			chanPoint2,
		)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint2)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint2)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint2)
	if err != nil {
		t.Fatalf("carol didn't report channel: %v", err)
	}

	// First we'll try to send a payment from Alice to Carol with an amount
	// less than the min_htlc value required by Carol. This payment should
	// fail, as the channel Bob->Carol cannot carry HTLCs this small.
	payAmt := btcutil.Amount(4)
	invoice := &lnrpc.Invoice{
		Memo:  "testing",
		Value: int64(payAmt),
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := carol.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(
		ctxt, net.Alice, []string{resp.PaymentRequest}, true,
	)

	// Alice knows about the channel policy of Carol and should therefore
	// not be able to find a path during routing.
	if err == nil ||
		!strings.Contains(err.Error(), "unable to find a path") {
		t.Fatalf("expected payment to fail, instead got %v", err)
	}

	// Now we try to send a payment over the channel with a value too low
	// to be accepted. First we query for a route to route a payment of
	// 5000 mSAT, as this is accepted.
	payAmt = btcutil.Amount(5)
	routesReq := &lnrpc.QueryRoutesRequest{
		PubKey:         carol.PubKeyStr,
		Amt:            int64(payAmt),
		NumRoutes:      1,
		FinalCltvDelta: defaultTimeLockDelta,
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
	if err != nil {
		t.Fatalf("unable to get route: %v", err)
	}

	if len(routes.Routes) != 1 {
		t.Fatalf("expected to find 1 route, got %v", len(routes.Routes))
	}

	// We change the route to carry a payment of 4000 mSAT instead of 5000
	// mSAT.
	payAmt = btcutil.Amount(4)
	amtSat := int64(payAmt)
	amtMSat := int64(lnwire.NewMSatFromSatoshis(payAmt))
	routes.Routes[0].Hops[0].AmtToForward = amtSat
	routes.Routes[0].Hops[0].AmtToForwardMsat = amtMSat
	routes.Routes[0].Hops[1].AmtToForward = amtSat
	routes.Routes[0].Hops[1].AmtToForwardMsat = amtMSat

	// Send the payment with the modified value.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	alicePayStream, err := net.Alice.SendToRoute(ctxt)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}
	sendReq := &lnrpc.SendToRouteRequest{
		PaymentHash: resp.RHash,
		Routes:      routes.Routes,
	}

	err = alicePayStream.Send(sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// We expect this payment to fail, and that the min_htlc value is
	// communicated back to us, since the attempted HTLC value was too low.
	sendResp, err := alicePayStream.Recv()
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// Expected as part of the error message.
	substrs := []string{
		"AmountBelowMinimum",
		"HtlcMinimumMsat: (lnwire.MilliSatoshi) 5000 mSAT",
	}
	for _, s := range substrs {
		if !strings.Contains(sendResp.PaymentError, s) {
			t.Fatalf("expected error to contain \"%v\", instead "+
				"got %v", s, sendResp.PaymentError)
		}
	}

	// Make sure sending using the original value succeeds.
	payAmt = btcutil.Amount(5)
	amtSat = int64(payAmt)
	amtMSat = int64(lnwire.NewMSatFromSatoshis(payAmt))
	routes.Routes[0].Hops[0].AmtToForward = amtSat
	routes.Routes[0].Hops[0].AmtToForwardMsat = amtMSat
	routes.Routes[0].Hops[1].AmtToForward = amtSat
	routes.Routes[0].Hops[1].AmtToForwardMsat = amtMSat

	sendReq = &lnrpc.SendToRouteRequest{
		PaymentHash: resp.RHash,
		Routes:      routes.Routes,
	}

	err = alicePayStream.Send(sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	sendResp, err = alicePayStream.Recv()
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	if sendResp.PaymentError != "" {
		t.Fatalf("expected payment to succeed, instead got %v",
			sendResp.PaymentError)
	}

	// With our little cluster set up, we'll update the fees for the
	// channel Bob side of the Alice->Bob channel, and make sure all nodes
	// learn about it.
	baseFee := int64(1500)
	feeRate := int64(12)
	timeLockDelta := uint32(66)

	expectedPolicy = &lnrpc.RoutingPolicy{
		FeeBaseMsat:      baseFee,
		FeeRateMilliMsat: testFeeBase * feeRate,
		TimeLockDelta:    timeLockDelta,
		MinHtlc:          defaultMinHtlc,
	}

	req := &lnrpc.PolicyUpdateRequest{
		BaseFeeMsat:   baseFee,
		FeeRate:       float64(feeRate),
		TimeLockDelta: timeLockDelta,
		Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
			ChanPoint: chanPoint,
		},
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if _, err := net.Bob.UpdateChannelPolicy(ctxt, req); err != nil {
		t.Fatalf("unable to get alice's balance: %v", err)
	}

	// Wait for all nodes to have seen the policy update done by Bob.
	for _, graphSub := range graphSubs {
		waitForChannelUpdate(
			t, graphSub,
			[]expectedChanUpdate{
				{net.Bob.PubKeyStr, expectedPolicy, chanPoint},
			},
		)
	}

	// Check that all nodes now know about Bob's updated policy.
	for _, node := range nodes {
		assertChannelPolicy(
			t, node, net.Bob.PubKeyStr, expectedPolicy, chanPoint,
		)
	}

	// Now that all nodes have received the new channel update, we'll try
	// to send a payment from Alice to Carol to ensure that Alice has
	// internalized this fee update. This shouldn't affect the route that
	// Alice takes though: we updated the Alice -> Bob channel and she
	// doesn't pay for transit over that channel as it's direct.
	// Note that the payment amount is >= the min_htlc value for the
	// channel Bob->Carol, so it should successfully be forwarded.
	payAmt = btcutil.Amount(5)
	invoice = &lnrpc.Invoice{
		Memo:  "testing",
		Value: int64(payAmt),
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err = carol.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(
		ctxt, net.Alice, []string{resp.PaymentRequest}, true,
	)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// We'll now open a channel from Alice directly to Carol.
	if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint3 := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint3)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint3)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}

	// Make a global update, and check that both channels' new policies get
	// propagated.
	baseFee = int64(800)
	feeRate = int64(123)
	timeLockDelta = uint32(22)

	expectedPolicy.FeeBaseMsat = baseFee
	expectedPolicy.FeeRateMilliMsat = testFeeBase * feeRate
	expectedPolicy.TimeLockDelta = timeLockDelta

	req = &lnrpc.PolicyUpdateRequest{
		BaseFeeMsat:   baseFee,
		FeeRate:       float64(feeRate),
		TimeLockDelta: timeLockDelta,
	}
	req.Scope = &lnrpc.PolicyUpdateRequest_Global{}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	_, err = net.Alice.UpdateChannelPolicy(ctxt, req)
	if err != nil {
		t.Fatalf("unable to get alice's balance: %v", err)
	}

	// Wait for all nodes to have seen the policy updates for both of
	// Alice's channels.
	for _, graphSub := range graphSubs {
		waitForChannelUpdate(
			t, graphSub,
			[]expectedChanUpdate{
				{net.Alice.PubKeyStr, expectedPolicy, chanPoint},
				{net.Alice.PubKeyStr, expectedPolicy, chanPoint3},
			},
		)
	}

	// And finally check that all nodes remembers the policy update they
	// received.
	for _, node := range nodes {
		assertChannelPolicy(
			t, node, net.Alice.PubKeyStr, expectedPolicy,
			chanPoint, chanPoint3,
		)
	}

	// Close the channels.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint2, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint3, false)
}

// waitForNodeBlockHeight queries the node for its current block height until
// it reaches the passed height.
func waitForNodeBlockHeight(ctx context.Context, node *lntest.HarnessNode,
	height int32) error {
	var predErr error
	err := lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctx, 10*time.Second)
		info, err := node.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
		if err != nil {
			predErr = err
			return false
		}

		if int32(info.BlockHeight) != height {
			predErr = fmt.Errorf("expected block height to "+
				"be %v, was %v", height, info.BlockHeight)
			return false
		}
		return true
	}, 15*time.Second)
	if err != nil {
		return predErr
	}
	return nil
}

// assertMinerBlockHeightDelta ensures that tempMiner is 'delta' blocks ahead
// of miner.
func assertMinerBlockHeightDelta(t *harnessTest,
	miner, tempMiner *rpctest.Harness, delta int32) {

	// Ensure the chain lengths are what we expect.
	var predErr error
	err := lntest.WaitPredicate(func() bool {
		_, tempMinerHeight, err := tempMiner.Node.GetBestBlock()
		if err != nil {
			predErr = fmt.Errorf("unable to get current "+
				"blockheight %v", err)
			return false
		}

		_, minerHeight, err := miner.Node.GetBestBlock()
		if err != nil {
			predErr = fmt.Errorf("unable to get current "+
				"blockheight %v", err)
			return false
		}

		if tempMinerHeight != minerHeight+delta {
			predErr = fmt.Errorf("expected new miner(%d) to be %d "+
				"blocks ahead of original miner(%d)",
				tempMinerHeight, delta, minerHeight)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}
}

// testOpenChannelAfterReorg tests that in the case where we have an open
// channel where the funding tx gets reorged out, the channel will no
// longer be present in the node's routing table.
func testOpenChannelAfterReorg(net *lntest.NetworkHarness, t *harnessTest) {
	var (
		ctxb = context.Background()
		temp = "temp"
		perm = "perm"
	)

	// Set up a new miner that we can use to cause a reorg.
	args := []string{"--rejectnonstd", "--txindex"}
	tempMiner, err := rpctest.New(harnessNetParams,
		&rpcclient.NotificationHandlers{}, args)
	if err != nil {
		t.Fatalf("unable to create mining node: %v", err)
	}
	if err := tempMiner.SetUp(false, 0); err != nil {
		t.Fatalf("unable to set up mining node: %v", err)
	}
	defer tempMiner.TearDown()

	// We start by connecting the new miner to our original miner,
	// such that it will sync to our original chain.
	err = net.Miner.Node.Node(
		btcjson.NConnect, tempMiner.P2PAddress(), &temp,
	)
	if err != nil {
		t.Fatalf("unable to remove node: %v", err)
	}
	nodeSlice := []*rpctest.Harness{net.Miner, tempMiner}
	if err := rpctest.JoinNodes(nodeSlice, rpctest.Blocks); err != nil {
		t.Fatalf("unable to join node on blocks: %v", err)
	}

	// The two miners should be on the same blockheight.
	assertMinerBlockHeightDelta(t, net.Miner, tempMiner, 0)

	// We disconnect the two miners, such that we can mine two different
	// chains and can cause a reorg later.
	err = net.Miner.Node.Node(
		btcjson.NDisconnect, tempMiner.P2PAddress(), &temp,
	)
	if err != nil {
		t.Fatalf("unable to remove node: %v", err)
	}

	// Create a new channel that requires 1 confs before it's considered
	// open, then broadcast the funding transaction
	chanAmt := maxBtcFundingAmount
	pushAmt := btcutil.Amount(0)
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
		chanAmt, pushAmt)
	if err != nil {
		t.Fatalf("unable to open channel: %v", err)
	}

	// Wait for miner to have seen the funding tx. The temporary miner is
	// disconnected, and won't see the transaction.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("failed to find funding tx in mempool: %v", err)
	}

	// At this point, the channel's funding transaction will have been
	// broadcast, but not confirmed, and the channel should be pending.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)

	fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
	if err != nil {
		t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
			" %v", err)
	}

	// We now cause a fork, by letting our original miner mine 10 blocks,
	// and our new miner mine 15. This will also confirm our pending
	// channel on the original miner's chain, which should be considered
	// open.
	block := mineBlocks(t, net, 10, 1)[0]
	assertTxInBlock(t, block, fundingTxID)
	if _, err := tempMiner.Node.Generate(15); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Ensure the chain lengths are what we expect, with the temp miner
	// being 5 blocks ahead.
	assertMinerBlockHeightDelta(t, net.Miner, tempMiner, 5)

	// Wait for Alice to sync to the original miner's chain.
	_, minerHeight, err := net.Miner.Node.GetBestBlock()
	if err != nil {
		t.Fatalf("unable to get current blockheight %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = waitForNodeBlockHeight(ctxt, net.Alice, minerHeight)
	if err != nil {
		t.Fatalf("unable to sync to chain: %v", err)
	}

	chanPoint := &lnrpc.ChannelPoint{
		FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
			FundingTxidBytes: pendingUpdate.Txid,
		},
		OutputIndex: pendingUpdate.OutputIndex,
	}

	// Ensure channel is no longer pending.
	assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)

	// Wait for Alice and Bob to recognize and advertise the new channel
	// generated above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't advertise channel before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't advertise channel before "+
			"timeout: %v", err)
	}

	// Alice should now have 1 edge in her graph.
	req := &lnrpc.ChannelGraphRequest{
		IncludeUnannounced: true,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	chanGraph, err := net.Alice.DescribeGraph(ctxt, req)
	if err != nil {
		t.Fatalf("unable to query for alice's routing table: %v", err)
	}

	numEdges := len(chanGraph.Edges)
	if numEdges != 1 {
		t.Fatalf("expected to find one edge in the graph, found %d",
			numEdges)
	}

	// Now we disconnect Alice's chain backend from the original miner, and
	// connect the two miners together. Since the temporary miner knows
	// about a longer chain, both miners should sync to that chain.
	err = net.Miner.Node.Node(
		btcjson.NRemove, net.BackendCfg.P2PAddr(), &perm,
	)
	if err != nil {
		t.Fatalf("unable to remove node: %v", err)
	}

	// Connecting to the temporary miner should now cause our original
	// chain to be re-orged out.
	err = net.Miner.Node.Node(
		btcjson.NConnect, tempMiner.P2PAddress(), &temp,
	)
	if err != nil {
		t.Fatalf("unable to remove node: %v", err)
	}

	nodes := []*rpctest.Harness{tempMiner, net.Miner}
	if err := rpctest.JoinNodes(nodes, rpctest.Blocks); err != nil {
		t.Fatalf("unable to join node on blocks: %v", err)
	}

	// Once again they should be on the same chain.
	assertMinerBlockHeightDelta(t, net.Miner, tempMiner, 0)

	// Now we disconnect the two miners, and connect our original miner to
	// our chain backend once again.
	err = net.Miner.Node.Node(
		btcjson.NDisconnect, tempMiner.P2PAddress(), &temp,
	)
	if err != nil {
		t.Fatalf("unable to remove node: %v", err)
	}

	err = net.Miner.Node.Node(
		btcjson.NConnect, net.BackendCfg.P2PAddr(), &perm,
	)
	if err != nil {
		t.Fatalf("unable to remove node: %v", err)
	}

	// This should have caused a reorg, and Alice should sync to the longer
	// chain, where the funding transaction is not confirmed.
	_, tempMinerHeight, err := tempMiner.Node.GetBestBlock()
	if err != nil {
		t.Fatalf("unable to get current blockheight %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = waitForNodeBlockHeight(ctxt, net.Alice, tempMinerHeight)
	if err != nil {
		t.Fatalf("unable to sync to chain: %v", err)
	}

	// Since the fundingtx was reorged out, Alice should now have no edges
	// in her graph.
	req = &lnrpc.ChannelGraphRequest{
		IncludeUnannounced: true,
	}

	var predErr error
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
		if err != nil {
			predErr = fmt.Errorf("unable to query for alice's routing table: %v", err)
			return false
		}

		numEdges = len(chanGraph.Edges)
		if numEdges != 0 {
			predErr = fmt.Errorf("expected to find no edge in the graph, found %d",
				numEdges)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// Cleanup by mining the funding tx again, then closing the channel.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, fundingTxID)

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeReorgedChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// testDisconnectingTargetPeer performs a test which
// disconnects Alice-peer from Bob-peer and then re-connects them again
func testDisconnectingTargetPeer(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// Check existing connection.
	assertNumConnections(t, net.Alice, net.Bob, 1)

	chanAmt := maxBtcFundingAmount
	pushAmt := btcutil.Amount(0)

	// Create a new channel that requires 1 confs before it's considered
	// open, then broadcast the funding transaction
	const numConfs = 1
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, net.Bob,
		chanAmt, pushAmt)
	if err != nil {
		t.Fatalf("unable to open channel: %v", err)
	}

	// At this point, the channel's funding transaction will have
	// been broadcast, but not confirmed. Alice and Bob's nodes
	// should reflect this when queried via RPC.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 1)

	// Disconnect Alice-peer from Bob-peer and get error
	// causes by one pending channel with detach node is existing.
	if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
		t.Fatalf("Bob's peer was disconnected from Alice's"+
			" while one pending channel is existing: err %v", err)
	}

	time.Sleep(time.Millisecond * 300)

	// Check existing connection.
	assertNumConnections(t, net.Alice, net.Bob, 1)

	fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
	if err != nil {
		t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
			" %v", err)
	}

	// Mine a block, then wait for Alice's node to notify us that the
	// channel has been opened. The funding transaction should be found
	// within the newly mined block.
	block := mineBlocks(t, net, numConfs, 1)[0]
	assertTxInBlock(t, block, fundingTxID)

	// At this point, the channel should be fully opened and there should
	// be no pending channels remaining for either node.
	time.Sleep(time.Millisecond * 300)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)

	assertNumOpenChannelsPending(ctxt, t, net.Alice, net.Bob, 0)

	// The channel should be listed in the peer information returned by
	// both peers.
	outPoint := wire.OutPoint{
		Hash:  *fundingTxID,
		Index: pendingUpdate.OutputIndex,
	}

	// Check both nodes to ensure that the channel is ready for operation.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.AssertChannelExists(ctxt, net.Bob, &outPoint); err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}

	// Finally, immediately close the channel. This function will also
	// block until the channel is closed and will additionally assert the
	// relevant channel closing post conditions.
	chanPoint := &lnrpc.ChannelPoint{
		FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
			FundingTxidBytes: pendingUpdate.Txid,
		},
		OutputIndex: pendingUpdate.OutputIndex,
	}

	// Disconnect Alice-peer from Bob-peer and get error
	// causes by one active channel with detach node is existing.
	if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err == nil {
		t.Fatalf("Bob's peer was disconnected from Alice's"+
			" while one active channel is existing: err %v", err)
	}

	// Check existing connection.
	assertNumConnections(t, net.Alice, net.Bob, 1)

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, true)

	// Disconnect Alice-peer from Bob-peer without getting error
	// about existing channels.
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
			predErr = err
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("unable to disconnect Bob's peer from Alice's: err %v",
			predErr)
	}

	// Check zero peer connections.
	assertNumConnections(t, net.Alice, net.Bob, 0)

	// Finally, re-connect both nodes.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, net.Bob); err != nil {
		t.Fatalf("unable to connect Alice's peer to Bob's: err %v", err)
	}

	// Check existing connection.
	assertNumConnections(t, net.Alice, net.Bob, 1)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, net.Alice, chanPoint)
}

// testFundingPersistence is intended to ensure that the Funding Manager
// persists the state of new channels prior to broadcasting the channel's
// funding transaction. This ensures that the daemon maintains an up-to-date
// representation of channels if the system is restarted or disconnected.
// testFundingPersistence mirrors testBasicChannelFunding, but adds restarts
// and checks for the state of channels with unconfirmed funding transactions.
func testChannelFundingPersistence(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	chanAmt := maxBtcFundingAmount
	pushAmt := btcutil.Amount(0)

	// As we need to create a channel that requires more than 1
	// confirmation before it's open, with the current set of defaults,
	// we'll need to create a new node instance.
	const numConfs = 5
	carolArgs := []string{fmt.Sprintf("--bitcoin.defaultchanconfs=%v", numConfs)}
	carol, err := net.NewNode("Carol", carolArgs)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}

	// Create a new channel that requires 5 confs before it's considered
	// open, then broadcast the funding transaction
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	pendingUpdate, err := net.OpenPendingChannel(ctxt, net.Alice, carol,
		chanAmt, pushAmt)
	if err != nil {
		t.Fatalf("unable to open channel: %v", err)
	}

	// At this point, the channel's funding transaction will have been
	// broadcast, but not confirmed. Alice and Bob's nodes should reflect
	// this when queried via RPC.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)

	// Restart both nodes to test that the appropriate state has been
	// persisted and that both nodes recover gracefully.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	fundingTxID, err := chainhash.NewHash(pendingUpdate.Txid)
	if err != nil {
		t.Fatalf("unable to convert funding txid into chainhash.Hash:"+
			" %v", err)
	}

	// Mine a block, then wait for Alice's node to notify us that the
	// channel has been opened. The funding transaction should be found
	// within the newly mined block.
	block := mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, fundingTxID)

	// Restart both nodes to test that the appropriate state has been
	// persisted and that both nodes recover gracefully.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// The following block ensures that after both nodes have restarted,
	// they have reconnected before the execution of the next test.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.EnsureConnected(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("peers unable to reconnect after restart: %v", err)
	}

	// Next, mine enough blocks s.t the channel will open with a single
	// additional block mined.
	if _, err := net.Miner.Node.Generate(3); err != nil {
		t.Fatalf("unable to mine blocks: %v", err)
	}

	// Both nodes should still show a single channel as pending.
	time.Sleep(time.Second * 1)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 1)

	// Finally, mine the last block which should mark the channel as open.
	if _, err := net.Miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to mine blocks: %v", err)
	}

	// At this point, the channel should be fully opened and there should
	// be no pending channels remaining for either node.
	time.Sleep(time.Second * 1)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	assertNumOpenChannelsPending(ctxt, t, net.Alice, carol, 0)

	// The channel should be listed in the peer information returned by
	// both peers.
	outPoint := wire.OutPoint{
		Hash:  *fundingTxID,
		Index: pendingUpdate.OutputIndex,
	}

	// Check both nodes to ensure that the channel is ready for operation.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.AssertChannelExists(ctxt, net.Alice, &outPoint); err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.AssertChannelExists(ctxt, carol, &outPoint); err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}

	// Finally, immediately close the channel. This function will also
	// block until the channel is closed and will additionally assert the
	// relevant channel closing post conditions.
	chanPoint := &lnrpc.ChannelPoint{
		FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
			FundingTxidBytes: pendingUpdate.Txid,
		},
		OutputIndex: pendingUpdate.OutputIndex,
	}
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// testChannelBalance creates a new channel between Alice and  Bob, then
// checks channel balance to be equal amount specified while creation of channel.
func testChannelBalance(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// Open a channel with 0.16 BTC between Alice and Bob, ensuring the
	// channel has been opened properly.
	amount := maxBtcFundingAmount

	// Creates a helper closure to be used below which asserts the proper
	// response to a channel balance RPC.
	checkChannelBalance := func(node lnrpc.LightningClient,
		amount btcutil.Amount) {

		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		response, err := node.ChannelBalance(ctxt, &lnrpc.ChannelBalanceRequest{})
		if err != nil {
			t.Fatalf("unable to get channel balance: %v", err)
		}

		balance := btcutil.Amount(response.Balance)
		if balance != amount {
			t.Fatalf("channel balance wrong: %v != %v", balance,
				amount)
		}
	}

	// Before beginning, make sure alice and bob are connected.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.EnsureConnected(ctxt, net.Alice, net.Bob); err != nil {
		t.Fatalf("unable to connect alice and bob: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: amount,
		},
	)

	// Wait for both Alice and Bob to recognize this new channel.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't advertise channel before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't advertise channel before "+
			"timeout: %v", err)
	}

	// As this is a single funder channel, Alice's balance should be
	// exactly 0.5 BTC since now state transitions have taken place yet.
	checkChannelBalance(net.Alice, amount-calcStaticFee(0))

	// Ensure Bob currently has no available balance within the channel.
	checkChannelBalance(net.Bob, 0)

	// Finally close the channel between Alice and Bob, asserting that the
	// channel has been properly closed on-chain.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// testChannelUnsettledBalance will test that the UnsettledBalance field
// is updated according to the number of Pending Htlcs.
// Alice will send Htlcs to Carol while she is in hodl mode. This will result
// in a build of pending Htlcs. We expect the channels unsettled balance to
// equal the sum of all the Pending Htlcs.
func testChannelUnsettledBalance(net *lntest.NetworkHarness, t *harnessTest) {
	const chanAmt = btcutil.Amount(1000000)
	ctxb := context.Background()

	// Create carol in hodl mode.
	carol, err := net.NewNode("Carol", []string{
		"--debughtlc",
		"--hodl.exit-settle",
	})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// Connect Alice to Carol.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxb, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}

	// Open a channel between Alice and Carol.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Wait for Alice and Carol to receive the channel edge from the
	// funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
	if err != nil {
		t.Fatalf("alice didn't see the alice->carol channel before "+
			"timeout: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
	if err != nil {
		t.Fatalf("alice didn't see the alice->carol channel before "+
			"timeout: %v", err)
	}

	// Channel should be ready for payments.
	const (
		payAmt      = 100
		numInvoices = 6
	)

	// Create a paystream from Alice to Carol to enable Alice to make
	// a series of payments.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	alicePayStream, err := net.Alice.SendPayment(ctxt)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	// Send payments from Alice to Carol a number of numInvoices
	// times.
	carolPubKey := carol.PubKey[:]
	for i := 0; i < numInvoices; i++ {
		err = alicePayStream.Send(&lnrpc.SendRequest{
			Dest:           carolPubKey,
			Amt:            int64(payAmt),
			PaymentHash:    makeFakePayHash(t),
			FinalCltvDelta: defaultBitcoinTimeLockDelta,
		})
		if err != nil {
			t.Fatalf("unable to send alice htlc: %v", err)
		}
	}

	// Test that the UnsettledBalance for both Alice and Carol
	// is equal to the amount of invoices * payAmt.
	var unsettledErr error
	nodes := []*lntest.HarnessNode{net.Alice, carol}
	err = lntest.WaitPredicate(func() bool {
		// There should be a number of PendingHtlcs equal
		// to the amount of Invoices sent.
		unsettledErr = assertNumActiveHtlcs(nodes, numInvoices)
		if unsettledErr != nil {
			return false
		}

		// Set the amount expected for the Unsettled Balance for
		// this channel.
		expectedBalance := numInvoices * payAmt

		// Check each nodes UnsettledBalance field.
		for _, node := range nodes {
			// Get channel info for the node.
			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			chanInfo, err := getChanInfo(ctxt, node)
			if err != nil {
				unsettledErr = err
				return false
			}

			// Check that UnsettledBalance is what we expect.
			if int(chanInfo.UnsettledBalance) != expectedBalance {
				unsettledErr = fmt.Errorf("unsettled balance failed "+
					"expected: %v, received: %v", expectedBalance,
					chanInfo.UnsettledBalance)
				return false
			}
		}

		return true
	}, defaultTimeout)
	if err != nil {
		t.Fatalf("unsettled balace error: %v", unsettledErr)
	}

	// Force and assert the channel closure.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, true)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, net.Alice, chanPointAlice)
}

// findForceClosedChannel searches a pending channel response for a particular
// channel, returning the force closed channel upon success.
func findForceClosedChannel(pendingChanResp *lnrpc.PendingChannelsResponse,
	op *wire.OutPoint) (*lnrpc.PendingChannelsResponse_ForceClosedChannel, error) {

	for _, forceClose := range pendingChanResp.PendingForceClosingChannels {
		if forceClose.Channel.ChannelPoint == op.String() {
			return forceClose, nil
		}
	}

	return nil, errors.New("channel not marked as force closed")
}

// findWaitingCloseChannel searches a pending channel response for a particular
// channel, returning the waiting close channel upon success.
func findWaitingCloseChannel(pendingChanResp *lnrpc.PendingChannelsResponse,
	op *wire.OutPoint) (*lnrpc.PendingChannelsResponse_WaitingCloseChannel, error) {

	for _, waitingClose := range pendingChanResp.WaitingCloseChannels {
		if waitingClose.Channel.ChannelPoint == op.String() {
			return waitingClose, nil
		}
	}

	return nil, errors.New("channel not marked as waiting close")
}

func checkCommitmentMaturity(
	forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
	maturityHeight uint32, blocksTilMaturity int32) error {

	if forceClose.MaturityHeight != maturityHeight {
		return fmt.Errorf("expected commitment maturity height to be "+
			"%d, found %d instead", maturityHeight,
			forceClose.MaturityHeight)
	}
	if forceClose.BlocksTilMaturity != blocksTilMaturity {
		return fmt.Errorf("expected commitment blocks til maturity to "+
			"be %d, found %d instead", blocksTilMaturity,
			forceClose.BlocksTilMaturity)
	}

	return nil
}

// checkForceClosedChannelNumHtlcs verifies that a force closed channel has the
// proper number of htlcs.
func checkPendingChannelNumHtlcs(
	forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
	expectedNumHtlcs int) error {

	if len(forceClose.PendingHtlcs) != expectedNumHtlcs {
		return fmt.Errorf("expected force closed channel to have %d "+
			"pending htlcs, found %d instead", expectedNumHtlcs,
			len(forceClose.PendingHtlcs))
	}

	return nil
}

// checkNumForceClosedChannels checks that a pending channel response has the
// expected number of force closed channels.
func checkNumForceClosedChannels(pendingChanResp *lnrpc.PendingChannelsResponse,
	expectedNumChans int) error {

	if len(pendingChanResp.PendingForceClosingChannels) != expectedNumChans {
		return fmt.Errorf("expected to find %d force closed channels, "+
			"got %d", expectedNumChans,
			len(pendingChanResp.PendingForceClosingChannels))
	}

	return nil
}

// checkNumWaitingCloseChannels checks that a pending channel response has the
// expected number of channels waiting for closing tx to confirm.
func checkNumWaitingCloseChannels(pendingChanResp *lnrpc.PendingChannelsResponse,
	expectedNumChans int) error {

	if len(pendingChanResp.WaitingCloseChannels) != expectedNumChans {
		return fmt.Errorf("expected to find %d channels waiting "+
			"closure, got %d", expectedNumChans,
			len(pendingChanResp.WaitingCloseChannels))
	}

	return nil
}

// checkPendingHtlcStageAndMaturity uniformly tests all pending htlc's belonging
// to a force closed channel, testing for the expected stage number, blocks till
// maturity, and the maturity height.
func checkPendingHtlcStageAndMaturity(
	forceClose *lnrpc.PendingChannelsResponse_ForceClosedChannel,
	stage, maturityHeight uint32, blocksTillMaturity int32) error {

	for _, pendingHtlc := range forceClose.PendingHtlcs {
		if pendingHtlc.Stage != stage {
			return fmt.Errorf("expected pending htlc to be stage "+
				"%d, found %d", stage, pendingHtlc.Stage)
		}
		if pendingHtlc.MaturityHeight != maturityHeight {
			return fmt.Errorf("expected pending htlc maturity "+
				"height to be %d, instead has %d",
				maturityHeight, pendingHtlc.MaturityHeight)
		}
		if pendingHtlc.BlocksTilMaturity != blocksTillMaturity {
			return fmt.Errorf("expected pending htlc blocks til "+
				"maturity to be %d, instead has %d",
				blocksTillMaturity,
				pendingHtlc.BlocksTilMaturity)
		}
	}

	return nil
}

// testChannelForceClosure performs a test to exercise the behavior of "force"
// closing a channel or unilaterally broadcasting the latest local commitment
// state on-chain. The test creates a new channel between Alice and Carol, then
// force closes the channel after some cursory assertions. Within the test, a
// total of 3 + n transactions will be broadcast, representing the commitment
// transaction, a transaction sweeping the local CSV delayed output, a
// transaction sweeping the CSV delayed 2nd-layer htlcs outputs, and n
// htlc success transactions, where n is the number of payments Alice attempted
// to send to Carol.  This test includes several restarts to ensure that the
// transaction output states are persisted throughout the forced closure
// process.
//
// TODO(roasbeef): also add an unsettled HTLC before force closing.
func testChannelForceClosure(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt     = btcutil.Amount(10e6)
		pushAmt     = btcutil.Amount(5e6)
		paymentAmt  = 100000
		numInvoices = 6
	)

	// TODO(roasbeef): should check default value in config here
	// instead, or make delay a param
	defaultCLTV := uint32(defaultBitcoinTimeLockDelta)

	// Since we'd like to test failure scenarios with outstanding htlcs,
	// we'll introduce another node into our test network: Carol.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// We must let Alice have an open channel before she can send a node
	// announcement, so we open a channel with Carol,
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}

	// Before we start, obtain Carol's current wallet balance, we'll check
	// to ensure that at the end of the force closure by Alice, Carol
	// recognizes his new on-chain output.
	carolBalReq := &lnrpc.WalletBalanceRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err := carol.WalletBalance(ctxt, carolBalReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}

	carolStartingBalance := carolBalResp.ConfirmedBalance

	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	// Wait for Alice and Carol to receive the channel edge from the
	// funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't see the alice->carol channel before "+
			"timeout: %v", err)
	}
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't see the alice->carol channel before "+
			"timeout: %v", err)
	}

	// Send payments from Alice to Carol, since Carol is htlchodl mode, the
	// htlc outputs should be left unsettled, and should be swept by the
	// utxo nursery.
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	carolPubKey := carol.PubKey[:]
	for i := 0; i < numInvoices; i++ {
		err = alicePayStream.Send(&lnrpc.SendRequest{
			Dest:           carolPubKey,
			Amt:            int64(paymentAmt),
			PaymentHash:    makeFakePayHash(t),
			FinalCltvDelta: defaultBitcoinTimeLockDelta,
		})
		if err != nil {
			t.Fatalf("unable to send alice htlc: %v", err)
		}
	}

	// Once the HTLC has cleared, all the nodes n our mini network should
	// show that the HTLC has been locked in.
	nodes := []*lntest.HarnessNode{net.Alice, carol}
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numInvoices)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Fetch starting height of this test so we can compute the block
	// heights we expect certain events to take place.
	_, curHeight, err := net.Miner.Node.GetBestBlock()
	if err != nil {
		t.Fatalf("unable to get best block height")
	}

	// Using the current height of the chain, derive the relevant heights
	// for incubating two-stage htlcs.
	var (
		startHeight           = uint32(curHeight)
		commCsvMaturityHeight = startHeight + 1 + defaultCSV
		htlcExpiryHeight      = startHeight + defaultCLTV
		htlcCsvMaturityHeight = startHeight + defaultCLTV + 1 + defaultCSV
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceChan, err := getChanInfo(ctxt, net.Alice)
	if err != nil {
		t.Fatalf("unable to get alice's channel info: %v", err)
	}
	if aliceChan.NumUpdates == 0 {
		t.Fatalf("alice should see at least one update to her channel")
	}

	// Now that the channel is open and we have unsettled htlcs, immediately
	// execute a force closure of the channel. This will also assert that
	// the commitment transaction was immediately broadcast in order to
	// fulfill the force closure request.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	_, closingTxID, err := net.CloseChannel(ctxt, net.Alice, chanPoint, true)
	if err != nil {
		t.Fatalf("unable to execute force channel closure: %v", err)
	}

	// Now that the channel has been force closed, it should show up in the
	// PendingChannels RPC under the waiting close section.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	pendingChanResp, err := net.Alice.PendingChannels(ctxt, pendingChansRequest)
	if err != nil {
		t.Fatalf("unable to query for pending channels: %v", err)
	}
	err = checkNumWaitingCloseChannels(pendingChanResp, 1)
	if err != nil {
		t.Fatalf(err.Error())
	}

	// Compute the outpoint of the channel, which we will use repeatedly to
	// locate the pending channel information in the rpc responses.
	txid, err := getChanPointFundingTxid(chanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	op := wire.OutPoint{
		Hash:  *txid,
		Index: chanPoint.OutputIndex,
	}

	waitingClose, err := findWaitingCloseChannel(pendingChanResp, &op)
	if err != nil {
		t.Fatalf(err.Error())
	}

	// Immediately after force closing, all of the funds should be in limbo.
	if waitingClose.LimboBalance == 0 {
		t.Fatalf("all funds should still be in limbo")
	}

	// The several restarts in this test are intended to ensure that when a
	// channel is force-closed, the UTXO nursery has persisted the state of
	// the channel in the closure process and will recover the correct state
	// when the system comes back on line. This restart tests state
	// persistence at the beginning of the process, when the commitment
	// transaction has been broadcast but not yet confirmed in a block.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Mine a block which should confirm the commitment transaction
	// broadcast as a result of the force closure.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("failed to find commitment in miner mempool: %v", err)
	}

	if _, err := net.Miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Now that the commitment has been confirmed, the channel should be
	// marked as force closed.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		predErr = checkNumForceClosedChannels(pendingChanResp, 1)
		if predErr != nil {
			return false
		}

		forceClose, predErr := findForceClosedChannel(
			pendingChanResp, &op,
		)
		if predErr != nil {
			return false
		}

		// Now that the channel has been force closed, it should now
		// have the height and number of blocks to confirm populated.
		predErr = checkCommitmentMaturity(
			forceClose, commCsvMaturityHeight, int32(defaultCSV),
		)
		if predErr != nil {
			return false
		}

		// None of our outputs have been swept, so they should all be in
		// limbo.
		if forceClose.LimboBalance == 0 {
			predErr = errors.New("all funds should still be in " +
				"limbo")
			return false
		}
		if forceClose.RecoveredBalance != 0 {
			predErr = errors.New("no funds should yet be shown " +
				"as recovered")
			return false
		}

		return true
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// The following restart is intended to ensure that outputs from the
	// force close commitment transaction have been persisted once the
	// transaction has been confirmed, but before the outputs are spendable
	// (the "kindergarten" bucket.)
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Carol's sweep tx should be in the mempool already, as her output is
	// not timelocked.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("failed to find Carol's sweep in miner mempool: %v",
			err)
	}

	// Currently within the codebase, the default CSV is 4 relative blocks.
	// For the persistence test, we generate three blocks, then trigger
	// a restart and then generate the final block that should trigger
	// the creation of the sweep transaction.
	if _, err := net.Miner.Node.Generate(defaultCSV - 1); err != nil {
		t.Fatalf("unable to mine blocks: %v", err)
	}

	// The following restart checks to ensure that outputs in the
	// kindergarten bucket are persisted while waiting for the required
	// number of confirmations to be reported.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Alice should see the channel in her set of pending force closed
	// channels with her funds still in limbo.
	err = lntest.WaitNoError(func() error {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			return fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
		}

		err = checkNumForceClosedChannels(pendingChanResp, 1)
		if err != nil {
			return err
		}

		forceClose, err := findForceClosedChannel(
			pendingChanResp, &op,
		)
		if err != nil {
			return err
		}

		// At this point, the nursery should show that the commitment
		// output has 1 block left before its CSV delay expires. In
		// total, we have mined exactly defaultCSV blocks, so the htlc
		// outputs should also reflect that this many blocks have
		// passed.
		err = checkCommitmentMaturity(
			forceClose, commCsvMaturityHeight, 1,
		)
		if err != nil {
			return err
		}

		// All funds should still be shown in limbo.
		if forceClose.LimboBalance == 0 {
			return errors.New("all funds should still be in " +
				"limbo")
		}
		if forceClose.RecoveredBalance != 0 {
			return errors.New("no funds should yet be shown " +
				"as recovered")
		}

		return nil
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(err.Error())
	}

	// Generate an additional block, which should cause the CSV delayed
	// output from the commitment txn to expire.
	if _, err := net.Miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to mine blocks: %v", err)
	}

	// At this point, the sweeping transaction should now be broadcast. So
	// we fetch the node's mempool to ensure it has been properly
	// broadcast.
	sweepingTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("failed to get sweep tx from mempool: %v", err)
	}

	// Fetch the sweep transaction, all input it's spending should be from
	// the commitment transaction which was broadcast on-chain.
	sweepTx, err := net.Miner.Node.GetRawTransaction(sweepingTXID)
	if err != nil {
		t.Fatalf("unable to fetch sweep tx: %v", err)
	}
	for _, txIn := range sweepTx.MsgTx().TxIn {
		if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
			t.Fatalf("sweep transaction not spending from commit "+
				"tx %v, instead spending %v",
				closingTxID, txIn.PreviousOutPoint)
		}
	}

	// Restart Alice to ensure that she resumes watching the finalized
	// commitment sweep txid.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Next, we mine an additional block which should include the sweep
	// transaction as the input scripts and the sequence locks on the
	// inputs should be properly met.
	blockHash, err := net.Miner.Node.Generate(1)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}
	block, err := net.Miner.Node.GetBlock(blockHash[0])
	if err != nil {
		t.Fatalf("unable to get block: %v", err)
	}

	assertTxInBlock(t, block, sweepTx.Hash())

	// Update current height
	_, curHeight, err = net.Miner.Node.GetBestBlock()
	if err != nil {
		t.Fatalf("unable to get best block height")
	}

	err = lntest.WaitPredicate(func() bool {
		// Now that the commit output has been fully swept, check to see
		// that the channel remains open for the pending htlc outputs.
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		err = checkNumForceClosedChannels(pendingChanResp, 1)
		if err != nil {
			predErr = err
			return false
		}

		// The commitment funds will have been recovered after the
		// commit txn was included in the last block. The htlc funds
		// will be shown in limbo.
		forceClose, err := findForceClosedChannel(pendingChanResp, &op)
		if err != nil {
			predErr = err
			return false
		}
		predErr = checkPendingChannelNumHtlcs(forceClose, numInvoices)
		if predErr != nil {
			return false
		}
		predErr = checkPendingHtlcStageAndMaturity(
			forceClose, 1, htlcExpiryHeight,
			int32(htlcExpiryHeight)-curHeight,
		)
		if predErr != nil {
			return false
		}
		if forceClose.LimboBalance == 0 {
			predErr = fmt.Errorf("expected funds in limbo, found 0")
			return false
		}

		return true
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// Compute the height preceding that which will cause the htlc CLTV
	// timeouts will expire. The outputs entered at the same height as the
	// output spending from the commitment txn, so we must deduct the number
	// of blocks we have generated since adding it to the nursery, and take
	// an additional block off so that we end up one block shy of the expiry
	// height.
	cltvHeightDelta := defaultCLTV - defaultCSV - 2 - 1

	// Advance the blockchain until just before the CLTV expires, nothing
	// exciting should have happened during this time.
	blockHash, err = net.Miner.Node.Generate(cltvHeightDelta)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// We now restart Alice, to ensure that she will broadcast the presigned
	// htlc timeout txns after the delay expires after experiencing a while
	// waiting for the htlc outputs to incubate.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Alice should now see the channel in her set of pending force closed
	// channels with one pending HTLC.
	err = lntest.WaitNoError(func() error {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			return fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
		}

		err = checkNumForceClosedChannels(pendingChanResp, 1)
		if err != nil {
			return err
		}

		forceClose, err := findForceClosedChannel(
			pendingChanResp, &op,
		)
		if err != nil {
			return err
		}

		// We should now be at the block just before the utxo nursery
		// will attempt to broadcast the htlc timeout transactions.
		err = checkPendingChannelNumHtlcs(forceClose, numInvoices)
		if err != nil {
			return err
		}
		err = checkPendingHtlcStageAndMaturity(
			forceClose, 1, htlcExpiryHeight, 1,
		)
		if err != nil {
			return err
		}

		// Now that our commitment confirmation depth has been
		// surpassed, we should now see a non-zero recovered balance.
		// All htlc outputs are still left in limbo, so it should be
		// non-zero as well.
		if forceClose.LimboBalance == 0 {
			return errors.New("htlc funds should still be in " +
				"limbo")
		}

		return nil
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(err.Error())
	}

	// Now, generate the block which will cause Alice to broadcast the
	// presigned htlc timeout txns.
	blockHash, err = net.Miner.Node.Generate(1)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Since Alice had numInvoices (6) htlcs extended to Carol before force
	// closing, we expect Alice to broadcast an htlc timeout txn for each
	// one. Wait for them all to show up in the mempool.
	htlcTxIDs, err := waitForNTxsInMempool(net.Miner.Node, numInvoices,
		minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find htlc timeout txns in mempool: %v", err)
	}

	// Retrieve each htlc timeout txn from the mempool, and ensure it is
	// well-formed. This entails verifying that each only spends from
	// output, and that that output is from the commitment txn.
	for _, htlcTxID := range htlcTxIDs {
		// Fetch the sweep transaction, all input it's spending should
		// be from the commitment transaction which was broadcast
		// on-chain.
		htlcTx, err := net.Miner.Node.GetRawTransaction(htlcTxID)
		if err != nil {
			t.Fatalf("unable to fetch sweep tx: %v", err)
		}
		// Ensure the htlc transaction only has one input.
		if len(htlcTx.MsgTx().TxIn) != 1 {
			t.Fatalf("htlc transaction should only have one txin, "+
				"has %d", len(htlcTx.MsgTx().TxIn))
		}
		// Ensure the htlc transaction is spending from the commitment
		// transaction.
		txIn := htlcTx.MsgTx().TxIn[0]
		if !closingTxID.IsEqual(&txIn.PreviousOutPoint.Hash) {
			t.Fatalf("htlc transaction not spending from commit "+
				"tx %v, instead spending %v",
				closingTxID, txIn.PreviousOutPoint)
		}
	}

	// With the htlc timeout txns still in the mempool, we restart Alice to
	// verify that she can resume watching the htlc txns she broadcasted
	// before crashing.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Generate a block that mines the htlc timeout txns. Doing so now
	// activates the 2nd-stage CSV delayed outputs.
	blockHash, err = net.Miner.Node.Generate(1)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Alice is restarted here to ensure that she promptly moved the crib
	// outputs to the kindergarten bucket after the htlc timeout txns were
	// confirmed.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Advance the chain until just before the 2nd-layer CSV delays expire.
	blockHash, err = net.Miner.Node.Generate(defaultCSV - 1)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Restart Alice to ensure that she can recover from a failure before
	// having graduated the htlc outputs in the kindergarten bucket.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Now that the channel has been fully swept, it should no longer show
	// incubated, check to see that Alice's node still reports the channel
	// as pending force closed.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err = net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		err = checkNumForceClosedChannels(pendingChanResp, 1)
		if err != nil {
			predErr = err
			return false
		}

		forceClose, err := findForceClosedChannel(pendingChanResp, &op)
		if err != nil {
			predErr = err
			return false
		}

		if forceClose.LimboBalance == 0 {
			predErr = fmt.Errorf("htlc funds should still be in limbo")
			return false
		}

		predErr = checkPendingChannelNumHtlcs(forceClose, numInvoices)
		if predErr != nil {
			return false
		}

		return true
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// Generate a block that causes Alice to sweep the htlc outputs in the
	// kindergarten bucket.
	blockHash, err = net.Miner.Node.Generate(1)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Wait for the single sweep txn to appear in the mempool.
	htlcSweepTxID, err := waitForTxInMempool(
		net.Miner.Node, minerMempoolTimeout,
	)
	if err != nil {
		t.Fatalf("failed to get sweep tx from mempool: %v", err)
	}

	// Construct a map of the already confirmed htlc timeout txids, that
	// will count the number of times each is spent by the sweep txn. We
	// prepopulate it in this way so that we can later detect if we are
	// spending from an output that was not a confirmed htlc timeout txn.
	var htlcTxIDSet = make(map[chainhash.Hash]int)
	for _, htlcTxID := range htlcTxIDs {
		htlcTxIDSet[*htlcTxID] = 0
	}

	// Fetch the htlc sweep transaction from the mempool.
	htlcSweepTx, err := net.Miner.Node.GetRawTransaction(htlcSweepTxID)
	if err != nil {
		t.Fatalf("unable to fetch sweep tx: %v", err)
	}
	// Ensure the htlc sweep transaction only has one input for each htlc
	// Alice extended before force closing.
	if len(htlcSweepTx.MsgTx().TxIn) != numInvoices {
		t.Fatalf("htlc transaction should have %d txin, "+
			"has %d", numInvoices, len(htlcSweepTx.MsgTx().TxIn))
	}
	// Ensure that each output spends from exactly one htlc timeout txn.
	for _, txIn := range htlcSweepTx.MsgTx().TxIn {
		outpoint := txIn.PreviousOutPoint.Hash
		// Check that the input is a confirmed htlc timeout txn.
		if _, ok := htlcTxIDSet[outpoint]; !ok {
			t.Fatalf("htlc sweep output not spending from htlc "+
				"tx, instead spending output %v", outpoint)
		}
		// Increment our count for how many times this output was spent.
		htlcTxIDSet[outpoint]++

		// Check that each is only spent once.
		if htlcTxIDSet[outpoint] > 1 {
			t.Fatalf("htlc sweep tx has multiple spends from "+
				"outpoint %v", outpoint)
		}
	}

	// The following restart checks to ensure that the nursery store is
	// storing the txid of the previously broadcast htlc sweep txn, and that
	// it begins watching that txid after restarting.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Now that the channel has been fully swept, it should no longer show
	// incubated, check to see that Alice's node still reports the channel
	// as pending force closed.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		err = checkNumForceClosedChannels(pendingChanResp, 1)
		if err != nil {
			predErr = err
			return false
		}

		// All htlcs should show zero blocks until maturity, as
		// evidenced by having checked the sweep transaction in the
		// mempool.
		forceClose, err := findForceClosedChannel(pendingChanResp, &op)
		if err != nil {
			predErr = err
			return false
		}
		predErr = checkPendingChannelNumHtlcs(forceClose, numInvoices)
		if predErr != nil {
			return false
		}
		err = checkPendingHtlcStageAndMaturity(
			forceClose, 2, htlcCsvMaturityHeight, 0,
		)
		if err != nil {
			predErr = err
			return false
		}

		return true
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// Generate the final block that sweeps all htlc funds into the user's
	// wallet, and make sure the sweep is in this block.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, htlcSweepTxID)

	// Now that the channel has been fully swept, it should no longer show
	// up within the pending channels RPC.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		predErr = checkNumForceClosedChannels(pendingChanResp, 0)
		if predErr != nil {
			return false
		}

		// In addition to there being no pending channels, we verify
		// that pending channels does not report any money still in
		// limbo.
		if pendingChanResp.TotalLimboBalance != 0 {
			predErr = errors.New("no user funds should be left " +
				"in limbo after incubation")
			return false
		}

		return true
	}, 15*time.Second)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// At this point, Bob should now be aware of his new immediately
	// spendable on-chain balance, as it was Alice who broadcast the
	// commitment transaction.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err = net.Bob.WalletBalance(ctxt, carolBalReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	carolExpectedBalance := btcutil.Amount(carolStartingBalance) + pushAmt
	if btcutil.Amount(carolBalResp.ConfirmedBalance) < carolExpectedBalance {
		t.Fatalf("carol's balance is incorrect: expected %v got %v",
			carolExpectedBalance,
			carolBalResp.ConfirmedBalance)
	}
}

// testSphinxReplayPersistence verifies that replayed onion packets are rejected
// by a remote peer after a restart. We use a combination of unsafe
// configuration arguments to force Carol to replay the same sphinx packet after
// reconnecting to Dave, and compare the returned failure message with what we
// expect for replayed onion packets.
func testSphinxReplayPersistence(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// Open a channel with 100k satoshis between Carol and Dave with Carol being
	// the sole funder of the channel.
	chanAmt := btcutil.Amount(100000)

	// First, we'll create Dave, the receiver, and start him in hodl mode.
	dave, err := net.NewNode("Dave", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}

	// We must remember to shutdown the nodes we created for the duration
	// of the tests, only leaving the two seed nodes (Alice and Bob) within
	// our test network.
	defer shutdownAndAssert(net, t, dave)

	// Next, we'll create Carol and establish a channel to from her to
	// Dave. Carol is started in both unsafe-replay and unsafe-disconnect,
	// which will cause her to replay any pending Adds held in memory upon
	// reconnection.
	carol, err := net.NewNode("Carol", []string{"--unsafe-replay"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	assertAmountSent := func(amt btcutil.Amount) {
		// Both channels should also have properly accounted from the
		// amount that has been sent/received over the channel.
		listReq := &lnrpc.ListChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		carolListChannels, err := carol.ListChannels(ctxt, listReq)
		if err != nil {
			t.Fatalf("unable to query for alice's channel list: %v", err)
		}
		carolSatoshisSent := carolListChannels.Channels[0].TotalSatoshisSent
		if carolSatoshisSent != int64(amt) {
			t.Fatalf("Carol's satoshis sent is incorrect got %v, expected %v",
				carolSatoshisSent, amt)
		}

		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		daveListChannels, err := dave.ListChannels(ctxt, listReq)
		if err != nil {
			t.Fatalf("unable to query for Dave's channel list: %v", err)
		}
		daveSatoshisReceived := daveListChannels.Channels[0].TotalSatoshisReceived
		if daveSatoshisReceived != int64(amt) {
			t.Fatalf("Dave's satoshis received is incorrect got %v, expected %v",
				daveSatoshisReceived, amt)
		}
	}

	// Now that the channel is open, create an invoice for Dave which
	// expects a payment of 1000 satoshis from Carol paid via a particular
	// preimage.
	const paymentAmt = 1000
	preimage := bytes.Repeat([]byte("A"), 32)
	invoice := &lnrpc.Invoice{
		Memo:      "testing",
		RPreimage: preimage,
		Value:     paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	invoiceResp, err := dave.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	// Wait for Carol to recognize and advertise the new channel generated
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't advertise channel before "+
			"timeout: %v", err)
	}
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't advertise channel before "+
			"timeout: %v", err)
	}

	// With the invoice for Dave added, send a payment from Carol paying
	// to the above generated invoice.
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	payStream, err := carol.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to open payment stream: %v", err)
	}

	sendReq := &lnrpc.SendRequest{PaymentRequest: invoiceResp.PaymentRequest}
	err = payStream.Send(sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	time.Sleep(200 * time.Millisecond)

	// Dave's invoice should not be marked as settled.
	payHash := &lnrpc.PaymentHash{
		RHash: invoiceResp.RHash,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	dbInvoice, err := dave.LookupInvoice(ctxt, payHash)
	if err != nil {
		t.Fatalf("unable to lookup invoice: %v", err)
	}
	if dbInvoice.Settled {
		t.Fatalf("dave's invoice should not be marked as settled: %v",
			spew.Sdump(dbInvoice))
	}

	// With the payment sent but hedl, all balance related stats should not
	// have changed.
	time.Sleep(time.Millisecond * 200)
	assertAmountSent(0)

	// With the first payment sent, restart dave to make sure he is
	// persisting the information required to detect replayed sphinx
	// packets.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to restart dave: %v", err)
	}

	// Carol should retransmit the Add hedl in her mailbox on startup. Dave
	// should not accept the replayed Add, and actually fail back the
	// pending payment. Even though he still holds the original settle, if
	// he does fail, it is almost certainly caused by the sphinx replay
	// protection, as it is the only validation we do in hodl mode.
	resp, err := payStream.Recv()
	if err != nil {
		t.Fatalf("unable to receive payment response: %v", err)
	}

	// Construct the response we expect after sending a duplicate packet
	// that fails due to sphinx replay detection.
	replayErr := "TemporaryChannelFailure"
	if !strings.Contains(resp.PaymentError, replayErr) {
		t.Fatalf("received payment error: %v, expected %v",
			resp.PaymentError, replayErr)
	}

	// Since the payment failed, the balance should still be left
	// unaltered.
	assertAmountSent(0)

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPoint, true)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, carol, chanPoint)
}

func testSingleHopInvoice(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// Open a channel with 100k satoshis between Alice and Bob with Alice being
	// the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanAmt := btcutil.Amount(100000)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	assertAmountSent := func(amt btcutil.Amount) {
		// Both channels should also have properly accounted from the
		// amount that has been sent/received over the channel.
		listReq := &lnrpc.ListChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		aliceListChannels, err := net.Alice.ListChannels(ctxt, listReq)
		if err != nil {
			t.Fatalf("unable to query for alice's channel list: %v", err)
		}
		aliceSatoshisSent := aliceListChannels.Channels[0].TotalSatoshisSent
		if aliceSatoshisSent != int64(amt) {
			t.Fatalf("Alice's satoshis sent is incorrect got %v, expected %v",
				aliceSatoshisSent, amt)
		}

		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		bobListChannels, err := net.Bob.ListChannels(ctxt, listReq)
		if err != nil {
			t.Fatalf("unable to query for bob's channel list: %v", err)
		}
		bobSatoshisReceived := bobListChannels.Channels[0].TotalSatoshisReceived
		if bobSatoshisReceived != int64(amt) {
			t.Fatalf("Bob's satoshis received is incorrect got %v, expected %v",
				bobSatoshisReceived, amt)
		}
	}

	// Now that the channel is open, create an invoice for Bob which
	// expects a payment of 1000 satoshis from Alice paid via a particular
	// preimage.
	const paymentAmt = 1000
	preimage := bytes.Repeat([]byte("A"), 32)
	invoice := &lnrpc.Invoice{
		Memo:      "testing",
		RPreimage: preimage,
		Value:     paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	invoiceResp, err := net.Bob.AddInvoice(ctxb, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	// Wait for Alice to recognize and advertise the new channel generated
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't advertise channel before "+
			"timeout: %v", err)
	}
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't advertise channel before "+
			"timeout: %v", err)
	}

	// With the invoice for Bob added, send a payment towards Alice paying
	// to the above generated invoice.
	sendReq := &lnrpc.SendRequest{
		PaymentRequest: invoiceResp.PaymentRequest,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// Ensure we obtain the proper preimage in the response.
	if resp.PaymentError != "" {
		t.Fatalf("error when attempting recv: %v", resp.PaymentError)
	} else if !bytes.Equal(preimage, resp.PaymentPreimage) {
		t.Fatalf("preimage mismatch: expected %v, got %v", preimage,
			resp.GetPaymentPreimage())
	}

	// Bob's invoice should now be found and marked as settled.
	payHash := &lnrpc.PaymentHash{
		RHash: invoiceResp.RHash,
	}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	dbInvoice, err := net.Bob.LookupInvoice(ctxt, payHash)
	if err != nil {
		t.Fatalf("unable to lookup invoice: %v", err)
	}
	if !dbInvoice.Settled {
		t.Fatalf("bob's invoice should be marked as settled: %v",
			spew.Sdump(dbInvoice))
	}

	// With the payment completed all balance related stats should be
	// properly updated.
	time.Sleep(time.Millisecond * 200)
	assertAmountSent(paymentAmt)

	// Create another invoice for Bob, this time leaving off the preimage
	// to one will be randomly generated. We'll test the proper
	// encoding/decoding of the zpay32 payment requests.
	invoice = &lnrpc.Invoice{
		Memo:  "test3",
		Value: paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	invoiceResp, err = net.Bob.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	// Next send another payment, but this time using a zpay32 encoded
	// invoice rather than manually specifying the payment details.
	sendReq = &lnrpc.SendRequest{
		PaymentRequest: invoiceResp.PaymentRequest,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}
	if resp.PaymentError != "" {
		t.Fatalf("error when attempting recv: %v", resp.PaymentError)
	}

	// The second payment should also have succeeded, with the balances
	// being update accordingly.
	time.Sleep(time.Millisecond * 200)
	assertAmountSent(paymentAmt * 2)

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

func testListPayments(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First start by deleting all payments that Alice knows of. This will
	// allow us to execute the test with a clean state for Alice.
	delPaymentsReq := &lnrpc.DeleteAllPaymentsRequest{}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if _, err := net.Alice.DeleteAllPayments(ctxt, delPaymentsReq); err != nil {
		t.Fatalf("unable to delete payments: %v", err)
	}

	// Check that there are no payments before test.
	reqInit := &lnrpc.ListPaymentsRequest{}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	paymentsRespInit, err := net.Alice.ListPayments(ctxt, reqInit)
	if err != nil {
		t.Fatalf("error when obtaining Alice payments: %v", err)
	}
	if len(paymentsRespInit.Payments) != 0 {
		t.Fatalf("incorrect number of payments, got %v, want %v",
			len(paymentsRespInit.Payments), 0)
	}

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	chanAmt := btcutil.Amount(100000)
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Now that the channel is open, create an invoice for Bob which
	// expects a payment of 1000 satoshis from Alice paid via a particular
	// preimage.
	const paymentAmt = 1000
	preimage := bytes.Repeat([]byte("B"), 32)
	invoice := &lnrpc.Invoice{
		Memo:      "testing",
		RPreimage: preimage,
		Value:     paymentAmt,
	}
	addInvoiceCtxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	invoiceResp, err := net.Bob.AddInvoice(addInvoiceCtxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	// Wait for Alice to recognize and advertise the new channel generated
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
		t.Fatalf("alice didn't advertise channel before "+
			"timeout: %v", err)
	}
	if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
		t.Fatalf("bob didn't advertise channel before "+
			"timeout: %v", err)
	}

	// With the invoice for Bob added, send a payment towards Alice paying
	// to the above generated invoice.
	sendReq := &lnrpc.SendRequest{
		PaymentRequest: invoiceResp.PaymentRequest,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}
	if resp.PaymentError != "" {
		t.Fatalf("error when attempting recv: %v", resp.PaymentError)
	}

	// Grab Alice's list of payments, she should show the existence of
	// exactly one payment.
	req := &lnrpc.ListPaymentsRequest{}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	paymentsResp, err := net.Alice.ListPayments(ctxt, req)
	if err != nil {
		t.Fatalf("error when obtaining Alice payments: %v", err)
	}
	if len(paymentsResp.Payments) != 1 {
		t.Fatalf("incorrect number of payments, got %v, want %v",
			len(paymentsResp.Payments), 1)
	}
	p := paymentsResp.Payments[0]

	// Ensure that the stored path shows a direct payment to Bob with no
	// other nodes in-between.
	expectedPath := []string{
		net.Bob.PubKeyStr,
	}
	if !reflect.DeepEqual(p.Path, expectedPath) {
		t.Fatalf("incorrect path, got %v, want %v",
			p.Path, expectedPath)
	}

	// The payment amount should also match our previous payment directly.
	if p.Value != paymentAmt {
		t.Fatalf("incorrect amount, got %v, want %v",
			p.Value, paymentAmt)
	}

	// The payment hash (or r-hash) should have been stored correctly.
	correctRHash := hex.EncodeToString(invoiceResp.RHash)
	if !reflect.DeepEqual(p.PaymentHash, correctRHash) {
		t.Fatalf("incorrect RHash, got %v, want %v",
			p.PaymentHash, correctRHash)
	}

	// Finally, as we made a single-hop direct payment, there should have
	// been no fee applied.
	if p.Fee != 0 {
		t.Fatalf("incorrect Fee, got %v, want %v", p.Fee, 0)
	}

	// Delete all payments from Alice. DB should have no payments.
	delReq := &lnrpc.DeleteAllPaymentsRequest{}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	_, err = net.Alice.DeleteAllPayments(ctxt, delReq)
	if err != nil {
		t.Fatalf("Can't delete payments at the end: %v", err)
	}

	// Check that there are no payments before test.
	listReq := &lnrpc.ListPaymentsRequest{}
	ctxt, _ = context.WithTimeout(ctxt, defaultTimeout)
	paymentsResp, err = net.Alice.ListPayments(ctxt, listReq)
	if err != nil {
		t.Fatalf("error when obtaining Alice payments: %v", err)
	}
	if len(paymentsResp.Payments) != 0 {
		t.Fatalf("incorrect number of payments, got %v, want %v",
			len(paymentsRespInit.Payments), 0)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// assertAmountPaid checks that the ListChannels command of the provided
// node list the total amount sent and received as expected for the
// provided channel.
func assertAmountPaid(t *harnessTest, channelName string,
	node *lntest.HarnessNode, chanPoint wire.OutPoint, amountSent,
	amountReceived int64) {
	ctxb := context.Background()

	checkAmountPaid := func() error {
		listReq := &lnrpc.ListChannelsRequest{}
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		resp, err := node.ListChannels(ctxt, listReq)
		if err != nil {
			return fmt.Errorf("unable to for node's "+
				"channels: %v", err)
		}
		for _, channel := range resp.Channels {
			if channel.ChannelPoint != chanPoint.String() {
				continue
			}

			if channel.TotalSatoshisSent != amountSent {
				return fmt.Errorf("%v: incorrect amount"+
					" sent: %v != %v", channelName,
					channel.TotalSatoshisSent,
					amountSent)
			}
			if channel.TotalSatoshisReceived !=
				amountReceived {
				return fmt.Errorf("%v: incorrect amount"+
					" received: %v != %v",
					channelName,
					channel.TotalSatoshisReceived,
					amountReceived)
			}

			return nil
		}
		return fmt.Errorf("channel not found")
	}

	// As far as HTLC inclusion in commitment transaction might be
	// postponed we will try to check the balance couple of times,
	// and then if after some period of time we receive wrong
	// balance return the error.
	// TODO(roasbeef): remove sleep after invoice notification hooks
	// are in place
	var timeover uint32
	go func() {
		<-time.After(time.Second * 20)
		atomic.StoreUint32(&timeover, 1)
	}()

	for {
		isTimeover := atomic.LoadUint32(&timeover) == 1
		if err := checkAmountPaid(); err != nil {
			if isTimeover {
				t.Fatalf("Check amount Paid failed: %v", err)
			}
		} else {
			break
		}
	}
}

// updateChannelPolicy updates the channel policy of node to the
// given fees and timelock delta. This function blocks until
// listenerNode has received the policy update.
func updateChannelPolicy(t *harnessTest, node *lntest.HarnessNode,
	chanPoint *lnrpc.ChannelPoint, baseFee int64, feeRate int64,
	timeLockDelta uint32, listenerNode *lntest.HarnessNode) {
	ctxb := context.Background()

	expectedPolicy := &lnrpc.RoutingPolicy{
		FeeBaseMsat:      baseFee,
		FeeRateMilliMsat: feeRate,
		TimeLockDelta:    timeLockDelta,
		MinHtlc:          1000, // default value
	}

	updateFeeReq := &lnrpc.PolicyUpdateRequest{
		BaseFeeMsat:   baseFee,
		FeeRate:       float64(feeRate) / testFeeBase,
		TimeLockDelta: timeLockDelta,
		Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
			ChanPoint: chanPoint,
		},
	}

	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if _, err := node.UpdateChannelPolicy(ctxt, updateFeeReq); err != nil {
		t.Fatalf("unable to update chan policy: %v", err)
	}

	// Wait for listener node to receive the channel update from node.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	graphSub := subscribeGraphNotifications(t, ctxt, listenerNode)
	defer close(graphSub.quit)

	waitForChannelUpdate(
		t, graphSub,
		[]expectedChanUpdate{
			{node.PubKeyStr, expectedPolicy, chanPoint},
		},
	)
}

func testMultiHopPayments(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// As preliminary setup, we'll create two new nodes: Carol and Dave,
	// such that we now have a 4 ndoe, 3 channel topology. Dave will make
	// a channel with Alice, and Carol with Dave. After this setup, the
	// network topology should now look like:
	//     Carol -> Dave -> Alice -> Bob
	//
	// First, we'll create Dave and establish a channel to Alice.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, dave, net.Alice,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointDave)
	daveChanTXID, err := getChanPointFundingTxid(chanPointDave)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	daveFundPoint := wire.OutPoint{
		Hash:  *daveChanTXID,
		Index: chanPointDave.OutputIndex,
	}

	// Next, we'll create Carol and establish a channel to from her to
	// Dave.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Create 5 invoices for Bob, which expect a payment from Carol for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	const paymentAmt = 1000
	payReqs, _, _, err := createPayReqs(
		net.Bob, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
	if err != nil {
		t.Fatalf("dave didn't advertise his channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't advertise her channel in time: %v",
			err)
	}

	time.Sleep(time.Millisecond * 50)

	// Set the fee policies of the Alice -> Bob and the Dave -> Alice
	// channel edges to relatively large non default values. This makes it
	// possible to pick up more subtle fee calculation errors.
	updateChannelPolicy(
		t, net.Alice, chanPointAlice, 1000, 100000,
		defaultBitcoinTimeLockDelta, carol,
	)

	updateChannelPolicy(
		t, dave, chanPointDave, 5000, 150000,
		defaultBitcoinTimeLockDelta, carol,
	)

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, carol, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// At this point all the channels within our proto network should be
	// shifted by 5k satoshis in the direction of Bob, the sink within the
	// payment flow generated above. The order of asserts corresponds to
	// increasing of time is needed to embed the HTLC in commitment
	// transaction, in channel Carol->David->Alice->Bob, order is Bob,
	// Alice, David, Carol.

	// The final node bob expects to get paid five times 1000 sat.
	expectedAmountPaidAtoB := int64(5 * 1000)

	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
		aliceFundPoint, int64(0), expectedAmountPaidAtoB)
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
		aliceFundPoint, expectedAmountPaidAtoB, int64(0))

	// To forward a payment of 1000 sat, Alice is charging a fee of
	// 1 sat + 10% = 101 sat.
	const expectedFeeAlice = 5 * 101

	// Dave needs to pay what Alice pays plus Alice's fee.
	expectedAmountPaidDtoA := expectedAmountPaidAtoB + expectedFeeAlice

	assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
		daveFundPoint, int64(0), expectedAmountPaidDtoA)
	assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
		daveFundPoint, expectedAmountPaidDtoA, int64(0))

	// To forward a payment of 1101 sat, Dave is charging a fee of
	// 5 sat + 15% = 170.15 sat. This is rounded down in rpcserver to 170.
	const expectedFeeDave = 5 * 170

	// Carol needs to pay what Dave pays plus Dave's fee.
	expectedAmountPaidCtoD := expectedAmountPaidDtoA + expectedFeeDave

	assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
		carolFundPoint, int64(0), expectedAmountPaidCtoD)
	assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
		carolFundPoint, expectedAmountPaidCtoD, int64(0))

	// Now that we know all the balances have been settled out properly,
	// we'll ensure that our internal record keeping for completed circuits
	// was properly updated.

	// First, check that the FeeReport response shows the proper fees
	// accrued over each time range. Dave should've earned 170 satoshi for
	// each of the forwarded payments.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	feeReport, err := dave.FeeReport(ctxt, &lnrpc.FeeReportRequest{})
	if err != nil {
		t.Fatalf("unable to query for fee report: %v", err)
	}

	if feeReport.DayFeeSum != uint64(expectedFeeDave) {
		t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
			feeReport.DayFeeSum)
	}
	if feeReport.WeekFeeSum != uint64(expectedFeeDave) {
		t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
			feeReport.WeekFeeSum)
	}
	if feeReport.MonthFeeSum != uint64(expectedFeeDave) {
		t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
			feeReport.MonthFeeSum)
	}

	// Next, ensure that if we issue the vanilla query for the forwarding
	// history, it returns 5 values, and each entry is formatted properly.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	fwdingHistory, err := dave.ForwardingHistory(
		ctxt, &lnrpc.ForwardingHistoryRequest{},
	)
	if err != nil {
		t.Fatalf("unable to query for fee report: %v", err)
	}
	if len(fwdingHistory.ForwardingEvents) != 5 {
		t.Fatalf("wrong number of forwarding event: expected %v, "+
			"got %v", 5, len(fwdingHistory.ForwardingEvents))
	}
	expectedForwardingFee := uint64(expectedFeeDave / numPayments)
	for _, event := range fwdingHistory.ForwardingEvents {
		// Each event should show a fee of 170 satoshi.
		if event.Fee != expectedForwardingFee {
			t.Fatalf("fee mismatch:  expected %v, got %v",
				expectedForwardingFee, event.Fee)
		}
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

// testSingleHopSendToRoute tests that payments are properly processed
// through a provided route with a single hop. We'll create the
// following network topology:
//      Alice --100k--> Bob
// We'll query the daemon for routes from Alice to Bob and then
// send payments through the route.
func testSingleHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob}
	nodeNames := []string{"Alice", "Bob"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Query for routes to pay from Alice to Bob.
	// We set FinalCltvDelta to 40 since by default QueryRoutes returns
	// the last hop with a final cltv delta of 9 where as the default in
	// htlcswitch is 40.
	const paymentAmt = 1000
	routesReq := &lnrpc.QueryRoutesRequest{
		PubKey:         net.Bob.PubKeyStr,
		Amt:            paymentAmt,
		NumRoutes:      1,
		FinalCltvDelta: defaultBitcoinTimeLockDelta,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
	if err != nil {
		t.Fatalf("unable to get route: %v", err)
	}

	// Create 5 invoices for Bob, which expect a payment from Alice for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	_, rHashes, _, err := createPayReqs(
		net.Bob, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
	if err != nil {
		t.Fatalf("alice didn't advertise her channel in time: %v", err)
	}

	time.Sleep(time.Millisecond * 50)

	// Using Alice as the source, pay to the 5 invoices from Carol created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	alicePayStream, err := net.Alice.SendToRoute(ctxt)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	for _, rHash := range rHashes {
		sendReq := &lnrpc.SendToRouteRequest{
			PaymentHash: rHash,
			Routes:      routes.Routes,
		}
		err := alicePayStream.Send(sendReq)

		if err != nil {
			t.Fatalf("unable to send payment: %v", err)
		}
	}

	for range rHashes {
		resp, err := alicePayStream.Recv()
		if err != nil {
			t.Fatalf("unable to send payment: %v", err)
		}
		if resp.PaymentError != "" {
			t.Fatalf("received payment error: %v", resp.PaymentError)
		}
	}

	// At this point all the channels within our proto network should be
	// shifted by 5k satoshis in the direction of Bob, the sink within the
	// payment flow generated above. The order of asserts corresponds to
	// increasing of time is needed to embed the HTLC in commitment
	// transaction, in channel Alice->Bob, order is Bob and then Alice.
	const amountPaid = int64(5000)
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
		aliceFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
		aliceFundPoint, amountPaid, int64(0))

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
}

// testMultiHopSendToRoute tests that payments are properly processed
// through a provided route. We'll create the following network topology:
//      Alice --100k--> Bob --100k--> Carol
// We'll query the daemon for routes from Alice to Carol and then
// send payments through the routes.
func testMultiHopSendToRoute(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// Create Carol and establish a channel from Bob. Bob is the sole funder
	// of the channel with 100k satoshis. The network topology should look like:
	// Alice -> Bob -> Carol
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
		t.Fatalf("unable to connect carol to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, net.Bob)
	if err != nil {
		t.Fatalf("unable to send coins to bob: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointBob := openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointBob)
	bobChanTXID, err := getChanPointFundingTxid(chanPointBob)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	bobFundPoint := wire.OutPoint{
		Hash:  *bobChanTXID,
		Index: chanPointBob.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	nodeNames := []string{"Alice", "Bob", "Carol"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Query for routes to pay from Alice to Carol.
	// We set FinalCltvDelta to 40 since by default QueryRoutes returns
	// the last hop with a final cltv delta of 9 where as the default in
	// htlcswitch is 40.
	const paymentAmt = 1000
	routesReq := &lnrpc.QueryRoutesRequest{
		PubKey:         carol.PubKeyStr,
		Amt:            paymentAmt,
		NumRoutes:      1,
		FinalCltvDelta: defaultBitcoinTimeLockDelta,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	routes, err := net.Alice.QueryRoutes(ctxt, routesReq)
	if err != nil {
		t.Fatalf("unable to get route: %v", err)
	}

	// Create 5 invoices for Carol, which expect a payment from Alice for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	_, rHashes, _, err := createPayReqs(
		carol, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
	if err != nil {
		t.Fatalf("bob didn't advertise his channel in time: %v", err)
	}

	time.Sleep(time.Millisecond * 50)

	// Using Alice as the source, pay to the 5 invoices from Carol created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	alicePayStream, err := net.Alice.SendToRoute(ctxt)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	for _, rHash := range rHashes {
		sendReq := &lnrpc.SendToRouteRequest{
			PaymentHash: rHash,
			Routes:      routes.Routes,
		}
		err := alicePayStream.Send(sendReq)

		if err != nil {
			t.Fatalf("unable to send payment: %v", err)
		}
	}

	for range rHashes {
		resp, err := alicePayStream.Recv()
		if err != nil {
			t.Fatalf("unable to send payment: %v", err)
		}
		if resp.PaymentError != "" {
			t.Fatalf("received payment error: %v", resp.PaymentError)
		}
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// At this point all the channels within our proto network should be
	// shifted by 5k satoshis in the direction of Carol, the sink within the
	// payment flow generated above. The order of asserts corresponds to
	// increasing of time is needed to embed the HTLC in commitment
	// transaction, in channel Alice->Bob->Carol, order is Carol, Bob,
	// Alice.
	const amountPaid = int64(5000)
	assertAmountPaid(t, "Bob(local) => Carol(remote)", carol,
		bobFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Bob(local) => Carol(remote)", net.Bob,
		bobFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
		aliceFundPoint, int64(0), amountPaid+(baseFee*numPayments))
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
		aliceFundPoint, amountPaid+(baseFee*numPayments), int64(0))

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointBob, false)
}

// testSendToRouteErrorPropagation tests propagation of errors that occur
// while processing a multi-hop payment through an unknown route.
func testSendToRouteErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
	if err != nil {
		t.Fatalf("alice didn't advertise her channel: %v", err)
	}

	// Create a new nodes (Carol and Charlie), load her with some funds,
	// then establish a connection between Carol and Charlie with a channel
	// that has identical capacity to the one created above.Then we will
	// get route via queryroutes call which will be fake route for Alice ->
	// Bob graph.
	//
	// The network topology should now look like: Alice -> Bob; Carol -> Charlie.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}

	charlie, err := net.NewNode("Charlie", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, charlie)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, charlie)
	if err != nil {
		t.Fatalf("unable to send coins to charlie: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, charlie); err != nil {
		t.Fatalf("unable to connect carol to alice: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, charlie,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't advertise her channel: %v", err)
	}

	// Query routes from Carol to Charlie which will be an invalid route
	// for Alice -> Bob.
	fakeReq := &lnrpc.QueryRoutesRequest{
		PubKey:    charlie.PubKeyStr,
		Amt:       int64(1),
		NumRoutes: 1,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	fakeRoute, err := carol.QueryRoutes(ctxt, fakeReq)
	if err != nil {
		t.Fatalf("unable get fake route: %v", err)
	}

	// Create 1 invoices for Bob, which expect a payment from Alice for 1k
	// satoshis
	const paymentAmt = 1000

	invoice := &lnrpc.Invoice{
		Memo:  "testing",
		Value: paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := net.Bob.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	rHash := resp.RHash

	// Using Alice as the source, pay to the 5 invoices from Bob created above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	alicePayStream, err := net.Alice.SendToRoute(ctxt)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	sendReq := &lnrpc.SendToRouteRequest{
		PaymentHash: rHash,
		Routes:      fakeRoute.Routes,
	}

	if err := alicePayStream.Send(sendReq); err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// At this place we should get an rpc error with notification
	// that edge is not found on hop(0)
	if _, err := alicePayStream.Recv(); err != nil && strings.Contains(err.Error(),
		"edge not found") {

	} else if err != nil {
		t.Fatalf("payment stream has been closed but fake route has consumed: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

// testUnannouncedChannels checks unannounced channels are not returned by
// describeGraph RPC request unless explicity asked for.
func testUnannouncedChannels(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	amount := maxBtcFundingAmount

	// Open a channel between Alice and Bob, ensuring the
	// channel has been opened properly.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanOpenUpdate, err := net.OpenChannel(
		ctxt, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: amount,
		},
	)
	if err != nil {
		t.Fatalf("unable to open channel: %v", err)
	}

	// Mine 2 blocks, and check that the channel is opened but not yet
	// announced to the network.
	mineBlocks(t, net, 2, 1)

	// One block is enough to make the channel ready for use, since the
	// nodes have defaultNumConfs=1 set.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	fundingChanPoint, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
	if err != nil {
		t.Fatalf("error while waiting for channel open: %v", err)
	}

	// Alice should have 1 edge in her graph.
	req := &lnrpc.ChannelGraphRequest{
		IncludeUnannounced: true,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	chanGraph, err := net.Alice.DescribeGraph(ctxt, req)
	if err != nil {
		t.Fatalf("unable to query alice's graph: %v", err)
	}

	numEdges := len(chanGraph.Edges)
	if numEdges != 1 {
		t.Fatalf("expected to find 1 edge in the graph, found %d", numEdges)
	}

	// Channels should not be announced yet, hence Alice should have no
	// announced edges in her graph.
	req.IncludeUnannounced = false
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
	if err != nil {
		t.Fatalf("unable to query alice's graph: %v", err)
	}

	numEdges = len(chanGraph.Edges)
	if numEdges != 0 {
		t.Fatalf("expected to find 0 announced edges in the graph, found %d",
			numEdges)
	}

	// Mine 4 more blocks, and check that the channel is now announced.
	mineBlocks(t, net, 4, 0)

	// Give the network a chance to learn that auth proof is confirmed.
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		// The channel should now be announced. Check that Alice has 1
		// announced edge.
		req.IncludeUnannounced = false
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
		if err != nil {
			predErr = fmt.Errorf("unable to query alice's graph: %v", err)
			return false
		}

		numEdges = len(chanGraph.Edges)
		if numEdges != 1 {
			predErr = fmt.Errorf("expected to find 1 announced edge in "+
				"the graph, found %d", numEdges)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}

	// The channel should now be announced. Check that Alice has 1 announced
	// edge.
	req.IncludeUnannounced = false
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
	if err != nil {
		t.Fatalf("unable to query alice's graph: %v", err)
	}

	numEdges = len(chanGraph.Edges)
	if numEdges != 1 {
		t.Fatalf("expected to find 1 announced edge in the graph, found %d",
			numEdges)
	}

	// Close the channel used during the test.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, fundingChanPoint, false)
}

// testPrivateChannels tests that a private channel can be used for
// routing by the two endpoints of the channel, but is not known by
// the rest of the nodes in the graph.
func testPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)
	var networkChans []*lnrpc.ChannelPoint

	// We create the following topology:
	//
	// Dave --100k--> Alice --200k--> Bob
	//  ^		    ^
	//  |		    |
	// 100k		   100k
	//  |		    |
	//  +---- Carol ----+
	//
	// where the 100k channel between Carol and Alice is private.

	// Open a channel with 200k satoshis between Alice and Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt * 2,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// Create Dave, and a channel to Alice of 100k.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, dave, net.Alice,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointDave)
	daveChanTXID, err := getChanPointFundingTxid(chanPointDave)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	daveFundPoint := wire.OutPoint{
		Hash:  *daveChanTXID,
		Index: chanPointDave.OutputIndex,
	}

	// Next, we'll create Carol and establish a channel from her to
	// Dave of 100k.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Wait for all nodes to have seen all these channels, as they
	// are all public.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}
	// Now create a _private_ channel directly between Carol and
	// Alice of 100k.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanOpenUpdate, err := net.OpenChannel(
		ctxt, carol, net.Alice,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			Private: true,
		},
	)
	if err != nil {
		t.Fatalf("unable to open channel: %v", err)
	}

	// One block is enough to make the channel ready for use, since the
	// nodes have defaultNumConfs=1 set.
	block := mineBlocks(t, net, 1, 1)[0]

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	chanPointPrivate, err := net.WaitForChannelOpen(ctxt, chanOpenUpdate)
	if err != nil {
		t.Fatalf("error while waiting for channel open: %v", err)
	}
	fundingTxID, err := getChanPointFundingTxid(chanPointPrivate)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	assertTxInBlock(t, block, fundingTxID)

	// The channel should be listed in the peer information returned by
	// both peers.
	privateFundPoint := wire.OutPoint{
		Hash:  *fundingTxID,
		Index: chanPointPrivate.OutputIndex,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.AssertChannelExists(ctxt, carol, &privateFundPoint)
	if err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.AssertChannelExists(ctxt, net.Alice, &privateFundPoint)
	if err != nil {
		t.Fatalf("unable to assert channel existence: %v", err)
	}

	// The channel should be available for payments between Carol and Alice.
	// We check this by sending payments from Carol to Bob, that
	// collectively would deplete at least one of Carol's channels.

	// Create 2 invoices for Bob, each of 70k satoshis. Since each of
	// Carol's channels is of size 100k, these payments cannot succeed
	// by only using one of the channels.
	const numPayments = 2
	const paymentAmt = 70000
	payReqs, _, _, err := createPayReqs(
		net.Bob, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	time.Sleep(time.Millisecond * 50)

	// Let Carol pay the invoices.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, carol, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// Bob should have received 140k satoshis from Alice.
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
		aliceFundPoint, int64(0), 2*paymentAmt)

	// Alice sent 140k to Bob.
	assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
		aliceFundPoint, 2*paymentAmt, int64(0))

	// Alice received 70k + fee from Dave.
	assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
		daveFundPoint, int64(0), paymentAmt+baseFee)

	// Dave sent 70k+fee to Alice.
	assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
		daveFundPoint, paymentAmt+baseFee, int64(0))

	// Dave received 70k+fee of two hops from Carol.
	assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
		carolFundPoint, int64(0), paymentAmt+baseFee*2)

	// Carol sent 70k+fee of two hops to Dave.
	assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
		carolFundPoint, paymentAmt+baseFee*2, int64(0))

	// Alice received 70k+fee from Carol.
	assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
		net.Alice, privateFundPoint, int64(0), paymentAmt+baseFee)

	// Carol sent 70k+fee to Alice.
	assertAmountPaid(t, "Carol(local) [private=>] Alice(remote)",
		carol, privateFundPoint, paymentAmt+baseFee, int64(0))

	// Alice should also be able to route payments using this channel,
	// so send two payments of 60k back to Carol.
	const paymentAmt60k = 60000
	payReqs, _, _, err = createPayReqs(
		carol, paymentAmt60k, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	time.Sleep(time.Millisecond * 50)

	// Let Bob pay the invoices.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Alice, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Finally, we make sure Dave and Bob does not know about the
	// private channel between Carol and Alice. We first mine
	// plenty of blocks, such that the channel would have been
	// announced in case it was public.
	mineBlocks(t, net, 10, 0)

	// We create a helper method to check how many edges each of the
	// nodes know about. Carol and Alice should know about 4, while
	// Bob and Dave should only know about 3, since one channel is
	// private.
	numChannels := func(node *lntest.HarnessNode, includeUnannounced bool) int {
		req := &lnrpc.ChannelGraphRequest{
			IncludeUnannounced: includeUnannounced,
		}
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		chanGraph, err := node.DescribeGraph(ctxt, req)
		if err != nil {
			t.Fatalf("unable go describegraph: %v", err)
		}
		return len(chanGraph.Edges)
	}

	var predErr error
	err = lntest.WaitPredicate(func() bool {
		aliceChans := numChannels(net.Alice, true)
		if aliceChans != 4 {
			predErr = fmt.Errorf("expected Alice to know 4 edges, "+
				"had %v", aliceChans)
			return false
		}
		alicePubChans := numChannels(net.Alice, false)
		if alicePubChans != 3 {
			predErr = fmt.Errorf("expected Alice to know 3 public edges, "+
				"had %v", alicePubChans)
			return false
		}
		bobChans := numChannels(net.Bob, true)
		if bobChans != 3 {
			predErr = fmt.Errorf("expected Bob to know 3 edges, "+
				"had %v", bobChans)
			return false
		}
		carolChans := numChannels(carol, true)
		if carolChans != 4 {
			predErr = fmt.Errorf("expected Carol to know 4 edges, "+
				"had %v", carolChans)
			return false
		}
		carolPubChans := numChannels(carol, false)
		if carolPubChans != 3 {
			predErr = fmt.Errorf("expected Carol to know 3 public edges, "+
				"had %v", carolPubChans)
			return false
		}
		daveChans := numChannels(dave, true)
		if daveChans != 3 {
			predErr = fmt.Errorf("expected Dave to know 3 edges, "+
				"had %v", daveChans)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}

	// Close all channels.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointPrivate, false)
}

// testInvoiceRoutingHints tests that the routing hints for an invoice are
// created properly.
func testInvoiceRoutingHints(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)

	// Throughout this test, we'll be opening a channel between Alice and
	// several other parties.
	//
	// First, we'll create a private channel between Alice and Bob. This
	// will be the only channel that will be considered as a routing hint
	// throughout this test. We'll include a push amount since we currently
	// require channels to have enough remote balance to cover the invoice's
	// payment.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointBob := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: chanAmt / 2,
			Private: true,
		},
	)

	// Then, we'll create Carol's node and open a public channel between her
	// and Alice. This channel will not be considered as a routing hint due
	// to it being public.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create carol's node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: chanAmt / 2,
		},
	)

	// We'll also create a public channel between Bob and Carol to ensure
	// that Bob gets selected as the only routing hint. We do this as
	// we should only include routing hints for nodes that are publicly
	// advertised, otherwise we'd end up leaking information about nodes
	// that wish to stay unadvertised.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointBobCarol := openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: chanAmt / 2,
		},
	)

	// Then, we'll create Dave's node and open a private channel between him
	// and Alice. We will not include a push amount in order to not consider
	// this channel as a routing hint as it will not have enough remote
	// balance for the invoice's amount.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create dave's node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
		t.Fatalf("unable to connect alice to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, net.Alice, dave,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			Private: true,
		},
	)

	// Finally, we'll create Eve's node and open a private channel between
	// her and Alice. This time though, we'll take Eve's node down after the
	// channel has been created to avoid populating routing hints for
	// inactive channels.
	eve, err := net.NewNode("Eve", nil)
	if err != nil {
		t.Fatalf("unable to create eve's node: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, eve); err != nil {
		t.Fatalf("unable to connect alice to eve: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointEve := openChannelAndAssert(
		ctxt, t, net, net.Alice, eve,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: chanAmt / 2,
			Private: true,
		},
	)

	// Make sure all the channels have been opened.
	nodeNames := []string{"bob", "carol", "dave", "eve"}
	aliceChans := []*lnrpc.ChannelPoint{
		chanPointBob, chanPointCarol, chanPointBobCarol, chanPointDave,
		chanPointEve,
	}
	for i, chanPoint := range aliceChans {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
		if err != nil {
			t.Fatalf("timed out waiting for channel open between "+
				"alice and %s: %v", nodeNames[i], err)
		}
	}

	// Now that the channels are open, we'll take down Eve's node.
	shutdownAndAssert(net, t, eve)

	// Create an invoice for Alice that will populate the routing hints.
	invoice := &lnrpc.Invoice{
		Memo:    "routing hints",
		Value:   int64(chanAmt / 4),
		Private: true,
	}

	// Due to the way the channels were set up above, the channel between
	// Alice and Bob should be the only channel used as a routing hint.
	var predErr error
	var decoded *lnrpc.PayReq
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		resp, err := net.Alice.AddInvoice(ctxt, invoice)
		if err != nil {
			predErr = fmt.Errorf("unable to add invoice: %v", err)
			return false
		}

		// We'll decode the invoice's payment request to determine which
		// channels were used as routing hints.
		payReq := &lnrpc.PayReqString{
			PayReq: resp.PaymentRequest,
		}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		decoded, err = net.Alice.DecodePayReq(ctxt, payReq)
		if err != nil {
			predErr = fmt.Errorf("unable to decode payment "+
				"request: %v", err)
			return false
		}

		if len(decoded.RouteHints) != 1 {
			predErr = fmt.Errorf("expected one route hint, got %d",
				len(decoded.RouteHints))
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	hops := decoded.RouteHints[0].HopHints
	if len(hops) != 1 {
		t.Fatalf("expected one hop in route hint, got %d", len(hops))
	}
	chanID := hops[0].ChanId

	// We'll need the short channel ID of the channel between Alice and Bob
	// to make sure the routing hint is for this channel.
	listReq := &lnrpc.ListChannelsRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	listResp, err := net.Alice.ListChannels(ctxt, listReq)
	if err != nil {
		t.Fatalf("unable to retrieve alice's channels: %v", err)
	}

	var aliceBobChanID uint64
	for _, channel := range listResp.Channels {
		if channel.RemotePubkey == net.Bob.PubKeyStr {
			aliceBobChanID = channel.ChanId
		}
	}

	if aliceBobChanID == 0 {
		t.Fatalf("channel between alice and bob not found")
	}

	if chanID != aliceBobChanID {
		t.Fatalf("expected channel ID %d, got %d", aliceBobChanID,
			chanID)
	}

	// Now that we've confirmed the routing hints were added correctly, we
	// can close all the channels and shut down all the nodes created.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointBob, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointCarol, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobCarol, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointDave, false)

	// The channel between Alice and Eve should be force closed since Eve
	// is offline.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointEve, true)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, net.Alice, chanPointEve)
}

// testMultiHopOverPrivateChannels tests that private channels can be used as
// intermediate hops in a route for payments.
func testMultiHopOverPrivateChannels(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// We'll test that multi-hop payments over private channels work as
	// intended. To do so, we'll create the following topology:
	//         private        public           private
	// Alice <--100k--> Bob <--100k--> Carol <--100k--> Dave
	const chanAmt = btcutil.Amount(100000)

	// First, we'll open a private channel between Alice and Bob with Alice
	// being the funder.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			Private: true,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
	if err != nil {
		t.Fatalf("alice didn't see the channel alice <-> bob before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointAlice)
	if err != nil {
		t.Fatalf("bob didn't see the channel alice <-> bob before "+
			"timeout: %v", err)
	}

	// Retrieve Alice's funding outpoint.
	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// Next, we'll create Carol's node and open a public channel between
	// her and Bob with Bob being the funder.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create carol's node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
		t.Fatalf("unable to connect bob to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointBob := openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPointBob)
	if err != nil {
		t.Fatalf("bob didn't see the channel bob <-> carol before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointBob)
	if err != nil {
		t.Fatalf("carol didn't see the channel bob <-> carol before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob)
	if err != nil {
		t.Fatalf("alice didn't see the channel bob <-> carol before "+
			"timeout: %v", err)
	}

	// Retrieve Bob's funding outpoint.
	bobChanTXID, err := getChanPointFundingTxid(chanPointBob)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	bobFundPoint := wire.OutPoint{
		Hash:  *bobChanTXID,
		Index: chanPointBob.OutputIndex,
	}

	// Next, we'll create Dave's node and open a private channel between him
	// and Carol with Carol being the funder.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create dave's node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			Private: true,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't see the channel carol <-> dave before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("dave didn't see the channel carol <-> dave before "+
			"timeout: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointBob)
	if err != nil {
		t.Fatalf("dave didn't see the channel bob <-> carol before "+
			"timeout: %v", err)
	}

	// Retrieve Carol's funding point.
	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Now that all the channels are set up according to the topology from
	// above, we can proceed to test payments. We'll create an invoice for
	// Dave of 20k satoshis and pay it with Alice. Since there is no public
	// route from Alice to Dave, we'll need to use the private channel
	// between Carol and Dave as a routing hint encoded in the invoice.
	const paymentAmt = 20000

	// Create the invoice for Dave.
	invoice := &lnrpc.Invoice{
		Memo:    "two hopz!",
		Value:   paymentAmt,
		Private: true,
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := dave.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice for dave: %v", err)
	}

	// Let Alice pay the invoice.
	payReqs := []string{resp.PaymentRequest}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Alice, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments from alice to dave: %v", err)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when opening
	// the channels.
	const baseFee = 1

	// Dave should have received 20k satoshis from Carol.
	assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
		dave, carolFundPoint, 0, paymentAmt)

	// Carol should have sent 20k satoshis to Dave.
	assertAmountPaid(t, "Carol(local) [private=>] Dave(remote)",
		carol, carolFundPoint, paymentAmt, 0)

	// Carol should have received 20k satoshis + fee for one hop from Bob.
	assertAmountPaid(t, "Bob(local) => Carol(remote)",
		carol, bobFundPoint, 0, paymentAmt+baseFee)

	// Bob should have sent 20k satoshis + fee for one hop to Carol.
	assertAmountPaid(t, "Bob(local) => Carol(remote)",
		net.Bob, bobFundPoint, paymentAmt+baseFee, 0)

	// Bob should have received 20k satoshis + fee for two hops from Alice.
	assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Bob,
		aliceFundPoint, 0, paymentAmt+baseFee*2)

	// Alice should have sent 20k satoshis + fee for two hops to Bob.
	assertAmountPaid(t, "Alice(local) [private=>] Bob(remote)", net.Alice,
		aliceFundPoint, paymentAmt+baseFee*2, 0)

	// At this point, the payment was successful. We can now close all the
	// channels and shutdown the nodes created throughout this test.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

func testInvoiceSubscriptions(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(500000)

	// Open a channel with 500k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Next create a new invoice for Bob requesting 1k satoshis.
	// TODO(roasbeef): make global list of invoices for each node to re-use
	// and avoid collisions
	const paymentAmt = 1000
	invoice := &lnrpc.Invoice{
		Memo:      "testing",
		RPreimage: makeFakePayHash(t),
		Value:     paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	invoiceResp, err := net.Bob.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}
	lastAddIndex := invoiceResp.AddIndex

	// Create a new invoice subscription client for Bob, the notification
	// should be dispatched shortly below.
	req := &lnrpc.InvoiceSubscription{}
	ctx, cancelInvoiceSubscription := context.WithCancel(ctxb)
	bobInvoiceSubscription, err := net.Bob.SubscribeInvoices(ctx, req)
	if err != nil {
		t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
	}

	var settleIndex uint64
	quit := make(chan struct{})
	updateSent := make(chan struct{})
	go func() {
		invoiceUpdate, err := bobInvoiceSubscription.Recv()
		select {
		case <-quit:
			// Received cancellation
			return
		default:
		}

		if err != nil {
			t.Fatalf("unable to recv invoice update: %v", err)
		}

		// The invoice update should exactly match the invoice created
		// above, but should now be settled and have SettleDate
		if !invoiceUpdate.Settled {
			t.Fatalf("invoice not settled but should be")
		}
		if invoiceUpdate.SettleDate == 0 {
			t.Fatalf("invoice should have non zero settle date, but doesn't")
		}

		if !bytes.Equal(invoiceUpdate.RPreimage, invoice.RPreimage) {
			t.Fatalf("payment preimages don't match: expected %v, got %v",
				invoice.RPreimage, invoiceUpdate.RPreimage)
		}

		if invoiceUpdate.SettleIndex == 0 {
			t.Fatalf("invoice should have settle index")
		}

		settleIndex = invoiceUpdate.SettleIndex

		close(updateSent)
	}()

	// Wait for the channel to be recognized by both Alice and Bob before
	// continuing the rest of the test.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		// TODO(roasbeef): will need to make num blocks to advertise a
		// node param
		close(quit)
		t.Fatalf("channel not seen by alice before timeout: %v", err)
	}

	// With the assertion above set up, send a payment from Alice to Bob
	// which should finalize and settle the invoice.
	sendReq := &lnrpc.SendRequest{
		PaymentRequest: invoiceResp.PaymentRequest,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		close(quit)
		t.Fatalf("unable to send payment: %v", err)
	}
	if resp.PaymentError != "" {
		close(quit)
		t.Fatalf("error when attempting recv: %v", resp.PaymentError)
	}

	select {
	case <-time.After(time.Second * 10):
		close(quit)
		t.Fatalf("update not sent after 10 seconds")
	case <-updateSent: // Fall through on success
	}

	// With the base case working, we'll now cancel Bob's current
	// subscription in order to exercise the backlog fill behavior.
	cancelInvoiceSubscription()

	// We'll now add 3 more invoices to Bob's invoice registry.
	const numInvoices = 3
	payReqs, _, newInvoices, err := createPayReqs(
		net.Bob, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// Now that the set of invoices has been added, we'll re-register for
	// streaming invoice notifications for Bob, this time specifying the
	// add invoice of the last prior invoice.
	req = &lnrpc.InvoiceSubscription{
		AddIndex: lastAddIndex,
	}
	ctx, cancelInvoiceSubscription = context.WithCancel(ctxb)
	bobInvoiceSubscription, err = net.Bob.SubscribeInvoices(ctx, req)
	if err != nil {
		t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
	}

	// Since we specified a value of the prior add index above, we should
	// now immediately get the invoices we just added as we should get the
	// backlog of notifications.
	for i := 0; i < numInvoices; i++ {
		invoiceUpdate, err := bobInvoiceSubscription.Recv()
		if err != nil {
			t.Fatalf("unable to receive subscription")
		}

		// We should now get the ith invoice we added, as they should
		// be returned in order.
		if invoiceUpdate.Settled {
			t.Fatalf("should have only received add events")
		}
		originalInvoice := newInvoices[i]
		rHash := sha256.Sum256(originalInvoice.RPreimage[:])
		if !bytes.Equal(invoiceUpdate.RHash, rHash[:]) {
			t.Fatalf("invoices have mismatched payment hashes: "+
				"expected %x, got %x", rHash[:],
				invoiceUpdate.RHash)
		}
	}

	cancelInvoiceSubscription()

	// We'll now have Bob settle out the remainder of these invoices so we
	// can test that all settled invoices are properly notified.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(
		ctxt, net.Alice, payReqs, true,
	)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// With the set of invoices paid, we'll now cancel the old
	// subscription, and create a new one for Bob, this time using the
	// settle index to obtain the backlog of settled invoices.
	req = &lnrpc.InvoiceSubscription{
		SettleIndex: settleIndex,
	}
	ctx, cancelInvoiceSubscription = context.WithCancel(ctxb)
	bobInvoiceSubscription, err = net.Bob.SubscribeInvoices(ctx, req)
	if err != nil {
		t.Fatalf("unable to subscribe to bob's invoice updates: %v", err)
	}

	defer cancelInvoiceSubscription()

	// As we specified the index of the past settle index, we should now
	// receive notifications for the three HTLCs that we just settled. As
	// the order that the HTLCs will be settled in is partially randomized,
	// we'll use a map to assert that the proper set has been settled.
	settledInvoices := make(map[[32]byte]struct{})
	for _, invoice := range newInvoices {
		rHash := sha256.Sum256(invoice.RPreimage[:])
		settledInvoices[rHash] = struct{}{}
	}
	for i := 0; i < numInvoices; i++ {
		invoiceUpdate, err := bobInvoiceSubscription.Recv()
		if err != nil {
			t.Fatalf("unable to receive subscription")
		}

		// We should now get the ith invoice we added, as they should
		// be returned in order.
		if !invoiceUpdate.Settled {
			t.Fatalf("should have only received settle events")
		}

		var rHash [32]byte
		copy(rHash[:], invoiceUpdate.RHash)
		if _, ok := settledInvoices[rHash]; !ok {
			t.Fatalf("unknown invoice settled: %x", rHash)
		}

		delete(settledInvoices, rHash)
	}

	// At this point, all the invoices should be fully settled.
	if len(settledInvoices) != 0 {
		t.Fatalf("not all invoices settled")
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// channelSubscription houses the proxied update and error chans for a node's
// channel subscriptions.
type channelSubscription struct {
	updateChan chan *lnrpc.ChannelEventUpdate
	errChan    chan error
	quit       chan struct{}
}

// subscribeChannelNotifications subscribes to channel updates and launches a
// goroutine that forwards these to the returned channel.
func subscribeChannelNotifications(ctxb context.Context, t *harnessTest,
	node *lntest.HarnessNode) channelSubscription {

	// We'll first start by establishing a notification client which will
	// send us notifications upon channels becoming active, inactive or
	// closed.
	req := &lnrpc.ChannelEventSubscription{}
	ctx, cancelFunc := context.WithCancel(ctxb)

	chanUpdateClient, err := node.SubscribeChannelEvents(ctx, req)
	if err != nil {
		t.Fatalf("unable to create channel update client: %v", err)
	}

	// We'll launch a goroutine that will be responsible for proxying all
	// notifications recv'd from the client into the channel below.
	errChan := make(chan error, 1)
	quit := make(chan struct{})
	chanUpdates := make(chan *lnrpc.ChannelEventUpdate, 20)
	go func() {
		defer cancelFunc()
		for {
			select {
			case <-quit:
				return
			default:
				chanUpdate, err := chanUpdateClient.Recv()
				select {
				case <-quit:
					return
				default:
				}

				if err == io.EOF {
					return
				} else if err != nil {
					select {
					case errChan <- err:
					case <-quit:
					}
					return
				}

				select {
				case chanUpdates <- chanUpdate:
				case <-quit:
					return
				}
			}
		}
	}()

	return channelSubscription{
		updateChan: chanUpdates,
		errChan:    errChan,
		quit:       quit,
	}
}

// verifyCloseUpdate is used to verify that a closed channel update is of the
// expected type.
func verifyCloseUpdate(chanUpdate *lnrpc.ChannelEventUpdate,
	force bool, forceType lnrpc.ChannelCloseSummary_ClosureType) error {

	// We should receive one inactive and one closed notification
	// for each channel.
	switch update := chanUpdate.Channel.(type) {
	case *lnrpc.ChannelEventUpdate_InactiveChannel:
		if chanUpdate.Type != lnrpc.ChannelEventUpdate_INACTIVE_CHANNEL {
			return fmt.Errorf("update type mismatch: expected %v, got %v",
				lnrpc.ChannelEventUpdate_INACTIVE_CHANNEL,
				chanUpdate.Type)
		}
	case *lnrpc.ChannelEventUpdate_ClosedChannel:
		if chanUpdate.Type !=
			lnrpc.ChannelEventUpdate_CLOSED_CHANNEL {
			return fmt.Errorf("update type mismatch: expected %v, got %v",
				lnrpc.ChannelEventUpdate_CLOSED_CHANNEL,
				chanUpdate.Type)
		}

		switch force {
		case true:
			if update.ClosedChannel.CloseType != forceType {
				return fmt.Errorf("channel closure type mismatch: "+
					"expected %v, got %v",
					forceType,
					update.ClosedChannel.CloseType)
			}
		case false:
			if update.ClosedChannel.CloseType !=
				lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE {
				return fmt.Errorf("channel closure type "+
					"mismatch: expected %v, got %v",
					lnrpc.ChannelCloseSummary_COOPERATIVE_CLOSE,
					update.ClosedChannel.CloseType)
			}
		}
	default:
		return fmt.Errorf("channel update channel of wrong type, "+
			"expected closed channel, got %T",
			update)
	}

	return nil
}

// testBasicChannelCreationAndUpdates tests multiple channel opening and closing,
// and ensures that if a node is subscribed to channel updates they will be
// received correctly for both cooperative and force closed channels.
func testBasicChannelCreationAndUpdates(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()
	const (
		numChannels = 2
		amount      = maxBtcFundingAmount
	)

	// Let Bob subscribe to channel notifications.
	bobChanSub := subscribeChannelNotifications(ctxb, t, net.Bob)
	defer close(bobChanSub.quit)

	// Open the channel between Alice and Bob, asserting that the
	// channel has been properly open on-chain.
	chanPoints := make([]*lnrpc.ChannelPoint, numChannels)
	for i := 0; i < numChannels; i++ {
		ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
		chanPoints[i] = openChannelAndAssert(
			ctxt, t, net, net.Alice, net.Bob,
			lntest.OpenChannelParams{
				Amt: amount,
			},
		)
	}

	// Since each of the channels just became open, Bob should we receive an
	// open and an active notification for each channel.
	var numChannelUpds int
	for numChannelUpds < 2*numChannels {
		select {
		case update := <-bobChanSub.updateChan:
			switch update.Type {
			case lnrpc.ChannelEventUpdate_ACTIVE_CHANNEL:
			case lnrpc.ChannelEventUpdate_OPEN_CHANNEL:
			default:
				t.Fatalf("update type mismatch: expected open or active "+
					"channel notification, got: %v", update.Type)
			}
			numChannelUpds++
		case <-time.After(time.Second * 10):
			t.Fatalf("timeout waiting for channel notifications, "+
				"only received %d/%d chanupds", numChannelUpds,
				numChannels)
		}
	}

	// Subscribe Alice to channel updates so we can test that both remote
	// and local force close notifications are received correctly.
	aliceChanSub := subscribeChannelNotifications(ctxb, t, net.Alice)
	defer close(aliceChanSub.quit)

	// Close the channel between Alice and Bob, asserting that the channel
	// has been properly closed on-chain.
	for i, chanPoint := range chanPoints {
		ctx, _ := context.WithTimeout(context.Background(), defaultTimeout)

		// Force close half of the channels.
		force := i%2 == 0
		closeChannelAndAssert(ctx, t, net, net.Alice, chanPoint, force)
		if force {
			cleanupForceClose(t, net, net.Alice, chanPoint)
		}
	}

	// verifyCloseUpdatesReceived is used to verify that Alice and Bob
	// receive the correct channel updates in order.
	verifyCloseUpdatesReceived := func(sub channelSubscription,
		forceType lnrpc.ChannelCloseSummary_ClosureType) error {

		// Ensure one inactive and one closed notification is received for each
		// closed channel.
		numChannelUpds := 0
		for numChannelUpds < 2*numChannels {
			// Every other channel should be force closed.
			force := (numChannelUpds/2)%2 == 0

			select {
			case chanUpdate := <-sub.updateChan:
				err := verifyCloseUpdate(chanUpdate, force, forceType)
				if err != nil {
					return err
				}

				numChannelUpds++
			case err := <-sub.errChan:
				return err
			case <-time.After(time.Second * 10):
				return fmt.Errorf("timeout waiting for channel "+
					"notifications, only received %d/%d "+
					"chanupds", numChannelUpds, 2*numChannels)
			}
		}

		return nil
	}

	// Verify Bob receives all closed channel notifications. He should
	// receive a remote force close notification for force closed channels.
	if err := verifyCloseUpdatesReceived(bobChanSub,
		lnrpc.ChannelCloseSummary_REMOTE_FORCE_CLOSE); err != nil {
		t.Fatalf("errored verifying close updates: %v", err)
	}

	// Verify Alice receives all closed channel notifications. She should
	// receive a remote force close notification for force closed channels.
	if err := verifyCloseUpdatesReceived(aliceChanSub,
		lnrpc.ChannelCloseSummary_LOCAL_FORCE_CLOSE); err != nil {
		t.Fatalf("errored verifying close updates: %v", err)
	}
}

// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	maxPendingChannels := defaultMaxPendingChannels + 1
	amount := maxBtcFundingAmount

	// Create a new node (Carol) with greater number of max pending
	// channels.
	args := []string{
		fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
	}
	carol, err := net.NewNode("Carol", args)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect carol to alice: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalance := btcutil.Amount(maxPendingChannels) * amount
	if err := net.SendCoins(ctxt, carolBalance, carol); err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}

	// Send open channel requests without generating new blocks thereby
	// increasing pool of pending channels. Then check that we can't open
	// the channel if the number of pending channels exceed max value.
	openStreams := make([]lnrpc.Lightning_OpenChannelClient, maxPendingChannels)
	for i := 0; i < maxPendingChannels; i++ {
		ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
		stream, err := net.OpenChannel(
			ctxt, net.Alice, carol,
			lntest.OpenChannelParams{
				Amt: amount,
			},
		)
		if err != nil {
			t.Fatalf("unable to open channel: %v", err)
		}
		openStreams[i] = stream
	}

	// Carol exhausted available amount of pending channels, next open
	// channel request should cause ErrorGeneric to be sent back to Alice.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	_, err = net.OpenChannel(
		ctxt, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt: amount,
		},
	)

	if err == nil {
		t.Fatalf("error wasn't received")
	} else if grpc.Code(err) != lnwire.ErrMaxPendingChannels.ToGrpcCode() {
		t.Fatalf("not expected error was received: %v", err)
	}

	// For now our channels are in pending state, in order to not interfere
	// with other tests we should clean up - complete opening of the
	// channel and then close it.

	// Mine 6 blocks, then wait for node's to notify us that the channel has
	// been opened. The funding transactions should be found within the
	// first newly mined block. 6 blocks make sure the funding transaction
	// has enough confirmations to be announced publicly.
	block := mineBlocks(t, net, 6, maxPendingChannels)[0]

	chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
	for i, stream := range openStreams {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		fundingChanPoint, err := net.WaitForChannelOpen(ctxt, stream)
		if err != nil {
			t.Fatalf("error while waiting for channel open: %v", err)
		}

		fundingTxID, err := getChanPointFundingTxid(fundingChanPoint)
		if err != nil {
			t.Fatalf("unable to get txid: %v", err)
		}

		// Ensure that the funding transaction enters a block, and is
		// properly advertised by Alice.
		assertTxInBlock(t, block, fundingTxID)
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		err = net.Alice.WaitForNetworkChannelOpen(ctxt, fundingChanPoint)
		if err != nil {
			t.Fatalf("channel not seen on network before "+
				"timeout: %v", err)
		}

		// The channel should be listed in the peer information
		// returned by both peers.
		chanPoint := wire.OutPoint{
			Hash:  *fundingTxID,
			Index: fundingChanPoint.OutputIndex,
		}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		if err := net.AssertChannelExists(ctxt, net.Alice, &chanPoint); err != nil {
			t.Fatalf("unable to assert channel existence: %v", err)
		}

		chanPoints[i] = fundingChanPoint
	}

	// Next, close the channel between Alice and Carol, asserting that the
	// channel has been properly closed on-chain.
	for _, chanPoint := range chanPoints {
		ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
		closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
	}
}

// waitForTxInMempool polls until finding one transaction in the provided
// miner's mempool. An error is returned if *one* transaction isn't found within
// the given timeout.
func waitForTxInMempool(miner *rpcclient.Client,
	timeout time.Duration) (*chainhash.Hash, error) {

	txs, err := waitForNTxsInMempool(miner, 1, timeout)
	if err != nil {
		return nil, err
	}

	return txs[0], err
}

// waitForNTxsInMempool polls until finding the desired number of transactions
// in the provided miner's mempool. An error is returned if this number is not
// met after the given timeout.
func waitForNTxsInMempool(miner *rpcclient.Client, n int,
	timeout time.Duration) ([]*chainhash.Hash, error) {

	breakTimeout := time.After(timeout)
	ticker := time.NewTicker(50 * time.Millisecond)
	defer ticker.Stop()

	var err error
	var mempool []*chainhash.Hash
	for {
		select {
		case <-breakTimeout:
			return nil, fmt.Errorf("wanted %v, found %v txs "+
				"in mempool: %v", n, len(mempool), mempool)
		case <-ticker.C:
			mempool, err = miner.GetRawMempool()
			if err != nil {
				return nil, err
			}

			if len(mempool) == n {
				return mempool, nil
			}
		}
	}
}

// testFailingChannel tests that we will fail the channel by force closing ii
// in the case where a counterparty tries to settle an HTLC with the wrong
// preimage.
func testFailingChannel(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		paymentAmt = 10000
	)

	chanAmt := maxFundingAmount

	// We'll introduce Carol, which will settle any incoming invoice with a
	// totally unrelated preimage.
	carol, err := net.NewNode("Carol",
		[]string{"--debughtlc", "--hodl.bogus-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// Let Alice connect and open a channel to Carol,
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// With the channel open, we'll create a invoice for Carol that Alice
	// will attempt to pay.
	preimage := bytes.Repeat([]byte{byte(192)}, 32)
	invoice := &lnrpc.Invoice{
		Memo:      "testing",
		RPreimage: preimage,
		Value:     paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := carol.AddInvoice(ctxt, invoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}
	carolPayReqs := []string{resp.PaymentRequest}

	// Wait for Alice to receive the channel edge from the funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't see the alice->carol channel before "+
			"timeout: %v", err)
	}

	// Send the payment from Alice to Carol. We expect Carol to attempt to
	// settle this payment with the wrong preimage.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Alice, carolPayReqs, false)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Since Alice detects that Carol is trying to trick her by providing a
	// fake preimage, she should fail and force close the channel.
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(ctxt,
			pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		n := len(pendingChanResp.WaitingCloseChannels)
		if n != 1 {
			predErr = fmt.Errorf("Expected to find %d channels "+
				"waiting close, found %d", 1, n)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}

	// Mine a block to confirm the broadcasted commitment.
	block := mineBlocks(t, net, 1, 1)[0]
	if len(block.Transactions) != 2 {
		t.Fatalf("transaction wasn't mined")
	}

	// The channel should now show up as force closed both for Alice and
	// Carol.
	err = lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(ctxt,
			pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		n := len(pendingChanResp.WaitingCloseChannels)
		if n != 0 {
			predErr = fmt.Errorf("Expected to find %d channels "+
				"waiting close, found %d", 0, n)
			return false
		}
		n = len(pendingChanResp.PendingForceClosingChannels)
		if n != 1 {
			predErr = fmt.Errorf("expected to find %d channel "+
				"pending force close, found %d", 1, n)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}

	err = lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := carol.PendingChannels(ctxt,
			pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		n := len(pendingChanResp.PendingForceClosingChannels)
		if n != 1 {
			predErr = fmt.Errorf("expected to find %d channel "+
				"pending force close, found %d", 1, n)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}

	// Carol will use the correct preimage to resolve the HTLC on-chain.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's resolve tx in mempool: %v", err)
	}

	// Mine enough blocks for Alice to sweep her funds from the force
	// closed channel.
	_, err = net.Miner.Node.Generate(defaultCSV)
	if err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Wait for the sweeping tx to be broadcast.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Alice's sweep tx in mempool: %v", err)
	}

	// Mine the sweep.
	_, err = net.Miner.Node.Generate(1)
	if err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// No pending channels should be left.
	err = lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(ctxt,
			pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		n := len(pendingChanResp.PendingForceClosingChannels)
		if n != 0 {
			predErr = fmt.Errorf("expected to find %d channel "+
				"pending force close, found %d", 0, n)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}
}

// testGarbageCollectLinkNodes tests that we properly garbase collect link nodes
// from the database and the set of persistent connections within the server.
func testGarbageCollectLinkNodes(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt = 1000000
	)

	// Open a channel between Alice and Bob which will later be
	// cooperatively closed.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	coopChanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Create Carol's node and connect Alice to her.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create carol's node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice and carol: %v", err)
	}

	// Open a channel between Alice and Carol which will later be force
	// closed.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	forceCloseChanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Now, create Dave's a node and also open a channel between Alice and
	// him. This link will serve as the only persistent link throughout
	// restarts in this test.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create dave's node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)
	if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
		t.Fatalf("unable to connect alice to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	persistentChanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// isConnected is a helper closure that checks if a peer is connected to
	// Alice.
	isConnected := func(pubKey string) bool {
		req := &lnrpc.ListPeersRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		resp, err := net.Alice.ListPeers(ctxt, req)
		if err != nil {
			t.Fatalf("unable to retrieve alice's peers: %v", err)
		}

		for _, peer := range resp.Peers {
			if peer.PubKey == pubKey {
				return true
			}
		}

		return false
	}

	// Restart both Bob and Carol to ensure Alice is able to reconnect to
	// them.
	if err := net.RestartNode(net.Bob, nil); err != nil {
		t.Fatalf("unable to restart bob's node: %v", err)
	}
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("unable to restart carol's node: %v", err)
	}

	err = lntest.WaitPredicate(func() bool {
		return isConnected(net.Bob.PubKeyStr)
	}, 15*time.Second)
	if err != nil {
		t.Fatalf("alice did not reconnect to bob")
	}
	err = lntest.WaitPredicate(func() bool {
		return isConnected(carol.PubKeyStr)
	}, 15*time.Second)
	if err != nil {
		t.Fatalf("alice did not reconnect to carol")
	}

	// We'll also restart Alice to ensure she can reconnect to her peers
	// with open channels.
	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("unable to restart alice's node: %v", err)
	}

	err = lntest.WaitPredicate(func() bool {
		return isConnected(net.Bob.PubKeyStr)
	}, 15*time.Second)
	if err != nil {
		t.Fatalf("alice did not reconnect to bob")
	}
	err = lntest.WaitPredicate(func() bool {
		return isConnected(carol.PubKeyStr)
	}, 15*time.Second)
	if err != nil {
		t.Fatalf("alice did not reconnect to carol")
	}
	err = lntest.WaitPredicate(func() bool {
		return isConnected(dave.PubKeyStr)
	}, 15*time.Second)
	if err != nil {
		t.Fatalf("alice did not reconnect to dave")
	}

	// testReconnection is a helper closure that restarts the nodes at both
	// ends of a channel to ensure they do not reconnect after restarting.
	// When restarting Alice, we'll first need to ensure she has
	// reestablished her connection with Dave, as they still have an open
	// channel together.
	testReconnection := func(node *lntest.HarnessNode) {
		// Restart both nodes, to trigger the pruning logic.
		if err := net.RestartNode(node, nil); err != nil {
			t.Fatalf("unable to restart %v's node: %v",
				node.Name(), err)
		}

		if err := net.RestartNode(net.Alice, nil); err != nil {
			t.Fatalf("unable to restart alice's node: %v", err)
		}

		// Now restart both nodes and make sure they don't reconnect.
		if err := net.RestartNode(node, nil); err != nil {
			t.Fatalf("unable to restart %v's node: %v", node.Name(),
				err)
		}
		err = lntest.WaitInvariant(func() bool {
			return !isConnected(node.PubKeyStr)
		}, 5*time.Second)
		if err != nil {
			t.Fatalf("alice reconnected to %v", node.Name())
		}

		if err := net.RestartNode(net.Alice, nil); err != nil {
			t.Fatalf("unable to restart alice's node: %v", err)
		}
		err = lntest.WaitPredicate(func() bool {
			return isConnected(dave.PubKeyStr)
		}, 20*time.Second)
		if err != nil {
			t.Fatalf("alice didn't reconnect to Dave")
		}

		err = lntest.WaitInvariant(func() bool {
			return !isConnected(node.PubKeyStr)
		}, 5*time.Second)
		if err != nil {
			t.Fatalf("alice reconnected to %v", node.Name())
		}
	}

	// Now, we'll close the channel between Alice and Bob and ensure there
	// is no reconnection logic between the both once the channel is fully
	// closed.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, coopChanPoint, false)

	testReconnection(net.Bob)

	// We'll do the same with Alice and Carol, but this time we'll force
	// close the channel instead.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, forceCloseChanPoint, true)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, net.Alice, forceCloseChanPoint)

	// We'll need to mine some blocks in order to mark the channel fully
	// closed.
	_, err = net.Miner.Node.Generate(defaultBitcoinTimeLockDelta - defaultCSV)
	if err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Before we test reconnection, we'll ensure that the channel has been
	// fully cleaned up for both Carol and Alice.
	var predErr error
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Alice.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		predErr = checkNumForceClosedChannels(pendingChanResp, 0)
		if predErr != nil {
			return false
		}

		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err = carol.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		predErr = checkNumForceClosedChannels(pendingChanResp, 0)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("channels not marked as fully resolved: %v", predErr)
	}

	testReconnection(carol)

	// Finally, we'll ensure that Bob and Carol no longer show in Alice's
	// channel graph.
	describeGraphReq := &lnrpc.ChannelGraphRequest{
		IncludeUnannounced: true,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	channelGraph, err := net.Alice.DescribeGraph(ctxt, describeGraphReq)
	if err != nil {
		t.Fatalf("unable to query for alice's channel graph: %v", err)
	}
	for _, node := range channelGraph.Nodes {
		if node.PubKey == net.Bob.PubKeyStr {
			t.Fatalf("did not expect to find bob in the channel " +
				"graph, but did")
		}
		if node.PubKey == carol.PubKeyStr {
			t.Fatalf("did not expect to find carol in the channel " +
				"graph, but did")
		}
	}

	// Now that the test is done, we can also close the persistent link.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, persistentChanPoint, false)
}

// testRevokedCloseRetribution tests that Carol is able carry out
// retribution in the event that she fails immediately after detecting Bob's
// breach txn in the mempool.
func testRevokedCloseRetribution(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt     = maxBtcFundingAmount
		paymentAmt  = 10000
		numInvoices = 6
	)

	// Carol will be the breached party. We set --nolisten to ensure Bob
	// won't be able to connect to her and trigger the channel data
	// protection logic automatically.
	carol, err := net.NewNode(
		"Carol",
		[]string{"--debughtlc", "--hodl.exit-settle", "--nolisten"},
	)
	if err != nil {
		t.Fatalf("unable to create new carol node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// We must let Bob communicate with Carol before they are able to open
	// channel, so we connect Bob and Carol,
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
		t.Fatalf("unable to connect dave to carol: %v", err)
	}

	// Before we make a channel, we'll load up Carol with some coins sent
	// directly from the miner.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}

	// In order to test Carol's response to an uncooperative channel
	// closure by Bob, we'll first open up a channel between them with a
	// 0.5 BTC value.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, carol, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// With the channel open, we'll create a few invoices for Bob that
	// Carol will pay to in order to advance the state of the channel.
	bobPayReqs, _, _, err := createPayReqs(
		net.Bob, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// Wait for Carol to receive the channel edge from the funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("carol didn't see the carol->bob channel before "+
			"timeout: %v", err)
	}

	// Send payments from Carol to Bob using 3 of Bob's payment hashes
	// generated above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, carol, bobPayReqs[:numInvoices/2],
		true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Next query for Bob's channel state, as we sent 3 payments of 10k
	// satoshis each, Bob should now see his balance as being 30k satoshis.
	var bobChan *lnrpc.Channel
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		bChan, err := getChanInfo(ctxt, net.Bob)
		if err != nil {
			t.Fatalf("unable to get bob's channel info: %v", err)
		}
		if bChan.LocalBalance != 30000 {
			predErr = fmt.Errorf("bob's balance is incorrect, "+
				"got %v, expected %v", bChan.LocalBalance,
				30000)
			return false
		}

		bobChan = bChan
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}

	// Grab Bob's current commitment height (update number), we'll later
	// revert him to this state after additional updates to force him to
	// broadcast this soon to be revoked state.
	bobStateNumPreCopy := bobChan.NumUpdates

	// Create a temporary file to house Bob's database state at this
	// particular point in history.
	bobTempDbPath, err := ioutil.TempDir("", "bob-past-state")
	if err != nil {
		t.Fatalf("unable to create temp db folder: %v", err)
	}
	bobTempDbFile := filepath.Join(bobTempDbPath, "channel.db")
	defer os.Remove(bobTempDbPath)

	// With the temporary file created, copy Bob's current state into the
	// temporary file we created above. Later after more updates, we'll
	// restore this state.
	if err := lntest.CopyFile(bobTempDbFile, net.Bob.DBPath()); err != nil {
		t.Fatalf("unable to copy database files: %v", err)
	}

	// Finally, send payments from Carol to Bob, consuming Bob's remaining
	// payment hashes.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, carol, bobPayReqs[numInvoices/2:],
		true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	bobChan, err = getChanInfo(ctxt, net.Bob)
	if err != nil {
		t.Fatalf("unable to get bob chan info: %v", err)
	}

	// Now we shutdown Bob, copying over the his temporary database state
	// which has the *prior* channel state over his current most up to date
	// state. With this, we essentially force Bob to travel back in time
	// within the channel's history.
	if err = net.RestartNode(net.Bob, func() error {
		return os.Rename(bobTempDbFile, net.Bob.DBPath())
	}); err != nil {
		t.Fatalf("unable to restart node: %v", err)
	}

	// Now query for Bob's channel state, it should show that he's at a
	// state number in the past, not the *latest* state.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	bobChan, err = getChanInfo(ctxt, net.Bob)
	if err != nil {
		t.Fatalf("unable to get bob chan info: %v", err)
	}
	if bobChan.NumUpdates != bobStateNumPreCopy {
		t.Fatalf("db copy failed: %v", bobChan.NumUpdates)
	}

	// Now force Bob to execute a *force* channel closure by unilaterally
	// broadcasting his current channel state. This is actually the
	// commitment transaction of a prior *revoked* state, so he'll soon
	// feel the wrath of Carol's retribution.
	var closeUpdates lnrpc.Lightning_CloseChannelClient
	force := true
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
		closeUpdates, _, err = net.CloseChannel(ctxt, net.Bob, chanPoint, force)
		if err != nil {
			predErr = err
			return false
		}

		return true
	}, time.Second*10)
	if err != nil {
		t.Fatalf("unable to close channel: %v", predErr)
	}

	// Wait for Bob's breach transaction to show up in the mempool to ensure
	// that Carol's node has started waiting for confirmations.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Bob's breach tx in mempool: %v", err)
	}

	// Here, Carol sees Bob's breach transaction in the mempool, but is waiting
	// for it to confirm before continuing her retribution. We restart Carol to
	// ensure that she is persisting her retribution state and continues
	// watching for the breach transaction to confirm even after her node
	// restarts.
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("unable to restart Carol's node: %v", err)
	}

	// Finally, generate a single block, wait for the final close status
	// update, then ensure that the closing transaction was included in the
	// block.
	block := mineBlocks(t, net, 1, 1)[0]

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
	if err != nil {
		t.Fatalf("error while waiting for channel close: %v", err)
	}
	assertTxInBlock(t, block, breachTXID)

	// Query the mempool for Carol's justice transaction, this should be
	// broadcast as Bob's contract breaching transaction gets confirmed
	// above.
	justiceTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's justice tx in mempool: %v", err)
	}
	time.Sleep(100 * time.Millisecond)

	// Query for the mempool transaction found above. Then assert that all
	// the inputs of this transaction are spending outputs generated by
	// Bob's breach transaction above.
	justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
	if err != nil {
		t.Fatalf("unable to query for justice tx: %v", err)
	}
	for _, txIn := range justiceTx.MsgTx().TxIn {
		if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
			t.Fatalf("justice tx not spending commitment utxo "+
				"instead is: %v", txIn.PreviousOutPoint)
		}
	}

	// We restart Carol here to ensure that she persists her retribution state
	// and successfully continues exacting retribution after restarting. At
	// this point, Carol has broadcast the justice transaction, but it hasn't
	// been confirmed yet; when Carol restarts, she should start waiting for
	// the justice transaction to confirm again.
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("unable to restart Carol's node: %v", err)
	}

	// Now mine a block, this transaction should include Carol's justice
	// transaction which was just accepted into the mempool.
	block = mineBlocks(t, net, 1, 1)[0]

	// The block should have exactly *two* transactions, one of which is
	// the justice transaction.
	if len(block.Transactions) != 2 {
		t.Fatalf("transaction wasn't mined")
	}
	justiceSha := block.Transactions[1].TxHash()
	if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
		t.Fatalf("justice tx wasn't mined")
	}

	assertNodeNumChannels(t, carol, 0)
}

// testRevokedCloseRetributionZeroValueRemoteOutput tests that Dave is able
// carry out retribution in the event that she fails in state where the remote
// commitment output has zero-value.
func testRevokedCloseRetributionZeroValueRemoteOutput(net *lntest.NetworkHarness,
	t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt     = maxBtcFundingAmount
		paymentAmt  = 10000
		numInvoices = 6
	)

	// Since we'd like to test some multi-hop failure scenarios, we'll
	// introduce another node into our test network: Carol.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// Dave will be the breached party. We set --nolisten to ensure Carol
	// won't be able to connect to him and trigger the channel data
	// protection logic automatically.
	dave, err := net.NewNode(
		"Dave",
		[]string{"--debughtlc", "--hodl.exit-settle", "--nolisten"},
	)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	// We must let Dave have an open channel before she can send a node
	// announcement, so we open a channel with Carol,
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
		t.Fatalf("unable to connect dave to carol: %v", err)
	}

	// Before we make a channel, we'll load up Dave with some coins sent
	// directly from the miner.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}

	// In order to test Dave's response to an uncooperative channel
	// closure by Carol, we'll first open up a channel between them with a
	// 0.5 BTC value.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, dave, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// With the channel open, we'll create a few invoices for Carol that
	// Dave will pay to in order to advance the state of the channel.
	carolPayReqs, _, _, err := createPayReqs(
		carol, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// Wait for Dave to receive the channel edge from the funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("dave didn't see the dave->carol channel before "+
			"timeout: %v", err)
	}

	// Next query for Carol's channel state, as we sent 0 payments, Carol
	// should now see her balance as being 0 satoshis.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolChan, err := getChanInfo(ctxt, carol)
	if err != nil {
		t.Fatalf("unable to get carol's channel info: %v", err)
	}
	if carolChan.LocalBalance != 0 {
		t.Fatalf("carol's balance is incorrect, got %v, expected %v",
			carolChan.LocalBalance, 0)
	}

	// Grab Carol's current commitment height (update number), we'll later
	// revert her to this state after additional updates to force him to
	// broadcast this soon to be revoked state.
	carolStateNumPreCopy := carolChan.NumUpdates

	// Create a temporary file to house Carol's database state at this
	// particular point in history.
	carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
	if err != nil {
		t.Fatalf("unable to create temp db folder: %v", err)
	}
	carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
	defer os.Remove(carolTempDbPath)

	// With the temporary file created, copy Carol's current state into the
	// temporary file we created above. Later after more updates, we'll
	// restore this state.
	if err := lntest.CopyFile(carolTempDbFile, carol.DBPath()); err != nil {
		t.Fatalf("unable to copy database files: %v", err)
	}

	// Finally, send payments from Dave to Carol, consuming Carol's remaining
	// payment hashes.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, dave, carolPayReqs, false)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolChan, err = getChanInfo(ctxt, carol)
	if err != nil {
		t.Fatalf("unable to get carol chan info: %v", err)
	}

	// Now we shutdown Carol, copying over the his temporary database state
	// which has the *prior* channel state over his current most up to date
	// state. With this, we essentially force Carol to travel back in time
	// within the channel's history.
	if err = net.RestartNode(carol, func() error {
		return os.Rename(carolTempDbFile, carol.DBPath())
	}); err != nil {
		t.Fatalf("unable to restart node: %v", err)
	}

	// Now query for Carol's channel state, it should show that he's at a
	// state number in the past, not the *latest* state.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolChan, err = getChanInfo(ctxt, carol)
	if err != nil {
		t.Fatalf("unable to get carol chan info: %v", err)
	}
	if carolChan.NumUpdates != carolStateNumPreCopy {
		t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
	}

	// Now force Carol to execute a *force* channel closure by unilaterally
	// broadcasting his current channel state. This is actually the
	// commitment transaction of a prior *revoked* state, so he'll soon
	// feel the wrath of Dave's retribution.
	var (
		closeUpdates lnrpc.Lightning_CloseChannelClient
		closeTxId    *chainhash.Hash
		closeErr     error
		force        bool = true
	)
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
		closeUpdates, closeTxId, closeErr = net.CloseChannel(
			ctxt, carol, chanPoint, force,
		)
		return closeErr == nil
	}, time.Second*15)
	if err != nil {
		t.Fatalf("unable to close channel: %v", closeErr)
	}

	// Query the mempool for the breaching closing transaction, this should
	// be broadcast by Carol when she force closes the channel above.
	txid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's force close tx in mempool: %v",
			err)
	}
	if *txid != *closeTxId {
		t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
			closeTxId, txid)
	}

	// Finally, generate a single block, wait for the final close status
	// update, then ensure that the closing transaction was included in the
	// block.
	block := mineBlocks(t, net, 1, 1)[0]

	// Here, Dave receives a confirmation of Carol's breach transaction.
	// We restart Dave to ensure that she is persisting her retribution
	// state and continues exacting justice after her node restarts.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to stop Dave's node: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
	if err != nil {
		t.Fatalf("error while waiting for channel close: %v", err)
	}
	assertTxInBlock(t, block, breachTXID)

	// Query the mempool for Dave's justice transaction, this should be
	// broadcast as Carol's contract breaching transaction gets confirmed
	// above.
	justiceTXID, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Dave's justice tx in mempool: %v",
			err)
	}
	time.Sleep(100 * time.Millisecond)

	// Query for the mempool transaction found above. Then assert that all
	// the inputs of this transaction are spending outputs generated by
	// Carol's breach transaction above.
	justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTXID)
	if err != nil {
		t.Fatalf("unable to query for justice tx: %v", err)
	}
	for _, txIn := range justiceTx.MsgTx().TxIn {
		if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
			t.Fatalf("justice tx not spending commitment utxo "+
				"instead is: %v", txIn.PreviousOutPoint)
		}
	}

	// We restart Dave here to ensure that he persists her retribution state
	// and successfully continues exacting retribution after restarting. At
	// this point, Dave has broadcast the justice transaction, but it hasn't
	// been confirmed yet; when Dave restarts, she should start waiting for
	// the justice transaction to confirm again.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to restart Dave's node: %v", err)
	}

	// Now mine a block, this transaction should include Dave's justice
	// transaction which was just accepted into the mempool.
	block = mineBlocks(t, net, 1, 1)[0]

	// The block should have exactly *two* transactions, one of which is
	// the justice transaction.
	if len(block.Transactions) != 2 {
		t.Fatalf("transaction wasn't mined")
	}
	justiceSha := block.Transactions[1].TxHash()
	if !bytes.Equal(justiceTx.Hash()[:], justiceSha[:]) {
		t.Fatalf("justice tx wasn't mined")
	}

	assertNodeNumChannels(t, dave, 0)
}

// testRevokedCloseRetributionRemoteHodl tests that Dave properly responds to a
// channel breach made by the remote party, specifically in the case that the
// remote party breaches before settling extended HTLCs.
func testRevokedCloseRetributionRemoteHodl(net *lntest.NetworkHarness,
	t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt     = maxBtcFundingAmount
		pushAmt     = 200000
		paymentAmt  = 10000
		numInvoices = 6
	)

	// Since this test will result in the counterparty being left in a
	// weird state, we will introduce another node into our test network:
	// Carol.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// We'll also create a new node Dave, who will have a channel with
	// Carol, and also use similar settings so we can broadcast a commit
	// with active HTLCs. Dave will be the breached party. We set
	// --nolisten to ensure Carol won't be able to connect to him and
	// trigger the channel data protection logic automatically.
	dave, err := net.NewNode(
		"Dave",
		[]string{"--debughtlc", "--hodl.exit-settle", "--nolisten"},
	)
	if err != nil {
		t.Fatalf("unable to create new dave node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	// We must let Dave communicate with Carol before they are able to open
	// channel, so we connect Dave and Carol,
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
		t.Fatalf("unable to connect dave to carol: %v", err)
	}

	// Before we make a channel, we'll load up Dave with some coins sent
	// directly from the miner.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}

	// In order to test Dave's response to an uncooperative channel closure
	// by Carol, we'll first open up a channel between them with a
	// maxBtcFundingAmount (2^24) satoshis value.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, dave, carol,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	// With the channel open, we'll create a few invoices for Carol that
	// Dave will pay to in order to advance the state of the channel.
	carolPayReqs, _, _, err := createPayReqs(
		carol, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll introduce a closure to validate that Carol's current balance
	// matches the given expected amount.
	checkCarolBalance := func(expectedAmt int64) {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		carolChan, err := getChanInfo(ctxt, carol)
		if err != nil {
			t.Fatalf("unable to get carol's channel info: %v", err)
		}
		if carolChan.LocalBalance != expectedAmt {
			t.Fatalf("carol's balance is incorrect, "+
				"got %v, expected %v", carolChan.LocalBalance,
				expectedAmt)
		}
	}

	// We'll introduce another closure to validate that Carol's current
	// number of updates is at least as large as the provided minimum
	// number.
	checkCarolNumUpdatesAtLeast := func(minimum uint64) {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		carolChan, err := getChanInfo(ctxt, carol)
		if err != nil {
			t.Fatalf("unable to get carol's channel info: %v", err)
		}
		if carolChan.NumUpdates < minimum {
			t.Fatalf("carol's numupdates is incorrect, want %v "+
				"to be at least %v", carolChan.NumUpdates,
				minimum)
		}
	}

	// Wait for Dave to receive the channel edge from the funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("dave didn't see the dave->carol channel before "+
			"timeout: %v", err)
	}

	// Ensure that carol's balance starts with the amount we pushed to her.
	checkCarolBalance(pushAmt)

	// Send payments from Dave to Carol using 3 of Carol's payment hashes
	// generated above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(
		ctxt, dave, carolPayReqs[:numInvoices/2], false,
	)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// At this point, we'll also send over a set of HTLC's from Carol to
	// Dave. This ensures that the final revoked transaction has HTLC's in
	// both directions.
	davePayReqs, _, _, err := createPayReqs(
		dave, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// Send payments from Carol to Dave using 3 of Dave's payment hashes
	// generated above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(
		ctxt, carol, davePayReqs[:numInvoices/2], false,
	)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Next query for Carol's channel state, as we sent 3 payments of 10k
	// satoshis each, however Carol should now see her balance as being
	// equal to the push amount in satoshis since she has not settled.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolChan, err := getChanInfo(ctxt, carol)
	if err != nil {
		t.Fatalf("unable to get carol's channel info: %v", err)
	}

	// Grab Carol's current commitment height (update number), we'll later
	// revert her to this state after additional updates to force her to
	// broadcast this soon to be revoked state.
	carolStateNumPreCopy := carolChan.NumUpdates

	// Ensure that carol's balance still reflects the original amount we
	// pushed to her, minus the HTLCs she just sent to Dave.
	checkCarolBalance(pushAmt - 3*paymentAmt)

	// Since Carol has not settled, she should only see at least one update
	// to her channel.
	checkCarolNumUpdatesAtLeast(1)

	// Create a temporary file to house Carol's database state at this
	// particular point in history.
	carolTempDbPath, err := ioutil.TempDir("", "carol-past-state")
	if err != nil {
		t.Fatalf("unable to create temp db folder: %v", err)
	}
	carolTempDbFile := filepath.Join(carolTempDbPath, "channel.db")
	defer os.Remove(carolTempDbPath)

	// With the temporary file created, copy Carol's current state into the
	// temporary file we created above. Later after more updates, we'll
	// restore this state.
	if err := lntest.CopyFile(carolTempDbFile, carol.DBPath()); err != nil {
		t.Fatalf("unable to copy database files: %v", err)
	}

	// Finally, send payments from Dave to Carol, consuming Carol's
	// remaining payment hashes.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(
		ctxt, dave, carolPayReqs[numInvoices/2:], false,
	)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Ensure that carol's balance still shows the amount we originally
	// pushed to her (minus the HTLCs she sent to Bob), and that at least
	// one more update has occurred.
	time.Sleep(500 * time.Millisecond)
	checkCarolBalance(pushAmt - 3*paymentAmt)
	checkCarolNumUpdatesAtLeast(carolStateNumPreCopy + 1)

	// Now we shutdown Carol, copying over the her temporary database state
	// which has the *prior* channel state over her current most up to date
	// state. With this, we essentially force Carol to travel back in time
	// within the channel's history.
	if err = net.RestartNode(carol, func() error {
		return os.Rename(carolTempDbFile, carol.DBPath())
	}); err != nil {
		t.Fatalf("unable to restart node: %v", err)
	}

	time.Sleep(200 * time.Millisecond)

	// Ensure that Carol's view of the channel is consistent with the state
	// of the channel just before it was snapshotted.
	checkCarolBalance(pushAmt - 3*paymentAmt)
	checkCarolNumUpdatesAtLeast(1)

	// Now query for Carol's channel state, it should show that she's at a
	// state number in the past, *not* the latest state.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolChan, err = getChanInfo(ctxt, carol)
	if err != nil {
		t.Fatalf("unable to get carol chan info: %v", err)
	}
	if carolChan.NumUpdates != carolStateNumPreCopy {
		t.Fatalf("db copy failed: %v", carolChan.NumUpdates)
	}

	// Now force Carol to execute a *force* channel closure by unilaterally
	// broadcasting her current channel state. This is actually the
	// commitment transaction of a prior *revoked* state, so she'll soon
	// feel the wrath of Dave's retribution.
	force := true
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeUpdates, closeTxId, err := net.CloseChannel(ctxt, carol,
		chanPoint, force)
	if err != nil {
		t.Fatalf("unable to close channel: %v", err)
	}

	// Query the mempool for the breaching closing transaction, this should
	// be broadcast by Carol when she force closes the channel above.
	txid, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's force close tx in mempool: %v",
			err)
	}
	if *txid != *closeTxId {
		t.Fatalf("expected closeTx(%v) in mempool, instead found %v",
			closeTxId, txid)
	}
	time.Sleep(200 * time.Millisecond)

	// Generate a single block to mine the breach transaction.
	block := mineBlocks(t, net, 1, 1)[0]

	// Wait so Dave receives a confirmation of Carol's breach transaction.
	time.Sleep(200 * time.Millisecond)

	// We restart Dave to ensure that he is persisting his retribution
	// state and continues exacting justice after her node restarts.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to stop Dave's node: %v", err)
	}

	// Finally, wait for the final close status update, then ensure that
	// the closing transaction was included in the block.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	breachTXID, err := net.WaitForChannelClose(ctxt, closeUpdates)
	if err != nil {
		t.Fatalf("error while waiting for channel close: %v", err)
	}
	if *breachTXID != *closeTxId {
		t.Fatalf("expected breach ID(%v) to be equal to close ID (%v)",
			breachTXID, closeTxId)
	}
	assertTxInBlock(t, block, breachTXID)

	// Query the mempool for Dave's justice transaction, this should be
	// broadcast as Carol's contract breaching transaction gets confirmed
	// above. Since Carol might have had the time to take some of the HTLC
	// outputs to the second level before Dave broadcasts his justice tx,
	// we'll search through the mempool for a tx that matches the number of
	// expected inputs in the justice tx.
	var predErr error
	var justiceTxid *chainhash.Hash
	errNotFound := errors.New("justice tx not found")
	findJusticeTx := func() (*chainhash.Hash, error) {
		mempool, err := net.Miner.Node.GetRawMempool()
		if err != nil {
			return nil, fmt.Errorf("unable to get mempool from "+
				"miner: %v", err)
		}

		for _, txid := range mempool {
			// Check that the justice tx has the appropriate number
			// of inputs.
			tx, err := net.Miner.Node.GetRawTransaction(txid)
			if err != nil {
				return nil, fmt.Errorf("unable to query for "+
					"txs: %v", err)
			}

			exNumInputs := 2 + numInvoices
			if len(tx.MsgTx().TxIn) == exNumInputs {
				return txid, nil
			}
		}
		return nil, errNotFound
	}

	err = lntest.WaitPredicate(func() bool {
		txid, err := findJusticeTx()
		if err != nil {
			predErr = err
			return false
		}

		justiceTxid = txid
		return true
	}, time.Second*10)
	if err != nil && predErr == errNotFound {
		// If Dave is unable to broadcast his justice tx on first
		// attempt because of the second layer transactions, he will
		// wait until the next block epoch before trying again. Because
		// of this, we'll mine a block if we cannot find the justice tx
		// immediately. Since we cannot tell for sure how many
		// transactions will be in the mempool at this point, we pass 0
		// as the last argument, indicating we don't care what's in the
		// mempool.
		mineBlocks(t, net, 1, 0)
		err = lntest.WaitPredicate(func() bool {
			txid, err := findJusticeTx()
			if err != nil {
				predErr = err
				return false
			}

			justiceTxid = txid
			return true
		}, time.Second*10)
	}
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	justiceTx, err := net.Miner.Node.GetRawTransaction(justiceTxid)
	if err != nil {
		t.Fatalf("unable to query for justice tx: %v", err)
	}

	// isSecondLevelSpend checks that the passed secondLevelTxid is a
	// potentitial second level spend spending from the commit tx.
	isSecondLevelSpend := func(commitTxid, secondLevelTxid *chainhash.Hash) bool {
		secondLevel, err := net.Miner.Node.GetRawTransaction(
			secondLevelTxid)
		if err != nil {
			t.Fatalf("unable to query for tx: %v", err)
		}

		// A second level spend should have only one input, and one
		// output.
		if len(secondLevel.MsgTx().TxIn) != 1 {
			return false
		}
		if len(secondLevel.MsgTx().TxOut) != 1 {
			return false
		}

		// The sole input should be spending from the commit tx.
		txIn := secondLevel.MsgTx().TxIn[0]
		if !bytes.Equal(txIn.PreviousOutPoint.Hash[:], commitTxid[:]) {
			return false
		}

		return true
	}

	// Check that all the inputs of this transaction are spending outputs
	// generated by Carol's breach transaction above.
	for _, txIn := range justiceTx.MsgTx().TxIn {
		if bytes.Equal(txIn.PreviousOutPoint.Hash[:], breachTXID[:]) {
			continue
		}

		// If the justice tx is spending from an output that was not on
		// the breach tx, Carol might have had the time to take an
		// output to the second level. In that case, check that the
		// justice tx is spending this second level output.
		if isSecondLevelSpend(breachTXID, &txIn.PreviousOutPoint.Hash) {
			continue
		}
		t.Fatalf("justice tx not spending commitment utxo "+
			"instead is: %v", txIn.PreviousOutPoint)
	}
	time.Sleep(100 * time.Millisecond)

	// We restart Dave here to ensure that he persists he retribution state
	// and successfully continues exacting retribution after restarting. At
	// this point, Dave has broadcast the justice transaction, but it
	// hasn't been confirmed yet; when Dave restarts, he should start
	// waiting for the justice transaction to confirm again.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to restart Dave's node: %v", err)
	}

	// Now mine a block, this transaction should include Dave's justice
	// transaction which was just accepted into the mempool.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, justiceTxid)

	// Dave should have no open channels.
	assertNodeNumChannels(t, dave, 0)
}

// assertNumPendingChannels checks that a PendingChannels response from the
// node reports the expected number of pending channels.
func assertNumPendingChannels(t *harnessTest, node *lntest.HarnessNode,
	expWaitingClose, expPendingForceClose int) {
	ctxb := context.Background()

	var predErr error
	err := lntest.WaitPredicate(func() bool {
		pendingChansRequest := &lnrpc.PendingChannelsRequest{}
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := node.PendingChannels(ctxt,
			pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		n := len(pendingChanResp.WaitingCloseChannels)
		if n != expWaitingClose {
			predErr = fmt.Errorf("Expected to find %d channels "+
				"waiting close, found %d", expWaitingClose, n)
			return false
		}
		n = len(pendingChanResp.PendingForceClosingChannels)
		if n != expPendingForceClose {
			predErr = fmt.Errorf("expected to find %d channel "+
				"pending force close, found %d", expPendingForceClose, n)
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", predErr)
	}
}

// assertDLPExecuted asserts that Dave is a node that has recovered their state
// form scratch. Carol should then force close on chain, with Dave sweeping his
// funds immediately, and Carol sweeping her fund after her CSV delay is up. If
// the blankSlate value is true, then this means that Dave won't need to sweep
// on chain as he has no funds in the channel.
func assertDLPExecuted(net *lntest.NetworkHarness, t *harnessTest,
	carol *lntest.HarnessNode, carolStartingBalance int64,
	dave *lntest.HarnessNode, daveStartingBalance int64) {

	// Upon reconnection, the nodes should detect that Dave is out of sync.
	// Carol should force close the channel using her latest commitment.
	ctxb := context.Background()
	forceClose, err := waitForTxInMempool(
		net.Miner.Node, minerMempoolTimeout,
	)
	if err != nil {
		t.Fatalf("unable to find Carol's force close tx in mempool: %v",
			err)
	}

	// Channel should be in the state "waiting close" for Carol since she
	// broadcasted the force close tx.
	assertNumPendingChannels(t, carol, 1, 0)

	// Dave should also consider the channel "waiting close", as he noticed
	// the channel was out of sync, and is now waiting for a force close to
	// hit the chain.
	assertNumPendingChannels(t, dave, 1, 0)

	// Restart Dave to make sure he is able to sweep the funds after
	// shutdown.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Generate a single block, which should confirm the closing tx.
	block := mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, forceClose)

	// Dave should sweep his funds immediately, as they are not timelocked.
	daveSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Dave's sweep tx in mempool: %v", err)
	}

	// Dave should consider the channel pending force close (since he is
	// waiting for his sweep to confirm).
	assertNumPendingChannels(t, dave, 0, 1)

	// Carol is considering it "pending force close", as we must wait
	// before she can sweep her outputs.
	assertNumPendingChannels(t, carol, 0, 1)

	// Mine the sweep tx.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, daveSweep)

	// Now Dave should consider the channel fully closed.
	assertNumPendingChannels(t, dave, 0, 0)

	// We query Dave's balance to make sure it increased after the channel
	// closed. This checks that he was able to sweep the funds he had in
	// the channel.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	balReq := &lnrpc.WalletBalanceRequest{}
	daveBalResp, err := dave.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get dave's balance: %v", err)
	}

	daveBalance := daveBalResp.ConfirmedBalance
	if daveBalance <= daveStartingBalance {
		t.Fatalf("expected dave to have balance above %d, "+
			"instead had %v", daveStartingBalance, daveBalance)
	}

	// After the Carol's output matures, she should also reclaim her funds.
	mineBlocks(t, net, defaultCSV-1, 0)
	carolSweep, err := waitForTxInMempool(
		net.Miner.Node, minerMempoolTimeout,
	)
	if err != nil {
		t.Fatalf("unable to find Carol's sweep tx in mempool: %v", err)
	}
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, carolSweep)

	// Now the channel should be fully closed also from Carol's POV.
	assertNumPendingChannels(t, carol, 0, 0)

	// Make sure Carol got her balance back.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err := carol.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	carolBalance := carolBalResp.ConfirmedBalance
	if carolBalance <= carolStartingBalance {
		t.Fatalf("expected carol to have balance above %d, "+
			"instead had %v", carolStartingBalance,
			carolBalance)
	}

	assertNodeNumChannels(t, dave, 0)
	assertNodeNumChannels(t, carol, 0)
}

// testDataLossProtection tests that if one of the nodes in a channel
// relationship lost state, they will detect this during channel sync, and the
// up-to-date party will force close the channel, giving the outdated party the
// opportunity to sweep its output.
func testDataLossProtection(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()
	const (
		chanAmt     = maxBtcFundingAmount
		paymentAmt  = 10000
		numInvoices = 6
	)

	// Carol will be the up-to-date party. We set --nolisten to ensure Dave
	// won't be able to connect to her and trigger the channel data
	// protection logic automatically.
	carol, err := net.NewNode("Carol", []string{"--nolisten"})
	if err != nil {
		t.Fatalf("unable to create new carol node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// Dave will be the party losing his state.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	// Before we make a channel, we'll load up Carol with some coins sent
	// directly from the miner.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}

	// timeTravel is a method that will make Carol open a channel to the
	// passed node, settle a series of payments, then reset the node back
	// to the state before the payments happened. When this method returns
	// the node will be unaware of the new state updates. The returned
	// function can be used to restart the node in this state.
	timeTravel := func(node *lntest.HarnessNode) (func() error,
		*lnrpc.ChannelPoint, int64, error) {

		// We must let the node communicate with Carol before they are
		// able to open channel, so we connect them.
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		if err := net.EnsureConnected(ctxt, carol, node); err != nil {
			t.Fatalf("unable to connect %v to carol: %v",
				node.Name(), err)
		}

		// We'll first open up a channel between them with a 0.5 BTC
		// value.
		ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
		chanPoint := openChannelAndAssert(
			ctxt, t, net, carol, node,
			lntest.OpenChannelParams{
				Amt: chanAmt,
			},
		)

		// With the channel open, we'll create a few invoices for the
		// node that Carol will pay to in order to advance the state of
		// the channel.
		// TODO(halseth): have dangling HTLCs on the commitment, able to
		// retrive funds?
		payReqs, _, _, err := createPayReqs(
			node, paymentAmt, numInvoices,
		)
		if err != nil {
			t.Fatalf("unable to create pay reqs: %v", err)
		}

		// Wait for Carol to receive the channel edge from the funding
		// manager.
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
		if err != nil {
			t.Fatalf("carol didn't see the carol->%s channel "+
				"before timeout: %v", node.Name(), err)
		}

		// Send payments from Carol using 3 of the payment hashes
		// generated above.
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		err = completePaymentRequests(ctxt, carol,
			payReqs[:numInvoices/2], true)
		if err != nil {
			t.Fatalf("unable to send payments: %v", err)
		}

		// Next query for the node's channel state, as we sent 3
		// payments of 10k satoshis each, it should now see his balance
		// as being 30k satoshis.
		var nodeChan *lnrpc.Channel
		var predErr error
		err = lntest.WaitPredicate(func() bool {
			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			bChan, err := getChanInfo(ctxt, node)
			if err != nil {
				t.Fatalf("unable to get channel info: %v", err)
			}
			if bChan.LocalBalance != 30000 {
				predErr = fmt.Errorf("balance is incorrect, "+
					"got %v, expected %v",
					bChan.LocalBalance, 30000)
				return false
			}

			nodeChan = bChan
			return true
		}, time.Second*15)
		if err != nil {
			t.Fatalf("%v", predErr)
		}

		// Grab the current commitment height (update number), we'll
		// later revert him to this state after additional updates to
		// revoke this state.
		stateNumPreCopy := nodeChan.NumUpdates

		// Create a temporary file to house the database state at this
		// particular point in history.
		tempDbPath, err := ioutil.TempDir("", node.Name()+"-past-state")
		if err != nil {
			t.Fatalf("unable to create temp db folder: %v", err)
		}
		tempDbFile := filepath.Join(tempDbPath, "channel.db")
		defer os.Remove(tempDbPath)

		// With the temporary file created, copy the current state into
		// the temporary file we created above. Later after more
		// updates, we'll restore this state.
		if err := lntest.CopyFile(tempDbFile, node.DBPath()); err != nil {
			t.Fatalf("unable to copy database files: %v", err)
		}

		// Finally, send more payments from , using the remaining
		// payment hashes.
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		err = completePaymentRequests(ctxt, carol,
			payReqs[numInvoices/2:], true)
		if err != nil {
			t.Fatalf("unable to send payments: %v", err)
		}

		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		nodeChan, err = getChanInfo(ctxt, node)
		if err != nil {
			t.Fatalf("unable to get dave chan info: %v", err)
		}

		// Now we shutdown the node, copying over the its temporary
		// database state which has the *prior* channel state over his
		// current most up to date state. With this, we essentially
		// force the node to travel back in time within the channel's
		// history.
		if err = net.RestartNode(node, func() error {
			return os.Rename(tempDbFile, node.DBPath())
		}); err != nil {
			t.Fatalf("unable to restart node: %v", err)
		}

		// Make sure the channel is still there from the PoV of the
		// node.
		assertNodeNumChannels(t, node, 1)

		// Now query for the channel state, it should show that it's at
		// a state number in the past, not the *latest* state.
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		nodeChan, err = getChanInfo(ctxt, node)
		if err != nil {
			t.Fatalf("unable to get dave chan info: %v", err)
		}
		if nodeChan.NumUpdates != stateNumPreCopy {
			t.Fatalf("db copy failed: %v", nodeChan.NumUpdates)
		}

		balReq := &lnrpc.WalletBalanceRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		balResp, err := node.WalletBalance(ctxt, balReq)
		if err != nil {
			t.Fatalf("unable to get dave's balance: %v", err)
		}

		restart, err := net.SuspendNode(node)
		if err != nil {
			t.Fatalf("unable to suspend node: %v", err)
		}
		return restart, chanPoint, balResp.ConfirmedBalance, nil
	}

	// Reset Dave to a state where he has an outdated channel state.
	restartDave, _, daveStartingBalance, err := timeTravel(dave)
	if err != nil {
		t.Fatalf("unable to time travel dave: %v", err)
	}

	// We make a note of the nodes' current on-chain balances, to make sure
	// they are able to retrieve the channel funds eventually,
	balReq := &lnrpc.WalletBalanceRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err := carol.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	carolStartingBalance := carolBalResp.ConfirmedBalance

	// Restart Dave to trigger a channel resync.
	if err := restartDave(); err != nil {
		t.Fatalf("unable to restart dave: %v", err)
	}

	// Assert that once Dave comes up, they reconnect, Carol force closes
	// on chain, and both of them properly carry out the DLP protocol.
	assertDLPExecuted(
		net, t, carol, carolStartingBalance, dave, daveStartingBalance,
	)

	// As a second part of this test, we will test the scenario where a
	// channel is closed while Dave is offline, loses his state and comes
	// back online. In this case the node should attempt to resync the
	// channel, and the peer should resend a channel sync message for the
	// closed channel, such that Dave can retrieve his funds.
	//
	// We start by letting Dave time travel back to an outdated state.
	restartDave, chanPoint2, daveStartingBalance, err := timeTravel(dave)
	if err != nil {
		t.Fatalf("unable to time travel eve: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err = carol.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	carolStartingBalance = carolBalResp.ConfirmedBalance

	// Now let Carol force close the channel while Dave is offline.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPoint2, true)

	// Wait for the channel to be marked pending force close.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = waitForChannelPendingForceClose(ctxt, carol, chanPoint2)
	if err != nil {
		t.Fatalf("channel not pending force close: %v", err)
	}

	// Mine enough blocks for Carol to sweep her funds.
	mineBlocks(t, net, defaultCSV, 0)

	carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's sweep tx in mempool: %v", err)
	}
	block := mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, carolSweep)

	// Now the channel should be fully closed also from Carol's POV.
	assertNumPendingChannels(t, carol, 0, 0)

	// Make sure Carol got her balance back.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err = carol.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	carolBalance := carolBalResp.ConfirmedBalance
	if carolBalance <= carolStartingBalance {
		t.Fatalf("expected carol to have balance above %d, "+
			"instead had %v", carolStartingBalance,
			carolBalance)
	}

	assertNodeNumChannels(t, carol, 0)

	// When Dave comes online, he will reconnect to Carol, try to resync
	// the channel, but it will already be closed. Carol should resend the
	// information Dave needs to sweep his funds.
	if err := restartDave(); err != nil {
		t.Fatalf("unabel to restart Eve: %v", err)
	}

	// Dave should sweep his funds.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Dave's sweep tx in mempool: %v", err)
	}

	// Mine a block to confirm the sweep, and make sure Dave got his
	// balance back.
	mineBlocks(t, net, 1, 1)
	assertNodeNumChannels(t, dave, 0)

	err = lntest.WaitNoError(func() error {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		daveBalResp, err := dave.WalletBalance(ctxt, balReq)
		if err != nil {
			return fmt.Errorf("unable to get dave's balance: %v",
				err)
		}

		daveBalance := daveBalResp.ConfirmedBalance
		if daveBalance <= daveStartingBalance {
			return fmt.Errorf("expected dave to have balance "+
				"above %d, intead had %v", daveStartingBalance,
				daveBalance)
		}

		return nil
	}, time.Second*15)
	if err != nil {
		t.Fatalf("%v", err)
	}
}

// assertNodeNumChannels polls the provided node's list channels rpc until it
// reaches the desired number of total channels.
func assertNodeNumChannels(t *harnessTest, node *lntest.HarnessNode,
	numChannels int) {
	ctxb := context.Background()

	// Poll node for its list of channels.
	req := &lnrpc.ListChannelsRequest{}

	var predErr error
	pred := func() bool {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		chanInfo, err := node.ListChannels(ctxt, req)
		if err != nil {
			predErr = fmt.Errorf("unable to query for node's "+
				"channels: %v", err)
			return false
		}

		// Return true if the query returned the expected number of
		// channels.
		num := len(chanInfo.Channels)
		if num != numChannels {
			predErr = fmt.Errorf("expected %v channels, got %v",
				numChannels, num)
			return false
		}
		return true
	}

	if err := lntest.WaitPredicate(pred, time.Second*15); err != nil {
		t.Fatalf("node has incorrect number of channels: %v", predErr)
	}
}

func testHtlcErrorPropagation(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// In this test we wish to exercise the daemon's correct parsing,
	// handling, and propagation of errors that occur while processing a
	// multi-hop payment.
	const chanAmt = maxBtcFundingAmount

	// First establish a channel with a capacity of 0.5 BTC between Alice
	// and Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointAlice); err != nil {
		t.Fatalf("channel not seen by alice before timeout: %v", err)
	}

	commitFee := calcStaticFee(0)
	assertBaseBalance := func() {
		balReq := &lnrpc.ChannelBalanceRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		aliceBal, err := net.Alice.ChannelBalance(ctxt, balReq)
		if err != nil {
			t.Fatalf("unable to get channel balance: %v", err)
		}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		bobBal, err := net.Bob.ChannelBalance(ctxt, balReq)
		if err != nil {
			t.Fatalf("unable to get channel balance: %v", err)
		}
		if aliceBal.Balance != int64(chanAmt-commitFee) {
			t.Fatalf("alice has an incorrect balance: expected %v got %v",
				int64(chanAmt-commitFee), aliceBal)
		}
		if bobBal.Balance != int64(chanAmt-commitFee) {
			t.Fatalf("bob has an incorrect balance: expected %v got %v",
				int64(chanAmt-commitFee), bobBal)
		}
	}

	// Since we'd like to test some multi-hop failure scenarios, we'll
	// introduce another node into our test network: Carol.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}

	// Next, we'll create a connection from Bob to Carol, and open a
	// channel between them so we have the topology: Alice -> Bob -> Carol.
	// The channel created will be of lower capacity that the one created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
		t.Fatalf("unable to connect bob to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	const bobChanAmt = maxBtcFundingAmount
	chanPointBob := openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Ensure that Alice has Carol in her routing table before proceeding.
	nodeInfoReq := &lnrpc.NodeInfoRequest{
		PubKey: carol.PubKeyStr,
	}
	checkTableTimeout := time.After(time.Second * 10)
	checkTableTicker := time.NewTicker(100 * time.Millisecond)
	defer checkTableTicker.Stop()

out:
	// TODO(roasbeef): make into async hook for node announcements
	for {
		select {
		case <-checkTableTicker.C:
			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			_, err := net.Alice.GetNodeInfo(ctxt, nodeInfoReq)
			if err != nil && strings.Contains(err.Error(),
				"unable to find") {

				continue
			}

			break out
		case <-checkTableTimeout:
			t.Fatalf("carol's node announcement didn't propagate within " +
				"the timeout period")
		}
	}

	// With the channels, open we can now start to test our multi-hop error
	// scenarios. First, we'll generate an invoice from carol that we'll
	// use to test some error cases.
	const payAmt = 10000
	invoiceReq := &lnrpc.Invoice{
		Memo:  "kek99",
		Value: payAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
	if err != nil {
		t.Fatalf("unable to generate carol invoice: %v", err)
	}

	carolPayReq, err := carol.DecodePayReq(ctxb,
		&lnrpc.PayReqString{
			PayReq: carolInvoice.PaymentRequest,
		})
	if err != nil {
		t.Fatalf("unable to decode generated payment request: %v", err)
	}

	// Before we send the payment, ensure that the announcement of the new
	// channel has been processed by Alice.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPointBob); err != nil {
		t.Fatalf("channel not seen by alice before timeout: %v", err)
	}

	// For the first scenario, we'll test the cancellation of an HTLC with
	// an unknown payment hash.
	// TODO(roasbeef): return failure response rather than failing entire
	// stream on payment error.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	sendReq := &lnrpc.SendRequest{
		PaymentHashString: hex.EncodeToString(makeFakePayHash(t)),
		DestString:        hex.EncodeToString(carol.PubKey[:]),
		Amt:               payAmt,
		FinalCltvDelta:    int32(carolPayReq.CltvExpiry),
	}
	resp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// The payment should have resulted in an error since we sent it with the
	// wrong payment hash.
	if resp.PaymentError == "" {
		t.Fatalf("payment should have been rejected due to invalid " +
			"payment hash")
	}
	expectedErrorCode := lnwire.CodeUnknownPaymentHash.String()
	if !strings.Contains(resp.PaymentError, expectedErrorCode) {
		// TODO(roasbeef): make into proper gRPC error code
		t.Fatalf("payment should have failed due to unknown payment hash, "+
			"instead failed due to: %v", resp.PaymentError)
	}

	// The balances of all parties should be the same as initially since
	// the HTLC was cancelled.
	assertBaseBalance()

	// Next, we'll test the case of a recognized payHash but, an incorrect
	// value on the extended HTLC.
	htlcAmt := lnwire.NewMSatFromSatoshis(1000)
	sendReq = &lnrpc.SendRequest{
		PaymentHashString: hex.EncodeToString(carolInvoice.RHash),
		DestString:        hex.EncodeToString(carol.PubKey[:]),
		Amt:               int64(htlcAmt.ToSatoshis()), // 10k satoshis are expected.
		FinalCltvDelta:    int32(carolPayReq.CltvExpiry),
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// The payment should fail with an error since we sent 1k satoshis isn't of
	// 10k as was requested.
	if resp.PaymentError == "" {
		t.Fatalf("payment should have been rejected due to wrong " +
			"HTLC amount")
	}
	expectedErrorCode = lnwire.CodeUnknownPaymentHash.String()
	if !strings.Contains(resp.PaymentError, expectedErrorCode) {
		t.Fatalf("payment should have failed due to wrong amount, "+
			"instead failed due to: %v", resp.PaymentError)
	}

	// We'll also ensure that the encoded error includes the invlaid HTLC
	// amount.
	if !strings.Contains(resp.PaymentError, htlcAmt.String()) {
		t.Fatalf("error didn't include expected payment amt of %v: "+
			"%v", htlcAmt, resp.PaymentError)
	}

	// The balances of all parties should be the same as initially since
	// the HTLC was cancelled.
	assertBaseBalance()

	// Next we'll test an error that occurs mid-route due to an outgoing
	// link having insufficient capacity. In order to do so, we'll first
	// need to unbalance the link connecting Bob<->Carol.
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	bobPayStream, err := net.Bob.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream: %v", err)
	}

	// To do so, we'll push most of the funds in the channel over to
	// Alice's side, leaving on 10k satoshis of available balance for bob.
	// There's a max payment amount, so we'll have to do this
	// incrementally.
	chanReserve := int64(chanAmt / 100)
	amtToSend := int64(chanAmt) - chanReserve - 20000
	amtSent := int64(0)
	for amtSent != amtToSend {
		// We'll send in chunks of the max payment amount. If we're
		// about to send too much, then we'll only send the amount
		// remaining.
		toSend := int64(maxPaymentMSat.ToSatoshis())
		if toSend+amtSent > amtToSend {
			toSend = amtToSend - amtSent
		}

		invoiceReq = &lnrpc.Invoice{
			Value: toSend,
		}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		carolInvoice2, err := carol.AddInvoice(ctxt, invoiceReq)
		if err != nil {
			t.Fatalf("unable to generate carol invoice: %v", err)
		}
		if err := bobPayStream.Send(&lnrpc.SendRequest{
			PaymentRequest: carolInvoice2.PaymentRequest,
		}); err != nil {
			t.Fatalf("unable to send payment: %v", err)
		}

		if resp, err := bobPayStream.Recv(); err != nil {
			t.Fatalf("payment stream has been closed: %v", err)
		} else if resp.PaymentError != "" {
			t.Fatalf("bob's payment failed: %v", resp.PaymentError)
		}

		amtSent += toSend
	}

	// At this point, Alice has 50mil satoshis on her side of the channel,
	// but Bob only has 10k available on his side of the channel. So a
	// payment from Alice to Carol worth 100k satoshis should fail.
	invoiceReq = &lnrpc.Invoice{
		Value: 100000,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolInvoice3, err := carol.AddInvoice(ctxt, invoiceReq)
	if err != nil {
		t.Fatalf("unable to generate carol invoice: %v", err)
	}

	sendReq = &lnrpc.SendRequest{
		PaymentRequest: carolInvoice3.PaymentRequest,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}
	if resp.PaymentError == "" {
		t.Fatalf("payment should fail due to insufficient "+
			"capacity: %v", err)
	} else if !strings.Contains(resp.PaymentError,
		lnwire.CodeTemporaryChannelFailure.String()) {
		t.Fatalf("payment should fail due to insufficient capacity, "+
			"instead: %v", resp.PaymentError)
	}

	// Generate new invoice to not pay same invoice twice.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolInvoice, err = carol.AddInvoice(ctxt, invoiceReq)
	if err != nil {
		t.Fatalf("unable to generate carol invoice: %v", err)
	}

	// For our final test, we'll ensure that if a target link isn't
	// available for what ever reason then the payment fails accordingly.
	//
	// We'll attempt to complete the original invoice we created with Carol
	// above, but before we do so, Carol will go offline, resulting in a
	// failed payment.
	shutdownAndAssert(net, t, carol)

	// TODO(roasbeef): mission control
	time.Sleep(time.Second * 5)

	sendReq = &lnrpc.SendRequest{
		PaymentRequest: carolInvoice.PaymentRequest,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err = net.Alice.SendPaymentSync(ctxt, sendReq)
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	if resp.PaymentError == "" {
		t.Fatalf("payment should have failed")
	}
	expectedErrorCode = lnwire.CodeUnknownNextPeer.String()
	if !strings.Contains(resp.PaymentError, expectedErrorCode) {
		t.Fatalf("payment should fail due to unknown hop, instead: %v",
			resp.PaymentError)
	}

	// Finally, immediately close the channel. This function will also
	// block until the channel is closed and will additionally assert the
	// relevant channel closing post conditions.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)

	// Force close Bob's final channel.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, true)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, net.Bob, chanPointBob)
}

// graphSubscription houses the proxied update and error chans for a node's
// graph subscriptions.
type graphSubscription struct {
	updateChan chan *lnrpc.GraphTopologyUpdate
	errChan    chan error
	quit       chan struct{}
}

// subscribeGraphNotifications subscribes to channel graph updates and launches
// a goroutine that forwards these to the returned channel.
func subscribeGraphNotifications(t *harnessTest, ctxb context.Context,
	node *lntest.HarnessNode) graphSubscription {

	// We'll first start by establishing a notification client which will
	// send us notifications upon detected changes in the channel graph.
	req := &lnrpc.GraphTopologySubscription{}
	ctx, cancelFunc := context.WithCancel(ctxb)
	topologyClient, err := node.SubscribeChannelGraph(ctx, req)
	if err != nil {
		t.Fatalf("unable to create topology client: %v", err)
	}

	// We'll launch a goroutine that will be responsible for proxying all
	// notifications recv'd from the client into the channel below.
	errChan := make(chan error, 1)
	quit := make(chan struct{})
	graphUpdates := make(chan *lnrpc.GraphTopologyUpdate, 20)
	go func() {
		for {
			defer cancelFunc()

			select {
			case <-quit:
				return
			default:
				graphUpdate, err := topologyClient.Recv()
				select {
				case <-quit:
					return
				default:
				}

				if err == io.EOF {
					return
				} else if err != nil {
					select {
					case errChan <- err:
					case <-quit:
					}
					return
				}

				select {
				case graphUpdates <- graphUpdate:
				case <-quit:
					return
				}
			}
		}
	}()

	return graphSubscription{
		updateChan: graphUpdates,
		errChan:    errChan,
		quit:       quit,
	}
}

func testGraphTopologyNotifications(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = maxBtcFundingAmount

	// Let Alice subscribe to graph notifications.
	graphSub := subscribeGraphNotifications(
		t, ctxb, net.Alice,
	)
	defer close(graphSub.quit)

	// Open a new channel between Alice and Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// The channel opening above should have triggered a few notifications
	// sent to the notification client. We'll expect two channel updates,
	// and two node announcements.
	var numChannelUpds int
	var numNodeAnns int
	for numChannelUpds < 2 && numNodeAnns < 2 {
		select {
		// Ensure that a new update for both created edges is properly
		// dispatched to our registered client.
		case graphUpdate := <-graphSub.updateChan:
			// Process all channel updates prsented in this update
			// message.
			for _, chanUpdate := range graphUpdate.ChannelUpdates {
				switch chanUpdate.AdvertisingNode {
				case net.Alice.PubKeyStr:
				case net.Bob.PubKeyStr:
				default:
					t.Fatalf("unknown advertising node: %v",
						chanUpdate.AdvertisingNode)
				}
				switch chanUpdate.ConnectingNode {
				case net.Alice.PubKeyStr:
				case net.Bob.PubKeyStr:
				default:
					t.Fatalf("unknown connecting node: %v",
						chanUpdate.ConnectingNode)
				}

				if chanUpdate.Capacity != int64(chanAmt) {
					t.Fatalf("channel capacities mismatch:"+
						" expected %v, got %v", chanAmt,
						btcutil.Amount(chanUpdate.Capacity))
				}
				numChannelUpds++
			}

			for _, nodeUpdate := range graphUpdate.NodeUpdates {
				switch nodeUpdate.IdentityKey {
				case net.Alice.PubKeyStr:
				case net.Bob.PubKeyStr:
				default:
					t.Fatalf("unknown node: %v",
						nodeUpdate.IdentityKey)
				}
				numNodeAnns++
			}
		case err := <-graphSub.errChan:
			t.Fatalf("unable to recv graph update: %v", err)
		case <-time.After(time.Second * 10):
			t.Fatalf("timeout waiting for graph notifications, "+
				"only received %d/2 chanupds and %d/2 nodeanns",
				numChannelUpds, numNodeAnns)
		}
	}

	_, blockHeight, err := net.Miner.Node.GetBestBlock()
	if err != nil {
		t.Fatalf("unable to get current blockheight %v", err)
	}

	// Now we'll test that updates are properly sent after channels are closed
	// within the network.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)

	// Now that the channel has been closed, we should receive a
	// notification indicating so.
out:
	for {
		select {
		case graphUpdate := <-graphSub.updateChan:
			if len(graphUpdate.ClosedChans) != 1 {
				continue
			}

			closedChan := graphUpdate.ClosedChans[0]
			if closedChan.ClosedHeight != uint32(blockHeight+1) {
				t.Fatalf("close heights of channel mismatch: "+
					"expected %v, got %v", blockHeight+1,
					closedChan.ClosedHeight)
			}
			chanPointTxid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			closedChanTxid, err := getChanPointFundingTxid(
				closedChan.ChanPoint,
			)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			if !bytes.Equal(closedChanTxid[:], chanPointTxid[:]) {
				t.Fatalf("channel point hash mismatch: "+
					"expected %v, got %v", chanPointTxid,
					closedChanTxid)
			}
			if closedChan.ChanPoint.OutputIndex != chanPoint.OutputIndex {
				t.Fatalf("output index mismatch: expected %v, "+
					"got %v", chanPoint.OutputIndex,
					closedChan.ChanPoint)
			}

			break out

		case err := <-graphSub.errChan:
			t.Fatalf("unable to recv graph update: %v", err)
		case <-time.After(time.Second * 10):
			t.Fatalf("notification for channel closure not " +
				"sent")
		}
	}

	// For the final portion of the test, we'll ensure that once a new node
	// appears in the network, the proper notification is dispatched. Note
	// that a node that does not have any channels open is ignored, so first
	// we disconnect Alice and Bob, open a channel between Bob and Carol,
	// and finally connect Alice to Bob again.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.DisconnectNodes(ctxt, net.Alice, net.Bob); err != nil {
		t.Fatalf("unable to disconnect alice and bob: %v", err)
	}
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
		t.Fatalf("unable to connect bob to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint = openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Reconnect Alice and Bob. This should result in the nodes syncing up
	// their respective graph state, with the new addition being the
	// existence of Carol in the graph, and also the channel between Bob
	// and Carol. Note that we will also receive a node announcement from
	// Bob, since a node will update its node announcement after a new
	// channel is opened.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.EnsureConnected(ctxt, net.Alice, net.Bob); err != nil {
		t.Fatalf("unable to connect alice to bob: %v", err)
	}

	// We should receive an update advertising the newly connected node,
	// Bob's new node announcement, and the channel between Bob and Carol.
	numNodeAnns = 0
	numChannelUpds = 0
	for numChannelUpds < 2 && numNodeAnns < 1 {
		select {
		case graphUpdate := <-graphSub.updateChan:
			for _, nodeUpdate := range graphUpdate.NodeUpdates {
				switch nodeUpdate.IdentityKey {
				case carol.PubKeyStr:
				case net.Bob.PubKeyStr:
				default:
					t.Fatalf("unknown node update pubey: %v",
						nodeUpdate.IdentityKey)
				}
				numNodeAnns++
			}

			for _, chanUpdate := range graphUpdate.ChannelUpdates {
				switch chanUpdate.AdvertisingNode {
				case carol.PubKeyStr:
				case net.Bob.PubKeyStr:
				default:
					t.Fatalf("unknown advertising node: %v",
						chanUpdate.AdvertisingNode)
				}
				switch chanUpdate.ConnectingNode {
				case carol.PubKeyStr:
				case net.Bob.PubKeyStr:
				default:
					t.Fatalf("unknown connecting node: %v",
						chanUpdate.ConnectingNode)
				}

				if chanUpdate.Capacity != int64(chanAmt) {
					t.Fatalf("channel capacities mismatch:"+
						" expected %v, got %v", chanAmt,
						btcutil.Amount(chanUpdate.Capacity))
				}
				numChannelUpds++
			}
		case err := <-graphSub.errChan:
			t.Fatalf("unable to recv graph update: %v", err)
		case <-time.After(time.Second * 10):
			t.Fatalf("timeout waiting for graph notifications, "+
				"only received %d/2 chanupds and %d/2 nodeanns",
				numChannelUpds, numNodeAnns)
		}
	}

	// Close the channel between Bob and Carol.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
}

// testNodeAnnouncement ensures that when a node is started with one or more
// external IP addresses specified on the command line, that those addresses
// announced to the network and reported in the network graph.
func testNodeAnnouncement(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	aliceSub := subscribeGraphNotifications(t, ctxb, net.Alice)
	defer close(aliceSub.quit)

	advertisedAddrs := []string{
		"192.168.1.1:8333",
		"[2001:db8:85a3:8d3:1319:8a2e:370:7348]:8337",
		"bkb6azqggsaiskzi.onion:9735",
		"fomvuglh6h6vcag73xo5t5gv56ombih3zr2xvplkpbfd7wrog4swjwid.onion:1234",
	}

	var lndArgs []string
	for _, addr := range advertisedAddrs {
		lndArgs = append(lndArgs, "--externalip="+addr)
	}

	dave, err := net.NewNode("Dave", lndArgs)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	// We must let Dave have an open channel before he can send a node
	// announcement, so we open a channel with Bob,
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, dave); err != nil {
		t.Fatalf("unable to connect bob to carol: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Bob, dave,
		lntest.OpenChannelParams{
			Amt: 1000000,
		},
	)

	// When Alice now connects with Dave, Alice will get his node
	// announcement.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, dave); err != nil {
		t.Fatalf("unable to connect bob to carol: %v", err)
	}

	assertAddrs := func(addrsFound []string, targetAddrs ...string) {
		addrs := make(map[string]struct{}, len(addrsFound))
		for _, addr := range addrsFound {
			addrs[addr] = struct{}{}
		}

		for _, addr := range targetAddrs {
			if _, ok := addrs[addr]; !ok {
				t.Fatalf("address %v not found in node "+
					"announcement", addr)
			}
		}
	}

	waitForAddrsInUpdate := func(graphSub graphSubscription,
		nodePubKey string, targetAddrs ...string) {

		for {
			select {
			case graphUpdate := <-graphSub.updateChan:
				for _, update := range graphUpdate.NodeUpdates {
					if update.IdentityKey == nodePubKey {
						assertAddrs(
							update.Addresses,
							targetAddrs...,
						)
						return
					}
				}
			case err := <-graphSub.errChan:
				t.Fatalf("unable to recv graph update: %v", err)
			case <-time.After(20 * time.Second):
				t.Fatalf("did not receive node ann update")
			}
		}
	}

	waitForAddrsInUpdate(
		aliceSub, dave.PubKeyStr, advertisedAddrs...,
	)

	// Close the channel between Bob and Dave.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, false)
}

func testNodeSignVerify(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	chanAmt := maxBtcFundingAmount
	pushAmt := btcutil.Amount(100000)

	// Create a channel between alice and bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	aliceBobCh := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	aliceMsg := []byte("alice msg")

	// alice signs "alice msg" and sends her signature to bob.
	sigReq := &lnrpc.SignMessageRequest{Msg: aliceMsg}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	sigResp, err := net.Alice.SignMessage(ctxt, sigReq)
	if err != nil {
		t.Fatalf("SignMessage rpc call failed: %v", err)
	}
	aliceSig := sigResp.Signature

	// bob verifying alice's signature should succeed since alice and bob are
	// connected.
	verifyReq := &lnrpc.VerifyMessageRequest{Msg: aliceMsg, Signature: aliceSig}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	verifyResp, err := net.Bob.VerifyMessage(ctxt, verifyReq)
	if err != nil {
		t.Fatalf("VerifyMessage failed: %v", err)
	}
	if !verifyResp.Valid {
		t.Fatalf("alice's signature didn't validate")
	}
	if verifyResp.Pubkey != net.Alice.PubKeyStr {
		t.Fatalf("alice's signature doesn't contain alice's pubkey.")
	}

	// carol is a new node that is unconnected to alice or bob.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	carolMsg := []byte("carol msg")

	// carol signs "carol msg" and sends her signature to bob.
	sigReq = &lnrpc.SignMessageRequest{Msg: carolMsg}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	sigResp, err = carol.SignMessage(ctxt, sigReq)
	if err != nil {
		t.Fatalf("SignMessage rpc call failed: %v", err)
	}
	carolSig := sigResp.Signature

	// bob verifying carol's signature should fail since they are not connected.
	verifyReq = &lnrpc.VerifyMessageRequest{Msg: carolMsg, Signature: carolSig}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	verifyResp, err = net.Bob.VerifyMessage(ctxt, verifyReq)
	if err != nil {
		t.Fatalf("VerifyMessage failed: %v", err)
	}
	if verifyResp.Valid {
		t.Fatalf("carol's signature should not be valid")
	}
	if verifyResp.Pubkey != carol.PubKeyStr {
		t.Fatalf("carol's signature doesn't contain her pubkey")
	}

	// Close the channel between alice and bob.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, aliceBobCh, false)
}

// testAsyncPayments tests the performance of the async payments, and also
// checks that balances of both sides can't be become negative under stress
// payment strikes.
func testAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		paymentAmt = 100
	)

	// First establish a channel with a capacity equals to the overall
	// amount of payments, between Alice and Bob, at the end of the test
	// Alice should send all money from her side to Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	channelCapacity := btcutil.Amount(paymentAmt * 2000)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: channelCapacity,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	info, err := getChanInfo(ctxt, net.Alice)
	if err != nil {
		t.Fatalf("unable to get alice channel info: %v", err)
	}

	// Calculate the number of invoices. We will deplete the channel
	// all the way down to the channel reserve.
	chanReserve := channelCapacity / 100
	availableBalance := btcutil.Amount(info.LocalBalance) - chanReserve
	numInvoices := int(availableBalance / paymentAmt)

	bobAmt := int64(numInvoices * paymentAmt)
	aliceAmt := info.LocalBalance - bobAmt

	// Send one more payment in order to cause insufficient capacity error.
	numInvoices++

	// With the channel open, we'll create invoices for Bob that Alice
	// will pay to in order to advance the state of the channel.
	bobPayReqs, _, _, err := createPayReqs(
		net.Bob, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// Wait for Alice to receive the channel edge from the funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't see the alice->bob channel before "+
			"timeout: %v", err)
	}

	// Open up a payment stream to Alice that we'll use to send payment to
	// Bob. We also create a small helper function to send payments to Bob,
	// consuming the payment hashes we generated above.
	ctxt, _ = context.WithTimeout(ctxb, lntest.AsyncBenchmarkTimeout)
	alicePayStream, err := net.Alice.SendPayment(ctxt)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	// Send payments from Alice to Bob using of Bob's payment hashes
	// generated above.
	now := time.Now()
	for i := 0; i < numInvoices; i++ {
		sendReq := &lnrpc.SendRequest{
			PaymentRequest: bobPayReqs[i],
		}

		if err := alicePayStream.Send(sendReq); err != nil {
			t.Fatalf("unable to send payment: "+
				"stream has been closed: %v", err)
		}
	}

	// We should receive one insufficient capacity error, because we sent
	// one more payment than we can actually handle with the current
	// channel capacity.
	errorReceived := false
	for i := 0; i < numInvoices; i++ {
		if resp, err := alicePayStream.Recv(); err != nil {
			t.Fatalf("payment stream have been closed: %v", err)
		} else if resp.PaymentError != "" {
			if errorReceived {
				t.Fatalf("redundant payment error: %v",
					resp.PaymentError)
			}

			errorReceived = true
			continue
		}
	}

	if !errorReceived {
		t.Fatalf("insufficient capacity error haven't been received")
	}

	// All payments have been sent, mark the finish time.
	timeTaken := time.Since(now)

	// Next query for Bob's and Alice's channel states, in order to confirm
	// that all payment have been successful transmitted.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceChan, err := getChanInfo(ctxt, net.Alice)
	if len(aliceChan.PendingHtlcs) != 0 {
		t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
			"expected %v", len(aliceChan.PendingHtlcs), 0)
	}
	if err != nil {
		t.Fatalf("unable to get bob's channel info: %v", err)
	}
	if aliceChan.RemoteBalance != bobAmt {
		t.Fatalf("alice's remote balance is incorrect, got %v, "+
			"expected %v", aliceChan.RemoteBalance, bobAmt)
	}
	if aliceChan.LocalBalance != aliceAmt {
		t.Fatalf("alice's local balance is incorrect, got %v, "+
			"expected %v", aliceChan.LocalBalance, aliceAmt)
	}

	// Wait for Bob to receive revocation from Alice.
	time.Sleep(2 * time.Second)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	bobChan, err := getChanInfo(ctxt, net.Bob)
	if err != nil {
		t.Fatalf("unable to get bob's channel info: %v", err)
	}
	if len(bobChan.PendingHtlcs) != 0 {
		t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
			"expected %v", len(bobChan.PendingHtlcs), 0)
	}
	if bobChan.LocalBalance != bobAmt {
		t.Fatalf("bob's local balance is incorrect, got %v, expected"+
			" %v", bobChan.LocalBalance, bobAmt)
	}
	if bobChan.RemoteBalance != aliceAmt {
		t.Fatalf("bob's remote balance is incorrect, got %v, "+
			"expected %v", bobChan.RemoteBalance, aliceAmt)
	}

	t.Log("\tBenchmark info: Elapsed time: ", timeTaken)
	t.Log("\tBenchmark info: TPS: ", float64(numInvoices)/float64(timeTaken.Seconds()))

	// Finally, immediately close the channel. This function will also
	// block until the channel is closed and will additionally assert the
	// relevant channel closing post conditions.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// testBidirectionalAsyncPayments tests that nodes are able to send the
// payments to each other in async manner without blocking.
func testBidirectionalAsyncPayments(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		paymentAmt = 1000
	)

	// First establish a channel with a capacity equals to the overall
	// amount of payments, between Alice and Bob, at the end of the test
	// Alice should send all money from her side to Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     paymentAmt * 2000,
			PushAmt: paymentAmt * 1000,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	info, err := getChanInfo(ctxt, net.Alice)
	if err != nil {
		t.Fatalf("unable to get alice channel info: %v", err)
	}

	// Calculate the number of invoices.
	numInvoices := int(info.LocalBalance / paymentAmt)

	// Nodes should exchange the same amount of money and because of this
	// at the end balances should remain the same.
	aliceAmt := info.LocalBalance
	bobAmt := info.RemoteBalance

	// With the channel open, we'll create invoices for Bob that Alice
	// will pay to in order to advance the state of the channel.
	bobPayReqs, _, _, err := createPayReqs(
		net.Bob, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// With the channel open, we'll create invoices for Alice that Bob
	// will pay to in order to advance the state of the channel.
	alicePayReqs, _, _, err := createPayReqs(
		net.Alice, paymentAmt, numInvoices,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// Wait for Alice to receive the channel edge from the funding manager.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err = net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
		t.Fatalf("alice didn't see the alice->bob channel before "+
			"timeout: %v", err)
	}
	if err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint); err != nil {
		t.Fatalf("bob didn't see the bob->alice channel before "+
			"timeout: %v", err)
	}

	// Open up a payment streams to Alice and to Bob, that we'll use to
	// send payment between nodes.
	ctx, cancel := context.WithTimeout(ctxb, lntest.AsyncBenchmarkTimeout)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	ctx, cancel = context.WithTimeout(ctxb, lntest.AsyncBenchmarkTimeout)
	defer cancel()

	bobPayStream, err := net.Bob.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for bob: %v", err)
	}

	// Send payments from Alice to Bob and from Bob to Alice in async
	// manner.
	for i := 0; i < numInvoices; i++ {
		aliceSendReq := &lnrpc.SendRequest{
			PaymentRequest: bobPayReqs[i],
		}

		bobSendReq := &lnrpc.SendRequest{
			PaymentRequest: alicePayReqs[i],
		}

		if err := alicePayStream.Send(aliceSendReq); err != nil {
			t.Fatalf("unable to send payment: "+
				"%v", err)
		}

		if err := bobPayStream.Send(bobSendReq); err != nil {
			t.Fatalf("unable to send payment: "+
				"%v", err)
		}
	}

	errChan := make(chan error)
	go func() {
		for i := 0; i < numInvoices; i++ {
			if resp, err := alicePayStream.Recv(); err != nil {
				errChan <- errors.Errorf("payment stream has"+
					" been closed: %v", err)
				return
			} else if resp.PaymentError != "" {
				errChan <- errors.Errorf("unable to send "+
					"payment from alice to bob: %v",
					resp.PaymentError)
				return
			}
		}
		errChan <- nil
	}()

	go func() {
		for i := 0; i < numInvoices; i++ {
			if resp, err := bobPayStream.Recv(); err != nil {
				errChan <- errors.Errorf("payment stream has"+
					" been closed: %v", err)
				return
			} else if resp.PaymentError != "" {
				errChan <- errors.Errorf("unable to send "+
					"payment from bob to alice: %v",
					resp.PaymentError)
				return
			}
		}
		errChan <- nil
	}()

	// Wait for Alice and Bob receive their payments, and throw and error
	// if something goes wrong.
	for i := 0; i < 2; i++ {
		select {
		case err := <-errChan:
			if err != nil {
				t.Fatalf(err.Error())
			}
		case <-time.After(lntest.AsyncBenchmarkTimeout):
			t.Fatalf("waiting for payments to finish too long "+
				"(%v)", lntest.AsyncBenchmarkTimeout)
		}
	}

	// Wait for Alice and Bob to receive revocations messages, and update
	// states, i.e. balance info.
	time.Sleep(1 * time.Second)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceInfo, err := getChanInfo(ctxt, net.Alice)
	if err != nil {
		t.Fatalf("unable to get bob's channel info: %v", err)
	}
	if aliceInfo.RemoteBalance != bobAmt {
		t.Fatalf("alice's remote balance is incorrect, got %v, "+
			"expected %v", aliceInfo.RemoteBalance, bobAmt)
	}
	if aliceInfo.LocalBalance != aliceAmt {
		t.Fatalf("alice's local balance is incorrect, got %v, "+
			"expected %v", aliceInfo.LocalBalance, aliceAmt)
	}
	if len(aliceInfo.PendingHtlcs) != 0 {
		t.Fatalf("alice's pending htlcs is incorrect, got %v, "+
			"expected %v", len(aliceInfo.PendingHtlcs), 0)
	}

	// Next query for Bob's and Alice's channel states, in order to confirm
	// that all payment have been successful transmitted.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	bobInfo, err := getChanInfo(ctxt, net.Bob)
	if err != nil {
		t.Fatalf("unable to get bob's channel info: %v", err)
	}

	if bobInfo.LocalBalance != bobAmt {
		t.Fatalf("bob's local balance is incorrect, got %v, expected"+
			" %v", bobInfo.LocalBalance, bobAmt)
	}
	if bobInfo.RemoteBalance != aliceAmt {
		t.Fatalf("bob's remote balance is incorrect, got %v, "+
			"expected %v", bobInfo.RemoteBalance, aliceAmt)
	}
	if len(bobInfo.PendingHtlcs) != 0 {
		t.Fatalf("bob's pending htlcs is incorrect, got %v, "+
			"expected %v", len(bobInfo.PendingHtlcs), 0)
	}

	// Finally, immediately close the channel. This function will also
	// block until the channel is closed and will additionally assert the
	// relevant channel closing post conditions.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPoint, false)
}

// assertActiveHtlcs makes sure all the passed nodes have the _exact_ HTLCs
// matching payHashes on _all_ their channels.
func assertActiveHtlcs(nodes []*lntest.HarnessNode, payHashes ...[]byte) error {
	ctxb := context.Background()

	req := &lnrpc.ListChannelsRequest{}
	for _, node := range nodes {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		nodeChans, err := node.ListChannels(ctxt, req)
		if err != nil {
			return fmt.Errorf("unable to get node chans: %v", err)
		}

		for _, channel := range nodeChans.Channels {
			// Record all payment hashes active for this channel.
			htlcHashes := make(map[string]struct{})
			for _, htlc := range channel.PendingHtlcs {
				_, ok := htlcHashes[string(htlc.HashLock)]
				if ok {
					return fmt.Errorf("duplicate HashLock")
				}
				htlcHashes[string(htlc.HashLock)] = struct{}{}
			}

			// Channel should have exactly the payHashes active.
			if len(payHashes) != len(htlcHashes) {
				return fmt.Errorf("node %x had %v htlcs active, "+
					"expected %v", node.PubKey[:],
					len(htlcHashes), len(payHashes))
			}

			// Make sure all the payHashes are active.
			for _, payHash := range payHashes {
				if _, ok := htlcHashes[string(payHash)]; ok {
					continue
				}
				return fmt.Errorf("node %x didn't have the "+
					"payHash %v active", node.PubKey[:],
					payHash)
			}
		}
	}

	return nil
}

func assertNumActiveHtlcsChanPoint(node *lntest.HarnessNode,
	chanPoint wire.OutPoint, numHtlcs int) error {
	ctxb := context.Background()

	req := &lnrpc.ListChannelsRequest{}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	nodeChans, err := node.ListChannels(ctxt, req)
	if err != nil {
		return err
	}

	for _, channel := range nodeChans.Channels {
		if channel.ChannelPoint != chanPoint.String() {
			continue
		}

		if len(channel.PendingHtlcs) != numHtlcs {
			return fmt.Errorf("expected %v active HTLCs, got %v",
				numHtlcs, len(channel.PendingHtlcs))
		}
		return nil
	}

	return fmt.Errorf("channel point %v not found", chanPoint)
}

func assertNumActiveHtlcs(nodes []*lntest.HarnessNode, numHtlcs int) error {
	ctxb := context.Background()

	req := &lnrpc.ListChannelsRequest{}
	for _, node := range nodes {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		nodeChans, err := node.ListChannels(ctxt, req)
		if err != nil {
			return err
		}

		for _, channel := range nodeChans.Channels {
			if len(channel.PendingHtlcs) != numHtlcs {
				return fmt.Errorf("expected %v HTLCs, got %v",
					numHtlcs, len(channel.PendingHtlcs))
			}
		}
	}

	return nil
}

func assertSpendingTxInMempool(t *harnessTest, miner *rpcclient.Client,
	timeout time.Duration, chanPoint wire.OutPoint) {

	breakTimeout := time.After(timeout)
	ticker := time.NewTicker(50 * time.Millisecond)
	defer ticker.Stop()

	for {
		select {
		case <-breakTimeout:
			t.Fatalf("didn't find tx in mempool")
		case <-ticker.C:
			mempool, err := miner.GetRawMempool()
			if err != nil {
				t.Fatalf("unable to get mempool: %v", err)
			}

			if len(mempool) == 0 {
				continue
			}

			for _, txid := range mempool {
				tx, err := miner.GetRawTransaction(txid)
				if err != nil {
					t.Fatalf("unable to fetch tx: %v", err)
				}

				for _, txIn := range tx.MsgTx().TxIn {
					if txIn.PreviousOutPoint == chanPoint {
						return
					}
				}
			}
		}
	}
}

func createThreeHopHodlNetwork(t *harnessTest,
	net *lntest.NetworkHarness) (*lnrpc.ChannelPoint, *lnrpc.ChannelPoint, *lntest.HarnessNode) {
	ctxb := context.Background()

	// We'll start the test by creating a channel between Alice and Bob,
	// which will act as the first leg for out multi-hop HTLC.
	const chanAmt = 1000000
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	aliceChanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, aliceChanPoint)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, aliceChanPoint)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}

	// Next, we'll create a new node "carol" and have Bob connect to her.
	// In this test, we'll make carol always hold onto the HTLC, this way
	// it'll force Bob to go to chain to resolve the HTLC.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, carol); err != nil {
		t.Fatalf("unable to connect bob to carol: %v", err)
	}

	// We'll then create a channel from Bob to Carol. After this channel is
	// open, our topology looks like:  A -> B -> C.
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	bobChanPoint := openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.Alice.WaitForNetworkChannelOpen(ctxt, bobChanPoint)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}

	return aliceChanPoint, bobChanPoint, carol
}

// testMultiHopHtlcLocalTimeout tests that in a multi-hop HTLC scenario, if the
// outgoing HTLC is about to time out, then we'll go to chain in order to claim
// it. Any dust HTLC's should be immediately cancelled backwards. Once the
// timeout has been reached, then we should sweep it on-chain, and cancel the
// HTLC backwards.
func testMultiHopHtlcLocalTimeout(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create a three hop network: Alice -> Bob -> Carol, with
	// Carol refusing to actually settle or directly cancel any HTLC's
	// self.
	aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	time.Sleep(time.Second * 1)

	// Now that our channels are set up, we'll send two HTLC's from Alice
	// to Carol. The first HTLC will be universally considered "dust",
	// while the second will be a proper fully valued HTLC.
	const (
		dustHtlcAmt    = btcutil.Amount(100)
		htlcAmt        = btcutil.Amount(30000)
		finalCltvDelta = 40
	)

	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	// We'll create two random payment hashes unknown to carol, then send
	// each of them by manually specifying the HTLC details.
	carolPubKey := carol.PubKey[:]
	dustPayHash := makeFakePayHash(t)
	payHash := makeFakePayHash(t)
	err = alicePayStream.Send(&lnrpc.SendRequest{
		Dest:           carolPubKey,
		Amt:            int64(dustHtlcAmt),
		PaymentHash:    dustPayHash,
		FinalCltvDelta: finalCltvDelta,
	})
	if err != nil {
		t.Fatalf("unable to send alice htlc: %v", err)
	}
	err = alicePayStream.Send(&lnrpc.SendRequest{
		Dest:           carolPubKey,
		Amt:            int64(htlcAmt),
		PaymentHash:    payHash,
		FinalCltvDelta: finalCltvDelta,
	})
	if err != nil {
		t.Fatalf("unable to send alice htlc: %v", err)
	}

	// Verify that all nodes in the path now have two HTLC's with the
	// proper parameters.
	var predErr error
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, dustPayHash, payHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// We'll now mine enough blocks to trigger Bob's broadcast of his
	// commitment transaction due to the fact that the HTLC is about to
	// timeout. With the default outgoing broadcast delta of zero, this will
	// be the same height as the htlc expiry height.
	numBlocks := uint32(finalCltvDelta - defaultOutgoingBroadcastDelta)
	if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Bob's force close transaction should now be found in the mempool.
	bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	assertSpendingTxInMempool(
		t, net.Miner.Node, minerMempoolTimeout, wire.OutPoint{
			Hash:  *bobFundingTxid,
			Index: bobChanPoint.OutputIndex,
		},
	)

	// Mine a block to confirm the closing transaction.
	mineBlocks(t, net, 1, 1)

	// At this point, Bob should have cancelled backwards the dust HTLC
	// that we sent earlier. This means Alice should now only have a single
	// HTLC on her channel.
	nodes = []*lntest.HarnessNode{net.Alice}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, payHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// We'll mine defaultCSV blocks in order to generate the sweep
	// transaction of Bob's funding output. This will also bring us to the
	// maturity height of the htlc tx output.
	if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's funding output sweep tx: %v", err)
	}

	// The second layer HTLC timeout transaction should now have been
	// broadcast on-chain.
	secondLayerHash, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's second layer transaction")
	}

	// Bob's pending channel report should show that he has a commitment
	// output awaiting sweeping, and also that there's an outgoing HTLC
	// output pending.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	pendingChanResp, err := net.Bob.PendingChannels(ctxt, pendingChansRequest)
	if err != nil {
		t.Fatalf("unable to query for pending channels: %v", err)
	}

	if len(pendingChanResp.PendingForceClosingChannels) == 0 {
		t.Fatalf("bob should have pending for close chan but doesn't")
	}
	forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
	if forceCloseChan.LimboBalance == 0 {
		t.Fatalf("bob should have nonzero limbo balance instead "+
			"has: %v", forceCloseChan.LimboBalance)
	}
	if len(forceCloseChan.PendingHtlcs) == 0 {
		t.Fatalf("bob should have pending htlc but doesn't")
	}

	// Now we'll mine an additional block, which should include the second
	// layer sweep tx.
	block := mineBlocks(t, net, 1, 1)[0]

	// The block should have confirmed Bob's second layer sweeping
	// transaction. Therefore, at this point, there should be no active
	// HTLC's on the commitment transaction from Alice -> Bob.
	assertTxInBlock(t, block, secondLayerHash)
	nodes = []*lntest.HarnessNode{net.Alice}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("alice's channel still has active htlc's: %v", predErr)
	}

	// At this point, Bob should show that the pending HTLC has advanced to
	// the second stage and is to be swept.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	pendingChanResp, err = net.Bob.PendingChannels(ctxt, pendingChansRequest)
	if err != nil {
		t.Fatalf("unable to query for pending channels: %v", err)
	}
	forceCloseChan = pendingChanResp.PendingForceClosingChannels[0]
	if forceCloseChan.PendingHtlcs[0].Stage != 2 {
		t.Fatalf("bob's htlc should have advanced to the second stage: %v", err)
	}

	// We'll now mine four more blocks. After the 4th block, a transaction
	// sweeping the HTLC output should be broadcast.
	if _, err := net.Miner.Node.Generate(4); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's sweeping transaction: %v", err)
	}

	// Next, we'll mine a final block that should confirm the second-layer
	// sweeping transaction.
	if _, err := net.Miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Once this transaction has been confirmed, Bob should detect that he
	// no longer has any pending channels.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err = net.Bob.PendingChannels(ctxt, pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("bob still has pending "+
				"channels but shouldn't: %v",
				spew.Sdump(pendingChanResp))
			return false
		}

		return true

	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}

// testMultiHopReceiverChainClaim tests that in the multi-hop setting, if the
// receiver of an HTLC knows the preimage, but wasn't able to settle the HTLC
// off-chain, then it goes on chain to claim the HTLC. In this scenario, the
// node that sent the outgoing HTLC should extract the preimage from the sweep
// transaction, and finish settling the HTLC backwards into the route.
func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create a three hop network: Alice -> Bob -> Carol, with
	// Carol refusing to actually settle or directly cancel any HTLC's
	// self.
	aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	// With the network active, we'll now add a new invoice at Carol's end.
	// Make sure the cltv expiry delta is large enough, otherwise Bob won't
	// send out the outgoing htlc.
	const invoiceAmt = 100000
	invoiceReq := &lnrpc.Invoice{
		Value:      invoiceAmt,
		CltvExpiry: 40,
	}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
	if err != nil {
		t.Fatalf("unable to generate carol invoice: %v", err)
	}

	// Now that we've created the invoice, we'll send a single payment from
	// Alice to Carol. We won't wait for the response however, as Carol
	// will not immediately settle the payment.
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}
	err = alicePayStream.Send(&lnrpc.SendRequest{
		PaymentRequest: carolInvoice.PaymentRequest,
	})
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// At this point, all 3 nodes should now have an active channel with
	// the created HTLC pending on all of them.
	var predErr error
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Now we'll mine enough blocks to prompt carol to actually go to the
	// chain in order to sweep her HTLC since the value is high enough.
	// TODO(roasbeef): modify once go to chain policy changes
	numBlocks := uint32(
		invoiceReq.CltvExpiry - defaultIncomingBroadcastDelta,
	)
	if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
		t.Fatalf("unable to generate blocks")
	}

	// At this point, Carol should broadcast her active commitment
	// transaction in order to go to the chain and sweep her HTLC.
	txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("expected transaction not found in mempool: %v", err)
	}

	bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}

	carolFundingPoint := wire.OutPoint{
		Hash:  *bobFundingTxid,
		Index: bobChanPoint.OutputIndex,
	}

	// The commitment transaction should be spending from the funding
	// transaction.
	commitHash := txids[0]
	tx, err := net.Miner.Node.GetRawTransaction(commitHash)
	if err != nil {
		t.Fatalf("unable to get txn: %v", err)
	}
	commitTx := tx.MsgTx()

	if commitTx.TxIn[0].PreviousOutPoint != carolFundingPoint {
		t.Fatalf("commit transaction not spending from expected "+
			"outpoint: %v", spew.Sdump(commitTx))
	}

	// Confirm the commitment.
	mineBlocks(t, net, 1, 1)

	// After the force close transaction is mined, Carol should broadcast
	// her second level HTLC transaction. Bob will broadcast a sweep tx to
	// sweep his output in the channel with Carol. When Bob notices Carol's
	// second level transaction in the mempool, he will extract the
	// preimage and settle the HTLC back off-chain.
	secondLevelHashes, err := waitForNTxsInMempool(net.Miner.Node, 2,
		minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}

	// Carol's second level transaction should be spending from
	// the commitment transaction.
	var secondLevelHash *chainhash.Hash
	for _, txid := range secondLevelHashes {
		tx, err := net.Miner.Node.GetRawTransaction(txid)
		if err != nil {
			t.Fatalf("unable to get txn: %v", err)
		}

		if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash == *commitHash {
			secondLevelHash = txid
		}
	}
	if secondLevelHash == nil {
		t.Fatalf("Carol's second level tx not found")
	}

	// We'll now mine an additional block which should confirm both the
	// second layer transactions.
	if _, err := net.Miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	time.Sleep(time.Second * 4)

	// TODO(roasbeef): assert bob pending state as well

	// Carol's pending channel report should now show two outputs under
	// limbo: her commitment output, as well as the second-layer claim
	// output.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	pendingChanResp, err := carol.PendingChannels(ctxt, pendingChansRequest)
	if err != nil {
		t.Fatalf("unable to query for pending channels: %v", err)
	}

	if len(pendingChanResp.PendingForceClosingChannels) == 0 {
		t.Fatalf("carol should have pending for close chan but doesn't")
	}
	forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
	if forceCloseChan.LimboBalance == 0 {
		t.Fatalf("carol should have nonzero limbo balance instead "+
			"has: %v", forceCloseChan.LimboBalance)
	}

	// The pending HTLC carol has should also now be in stage 2.
	if len(forceCloseChan.PendingHtlcs) != 1 {
		t.Fatalf("carol should have pending htlc but doesn't")
	}
	if forceCloseChan.PendingHtlcs[0].Stage != 2 {
		t.Fatalf("carol's htlc should have advanced to the second "+
			"stage: %v", err)
	}

	// Once the second-level transaction confirmed, Bob should have
	// extracted the preimage from the chain, and sent it back to Alice,
	// clearing the HTLC off-chain.
	nodes = []*lntest.HarnessNode{net.Alice}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// If we mine 4 additional blocks, then both outputs should now be
	// mature.
	if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// We should have a new transaction in the mempool.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's sweeping transaction: %v", err)
	}

	// Finally, if we mine an additional block to confirm these two sweep
	// transactions, Carol should not show a pending channel in her report
	// afterwards.
	if _, err := net.Miner.Node.Generate(1); err != nil {
		t.Fatalf("unable to mine block: %v", err)
	}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err = carol.PendingChannels(ctxt, pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("carol still has pending channels: %v",
				spew.Sdump(pendingChanResp))
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// The invoice should show as settled for Carol, indicating that it was
	// swept on-chain.
	invoicesReq := &lnrpc.ListInvoiceRequest{}
	invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq)
	if err != nil {
		t.Fatalf("unable to retrieve invoices: %v", err)
	}
	if len(invoicesResp.Invoices) != 1 {
		t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices))
	}
	invoice := invoicesResp.Invoices[0]
	if invoice.State != lnrpc.Invoice_SETTLED {
		t.Fatalf("expected invoice to be settled on chain")
	}
	if invoice.AmtPaidSat != invoiceAmt {
		t.Fatalf("expected invoice to be settled with %d sat, got "+
			"%d sat", invoiceAmt, invoice.AmtPaidSat)
	}

	// We'll close out the channel between Alice and Bob, then shutdown
	// carol to conclude the test.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}

// testMultiHopLocalForceCloseOnChainHtlcTimeout tests that in a multi-hop HTLC
// scenario, if the node that extended the HTLC to the final node closes their
// commitment on-chain early, then it eventually recognizes this HTLC as one
// that's timed out. At this point, the node should timeout the HTLC, then
// cancel it backwards as normal.
func testMultiHopLocalForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
	t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create a three hop network: Alice -> Bob -> Carol, with
	// Carol refusing to actually settle or directly cancel any HTLC's
	// self.
	aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	// With our channels set up, we'll then send a single HTLC from Alice
	// to Carol. As Carol is in hodl mode, she won't settle this HTLC which
	// opens up the base for out tests.
	const (
		finalCltvDelta = 40
		htlcAmt        = btcutil.Amount(30000)
	)
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	// We'll now send a single HTLC across our multi-hop network.
	carolPubKey := carol.PubKey[:]
	payHash := makeFakePayHash(t)
	err = alicePayStream.Send(&lnrpc.SendRequest{
		Dest:           carolPubKey,
		Amt:            int64(htlcAmt),
		PaymentHash:    payHash,
		FinalCltvDelta: finalCltvDelta,
	})
	if err != nil {
		t.Fatalf("unable to send alice htlc: %v", err)
	}

	// Once the HTLC has cleared, all channels in our mini network should
	// have the it locked in.
	var predErr error
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, payHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", err)
	}

	// Now that all parties have the HTLC locked in, we'll immediately
	// force close the Bob -> Carol channel. This should trigger contract
	// resolution mode for both of them.
	ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, bobChanPoint, true)

	// At this point, Bob should have a pending force close channel as he
	// just went to chain.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(ctxt,
			pendingChansRequest)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) == 0 {
			predErr = fmt.Errorf("bob should have pending for " +
				"close chan but doesn't")
			return false
		}

		forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
		if forceCloseChan.LimboBalance == 0 {
			predErr = fmt.Errorf("bob should have nonzero limbo "+
				"balance instead has: %v",
				forceCloseChan.LimboBalance)
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// We'll mine defaultCSV blocks in order to generate the sweep transaction
	// of Bob's funding output.
	if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's funding output sweep tx: %v", err)
	}

	// We'll now mine enough blocks for the HTLC to expire. After this, Bob
	// should hand off the now expired HTLC output to the utxo nursery.
	if _, err := net.Miner.Node.Generate(finalCltvDelta - defaultCSV - 1); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Bob's pending channel report should show that he has a single HTLC
	// that's now in stage one.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		if len(pendingChanResp.PendingForceClosingChannels) == 0 {
			predErr = fmt.Errorf("bob should have pending force " +
				"close chan but doesn't")
			return false
		}

		forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
		if len(forceCloseChan.PendingHtlcs) != 1 {
			predErr = fmt.Errorf("bob should have pending htlc " +
				"but doesn't")
			return false
		}
		if forceCloseChan.PendingHtlcs[0].Stage != 1 {
			predErr = fmt.Errorf("bob's htlc should have "+
				"advanced to the first stage: %v", err)
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
	}

	// We should also now find a transaction in the mempool, as Bob should
	// have broadcast his second layer timeout transaction.
	timeoutTx, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's htlc timeout tx: %v", err)
	}

	// Next, we'll mine an additional block. This should serve to confirm
	// the second layer timeout transaction.
	block := mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, timeoutTx)

	// With the second layer timeout transaction confirmed, Bob should have
	// cancelled backwards the HTLC that carol sent.
	nodes = []*lntest.HarnessNode{net.Alice}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("alice's channel still has active htlc's: %v", predErr)
	}

	// Additionally, Bob should now show that HTLC as being advanced to the
	// second stage.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		if len(pendingChanResp.PendingForceClosingChannels) == 0 {
			predErr = fmt.Errorf("bob should have pending for " +
				"close chan but doesn't")
			return false
		}

		forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
		if len(forceCloseChan.PendingHtlcs) != 1 {
			predErr = fmt.Errorf("bob should have pending htlc " +
				"but doesn't")
			return false
		}
		if forceCloseChan.PendingHtlcs[0].Stage != 2 {
			predErr = fmt.Errorf("bob's htlc should have "+
				"advanced to the second stage: %v", err)
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
	}

	// We'll now mine 4 additional blocks. This should be enough for Bob's
	// CSV timelock to expire and the sweeping transaction of the HTLC to be
	// broadcast.
	if _, err := net.Miner.Node.Generate(defaultCSV); err != nil {
		t.Fatalf("unable to mine blocks: %v", err)
	}

	sweepTx, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's htlc sweep tx: %v", err)
	}

	// We'll then mine a final block which should confirm this second layer
	// sweep transaction.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, sweepTx)

	// At this point, Bob should no longer show any channels as pending
	// close.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("bob still has pending channels "+
				"but shouldn't: %v", spew.Sdump(pendingChanResp))
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}

// testMultiHopRemoteForceCloseOnChainHtlcTimeout tests that if we extend a
// multi-hop HTLC, and the final destination of the HTLC force closes the
// channel, then we properly timeout the HTLC on *their* commitment transaction
// once the timeout has expired. Once we sweep the transaction, we should also
// cancel back the initial HTLC.
func testMultiHopRemoteForceCloseOnChainHtlcTimeout(net *lntest.NetworkHarness,
	t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create a three hop network: Alice -> Bob -> Carol, with
	// Carol refusing to actually settle or directly cancel any HTLC's
	// self.
	aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	// With our channels set up, we'll then send a single HTLC from Alice
	// to Carol. As Carol is in hodl mode, she won't settle this HTLC which
	// opens up the base for out tests.
	const (
		finalCltvDelta = 40
		htlcAmt        = btcutil.Amount(30000)
	)

	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}

	// We'll now send a single HTLC across our multi-hop network.
	carolPubKey := carol.PubKey[:]
	payHash := makeFakePayHash(t)
	err = alicePayStream.Send(&lnrpc.SendRequest{
		Dest:           carolPubKey,
		Amt:            int64(htlcAmt),
		PaymentHash:    payHash,
		FinalCltvDelta: finalCltvDelta,
	})
	if err != nil {
		t.Fatalf("unable to send alice htlc: %v", err)
	}

	// Once the HTLC has cleared, all the nodes in our mini network should
	// show that the HTLC has been locked in.
	var predErr error
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, payHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// At this point, we'll now instruct Carol to force close the
	// transaction. This will let us exercise that Bob is able to sweep the
	// expired HTLC on Carol's version of the commitment transaction.
	ctxt, _ := context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, bobChanPoint, true)

	// At this point, Bob should have a pending force close channel as
	// Carol has gone directly to chain.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for "+
				"pending channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) == 0 {
			predErr = fmt.Errorf("bob should have pending " +
				"force close channels but doesn't")
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// Bob can sweep his output immediately.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's funding output sweep tx: %v",
			err)
	}

	// Next, we'll mine enough blocks for the HTLC to expire. At this
	// point, Bob should hand off the output to his internal utxo nursery,
	// which will broadcast a sweep transaction.
	if _, err := net.Miner.Node.Generate(finalCltvDelta - 1); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// If we check Bob's pending channel report, it should show that he has
	// a single HTLC that's now in the second stage, as skip the initial
	// first stage since this is a direct HTLC.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		if len(pendingChanResp.PendingForceClosingChannels) == 0 {
			predErr = fmt.Errorf("bob should have pending for " +
				"close chan but doesn't")
			return false
		}

		forceCloseChan := pendingChanResp.PendingForceClosingChannels[0]
		if len(forceCloseChan.PendingHtlcs) != 1 {
			predErr = fmt.Errorf("bob should have pending htlc " +
				"but doesn't")
			return false
		}
		if forceCloseChan.PendingHtlcs[0].Stage != 2 {
			predErr = fmt.Errorf("bob's htlc should have "+
				"advanced to the second stage: %v", err)
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
	}

	// Bob's sweeping transaction should now be found in the mempool at
	// this point.
	sweepTx, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		// If Bob's transaction isn't yet in the mempool, then due to
		// internal message passing and the low period between blocks
		// being mined, it may have been detected as a late
		// registration. As a result, we'll mine another block and
		// repeat the check. If it doesn't go through this time, then
		// we'll fail.
		// TODO(halseth): can we use waitForChannelPendingForceClose to
		// avoid this hack?
		if _, err := net.Miner.Node.Generate(1); err != nil {
			t.Fatalf("unable to generate block: %v", err)
		}
		sweepTx, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
		if err != nil {
			t.Fatalf("unable to find bob's sweeping transaction: "+
				"%v", err)
		}
	}

	// If we mine an additional block, then this should confirm Bob's
	// transaction which sweeps the direct HTLC output.
	block := mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, sweepTx)

	// Now that the sweeping transaction has been confirmed, Bob should
	// cancel back that HTLC. As a result, Alice should not know of any
	// active HTLC's.
	nodes = []*lntest.HarnessNode{net.Alice}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("alice's channel still has active htlc's: %v", predErr)
	}

	// Now we'll check Bob's pending channel report. Since this was Carol's
	// commitment, he doesn't have to wait for any CSV delays. As a result,
	// he should show no additional pending transactions.
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("bob still has pending channels "+
				"but shouldn't: %v", spew.Sdump(pendingChanResp))
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// We'll close out the test by closing the channel from Alice to Bob,
	// and then shutting down the new node we created as its no longer
	// needed.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false)
}

// testMultiHopHtlcLocalChainClaim tests that in a multi-hop HTLC scenario, if
// we're forced to go to chain with an incoming HTLC, then when we find out the
// preimage via the witness beacon, we properly settle the HTLC on-chain in
// order to ensure we don't lose any funds.
func testMultiHopHtlcLocalChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create a three hop network: Alice -> Bob -> Carol, with
	// Carol refusing to actually settle or directly cancel any HTLC's
	// self.
	aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	// With the network active, we'll now add a new invoice at Carol's end.
	invoiceReq := &lnrpc.Invoice{
		Value:      100000,
		CltvExpiry: 40,
	}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
	if err != nil {
		t.Fatalf("unable to generate carol invoice: %v", err)
	}

	// Now that we've created the invoice, we'll send a single payment from
	// Alice to Carol. We won't wait for the response however, as Carol
	// will not immediately settle the payment.
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}
	err = alicePayStream.Send(&lnrpc.SendRequest{
		PaymentRequest: carolInvoice.PaymentRequest,
	})
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// We'll now wait until all 3 nodes have the HTLC as just sent fully
	// locked in.
	var predErr error
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", err)
	}

	// At this point, Bob decides that he wants to exit the channel
	// immediately, so he force closes his commitment transaction.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	bobForceClose := closeChannelAndAssert(ctxt, t, net, net.Bob,
		aliceChanPoint, true)

	// Alice will sweep her output immediately.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find alice's sweep tx in miner mempool: %v",
			err)
	}

	// We'll now mine enough blocks so Carol decides that she needs to go
	// on-chain to claim the HTLC as Bob has been inactive.
	numBlocks := uint32(invoiceReq.CltvExpiry -
		defaultIncomingBroadcastDelta)

	if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
		t.Fatalf("unable to generate blocks")
	}

	// Carol's commitment transaction should now be in the mempool.
	txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}
	bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundingPoint := wire.OutPoint{
		Hash:  *bobFundingTxid,
		Index: bobChanPoint.OutputIndex,
	}

	// The tx should be spending from the funding transaction,
	commitHash := txids[0]
	tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
	if err != nil {
		t.Fatalf("unable to get txn: %v", err)
	}
	if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
		t.Fatalf("commit transaction not spending fundingtx: %v",
			spew.Sdump(tx1))
	}

	// Mine a block that should confirm the commit tx.
	block := mineBlocks(t, net, 1, 1)[0]
	if len(block.Transactions) != 2 {
		t.Fatalf("expected 2 transactions in block, got %v",
			len(block.Transactions))
	}
	assertTxInBlock(t, block, commitHash)

	// After the force close transacion is mined, Carol should broadcast
	// her second level HTLC transacion. Bob will broadcast a sweep tx to
	// sweep his output in the channel with Carol. He can do this
	// immediately, as the output is not timelocked since Carol was the one
	// force closing.
	commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
		minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}

	// Both Carol's second level transaction and Bob's sweep should be
	// spending from the commitment transaction.
	for _, txid := range commitSpends {
		tx, err := net.Miner.Node.GetRawTransaction(txid)
		if err != nil {
			t.Fatalf("unable to get txn: %v", err)
		}

		if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
			t.Fatalf("tx did not spend from commitment tx")
		}
	}

	// Mine a block to confirm the two transactions (+ the coinbase).
	block = mineBlocks(t, net, 1, 2)[0]
	if len(block.Transactions) != 3 {
		t.Fatalf("expected 3 transactions in block, got %v",
			len(block.Transactions))
	}
	for _, txid := range commitSpends {
		assertTxInBlock(t, block, txid)
	}

	// Keep track of the second level tx maturity.
	carolSecondLevelCSV := uint32(defaultCSV)

	// When Bob notices Carol's second level transaction in the block, he
	// will extract the preimage and broadcast a second level tx to claim
	// the HTLC in his (already closed) channel with Alice.
	bobSecondLvlTx, err := waitForTxInMempool(net.Miner.Node,
		minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}

	// It should spend from the commitment in the channel with Alice.
	tx, err := net.Miner.Node.GetRawTransaction(bobSecondLvlTx)
	if err != nil {
		t.Fatalf("unable to get txn: %v", err)
	}

	if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *bobForceClose {
		t.Fatalf("tx did not spend from bob's force close tx")
	}

	// At this point, Bob should have broadcast his second layer success
	// transaction, and should have sent it to the nursery for incubation.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}

		if len(pendingChanResp.PendingForceClosingChannels) == 0 {
			predErr = fmt.Errorf("bob should have pending for " +
				"close chan but doesn't")
			return false
		}

		for _, forceCloseChan := range pendingChanResp.PendingForceClosingChannels {
			if forceCloseChan.Channel.LocalBalance != 0 {
				continue
			}

			if len(forceCloseChan.PendingHtlcs) != 1 {
				predErr = fmt.Errorf("bob should have pending htlc " +
					"but doesn't")
				return false
			}
			stage := forceCloseChan.PendingHtlcs[0].Stage
			if stage != 1 {
				predErr = fmt.Errorf("bob's htlc should have "+
					"advanced to the first stage but was "+
					"stage: %v", stage)
				return false
			}
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("bob didn't hand off time-locked HTLC: %v", predErr)
	}

	// We'll now mine a block which should confirm Bob's second layer
	// transaction.
	block = mineBlocks(t, net, 1, 1)[0]
	if len(block.Transactions) != 2 {
		t.Fatalf("expected 2 transactions in block, got %v",
			len(block.Transactions))
	}
	assertTxInBlock(t, block, bobSecondLvlTx)

	// Keep track of Bob's second level maturity, and decrement our track
	// of Carol's.
	bobSecondLevelCSV := uint32(defaultCSV)
	carolSecondLevelCSV--

	// If we then mine 3 additional blocks, Carol's second level tx should
	// mature, and she can pull the funds from it with a sweep tx.
	if _, err := net.Miner.Node.Generate(carolSecondLevelCSV); err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}
	bobSecondLevelCSV -= carolSecondLevelCSV

	carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's sweeping transaction: %v", err)
	}

	// Mining one additional block, Bob's second level tx is mature, and he
	// can sweep the output.
	block = mineBlocks(t, net, bobSecondLevelCSV, 1)[0]
	assertTxInBlock(t, block, carolSweep)

	bobSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find bob's sweeping transaction")
	}

	// Make sure it spends from the second level tx.
	tx, err = net.Miner.Node.GetRawTransaction(bobSweep)
	if err != nil {
		t.Fatalf("unable to get txn: %v", err)
	}
	if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *bobSecondLvlTx {
		t.Fatalf("tx did not spend from bob's second level tx")
	}

	// When we mine one additional block, that will confirm Bob's sweep.
	// Now Bob should have no pending channels anymore, as this just
	// resolved it by the confirmation of the sweep transaction.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, bobSweep)

	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("bob still has pending channels "+
				"but shouldn't: %v", spew.Sdump(pendingChanResp))
			return false
		}
		req := &lnrpc.ListChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		chanInfo, err := net.Bob.ListChannels(ctxt, req)
		if err != nil {
			predErr = fmt.Errorf("unable to query for open "+
				"channels: %v", err)
			return false
		}
		if len(chanInfo.Channels) != 0 {
			predErr = fmt.Errorf("Bob should have no open "+
				"channels, instead he has %v",
				len(chanInfo.Channels))
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// Also Carol should have no channels left (open nor pending).
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := carol.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("bob carol has pending channels "+
				"but shouldn't: %v", spew.Sdump(pendingChanResp))
			return false
		}

		req := &lnrpc.ListChannelsRequest{}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		chanInfo, err := carol.ListChannels(ctxt, req)
		if err != nil {
			predErr = fmt.Errorf("unable to query for open "+
				"channels: %v", err)
			return false
		}
		if len(chanInfo.Channels) != 0 {
			predErr = fmt.Errorf("carol should have no open "+
				"channels, instead she has %v",
				len(chanInfo.Channels))
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}
}

// testMultiHopHtlcRemoteChainClaim tests that in the multi-hop HTLC scenario,
// if the remote party goes to chain while we have an incoming HTLC, then when
// we found out the preimage via the witness beacon, we properly settle the
// HTLC on-chain in order to ensure that we don't lose any funds.
func testMultiHopHtlcRemoteChainClaim(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create a three hop network: Alice -> Bob -> Carol, with
	// Carol refusing to actually settle or directly cancel any HTLC's
	// self.
	aliceChanPoint, bobChanPoint, carol := createThreeHopHodlNetwork(t, net)

	// Clean up carol's node when the test finishes.
	defer shutdownAndAssert(net, t, carol)

	// With the network active, we'll now add a new invoice at Carol's end.
	const invoiceAmt = 100000
	invoiceReq := &lnrpc.Invoice{
		Value:      invoiceAmt,
		CltvExpiry: 40,
	}
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	carolInvoice, err := carol.AddInvoice(ctxt, invoiceReq)
	if err != nil {
		t.Fatalf("unable to generate carol invoice: %v", err)
	}

	// Now that we've created the invoice, we'll send a single payment from
	// Alice to Carol. We won't wait for the response however, as Carol
	// will not immediately settle the payment.
	ctx, cancel := context.WithCancel(ctxb)
	defer cancel()

	alicePayStream, err := net.Alice.SendPayment(ctx)
	if err != nil {
		t.Fatalf("unable to create payment stream for alice: %v", err)
	}
	err = alicePayStream.Send(&lnrpc.SendRequest{
		PaymentRequest: carolInvoice.PaymentRequest,
	})
	if err != nil {
		t.Fatalf("unable to send payment: %v", err)
	}

	// We'll now wait until all 3 nodes have the HTLC as just sent fully
	// locked in.
	var predErr error
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertActiveHtlcs(nodes, carolInvoice.RHash)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", err)
	}

	// Next, Alice decides that she wants to exit the channel, so she'll
	// immediately force close the channel by broadcast her commitment
	// transaction.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	aliceForceClose := closeChannelAndAssert(ctxt, t, net, net.Alice,
		aliceChanPoint, true)

	// Wait for the channel to be marked pending force close.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = waitForChannelPendingForceClose(ctxt, net.Alice, aliceChanPoint)
	if err != nil {
		t.Fatalf("channel not pending force close: %v", err)
	}

	// Mine enough blocks for Alice to sweep her funds from the force
	// closed channel.
	_, err = net.Miner.Node.Generate(defaultCSV)
	if err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	// Alice should now sweep her funds.
	_, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find sweeping tx in mempool: %v", err)
	}

	// We'll now mine enough blocks so Carol decides that she needs to go
	// on-chain to claim the HTLC as Bob has been inactive.
	numBlocks := uint32(invoiceReq.CltvExpiry-
		defaultIncomingBroadcastDelta) - defaultCSV

	if _, err := net.Miner.Node.Generate(numBlocks); err != nil {
		t.Fatalf("unable to generate blocks")
	}

	// Carol's commitment transaction should now be in the mempool.
	txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}
	bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundingPoint := wire.OutPoint{
		Hash:  *bobFundingTxid,
		Index: bobChanPoint.OutputIndex,
	}

	// The transaction should be spending from the funding transaction
	commitHash := txids[0]
	tx1, err := net.Miner.Node.GetRawTransaction(commitHash)
	if err != nil {
		t.Fatalf("unable to get txn: %v", err)
	}
	if tx1.MsgTx().TxIn[0].PreviousOutPoint != carolFundingPoint {
		t.Fatalf("commit transaction not spending fundingtx: %v",
			spew.Sdump(tx1))
	}

	// Mine a block, which should contain the commitment.
	block := mineBlocks(t, net, 1, 1)[0]
	if len(block.Transactions) != 2 {
		t.Fatalf("expected 2 transactions in block, got %v",
			len(block.Transactions))
	}
	assertTxInBlock(t, block, commitHash)

	// After the force close transacion is mined, Carol should broadcast
	// her second level HTLC transacion. Bob will broadcast a sweep tx to
	// sweep his output in the channel with Carol. He can do this
	// immediately, as the output is not timelocked since Carol was the one
	// force closing.
	commitSpends, err := waitForNTxsInMempool(net.Miner.Node, 2,
		minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}

	// Both Carol's second level transaction and Bob's sweep should be
	// spending from the commitment transaction.
	for _, txid := range commitSpends {
		tx, err := net.Miner.Node.GetRawTransaction(txid)
		if err != nil {
			t.Fatalf("unable to get txn: %v", err)
		}

		if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *commitHash {
			t.Fatalf("tx did not spend from commitment tx")
		}
	}

	// Mine a block to confirm the two transactions (+ coinbase).
	block = mineBlocks(t, net, 1, 2)[0]
	if len(block.Transactions) != 3 {
		t.Fatalf("expected 3 transactions in block, got %v",
			len(block.Transactions))
	}
	for _, txid := range commitSpends {
		assertTxInBlock(t, block, txid)
	}

	// Keep track of the second level tx maturity.
	carolSecondLevelCSV := uint32(defaultCSV)

	// When Bob notices Carol's second level transaction in the block, he
	// will extract the preimage and broadcast a sweep tx to directly claim
	// the HTLC in his (already closed) channel with Alice.
	bobHtlcSweep, err := waitForTxInMempool(net.Miner.Node,
		minerMempoolTimeout)
	if err != nil {
		t.Fatalf("transactions not found in mempool: %v", err)
	}

	// It should spend from the commitment in the channel with Alice.
	tx, err := net.Miner.Node.GetRawTransaction(bobHtlcSweep)
	if err != nil {
		t.Fatalf("unable to get txn: %v", err)
	}
	if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash != *aliceForceClose {
		t.Fatalf("tx did not spend from alice's force close tx")
	}

	// We'll now mine a block which should confirm Bob's HTLC sweep
	// transaction.
	block = mineBlocks(t, net, 1, 1)[0]
	if len(block.Transactions) != 2 {
		t.Fatalf("expected 2 transactions in block, got %v",
			len(block.Transactions))
	}
	assertTxInBlock(t, block, bobHtlcSweep)
	carolSecondLevelCSV--

	// Now that the sweeping transaction has been confirmed, Bob should now
	// recognize that all contracts have been fully resolved, and show no
	// pending close channels.
	pendingChansRequest := &lnrpc.PendingChannelsRequest{}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := net.Bob.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("bob still has pending channels "+
				"but shouldn't: %v", spew.Sdump(pendingChanResp))
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// If we then mine 3 additional blocks, Carol's second level tx will
	// mature, and she should pull the funds.
	if _, err := net.Miner.Node.Generate(carolSecondLevelCSV); err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	carolSweep, err := waitForTxInMempool(net.Miner.Node, minerMempoolTimeout)
	if err != nil {
		t.Fatalf("unable to find Carol's sweeping transaction: %v", err)
	}

	// When Carol's sweep gets confirmed, she should have no more pending
	// channels.
	block = mineBlocks(t, net, 1, 1)[0]
	assertTxInBlock(t, block, carolSweep)

	pendingChansRequest = &lnrpc.PendingChannelsRequest{}
	err = lntest.WaitPredicate(func() bool {
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		pendingChanResp, err := carol.PendingChannels(
			ctxt, pendingChansRequest,
		)
		if err != nil {
			predErr = fmt.Errorf("unable to query for pending "+
				"channels: %v", err)
			return false
		}
		if len(pendingChanResp.PendingForceClosingChannels) != 0 {
			predErr = fmt.Errorf("carol still has pending channels "+
				"but shouldn't: %v", spew.Sdump(pendingChanResp))
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf(predErr.Error())
	}

	// The invoice should show as settled for Carol, indicating that it was
	// swept on-chain.
	invoicesReq := &lnrpc.ListInvoiceRequest{}
	invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq)
	if err != nil {
		t.Fatalf("unable to retrieve invoices: %v", err)
	}
	if len(invoicesResp.Invoices) != 1 {
		t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices))
	}
	invoice := invoicesResp.Invoices[0]
	if invoice.State != lnrpc.Invoice_SETTLED {
		t.Fatalf("expected invoice to be settled on chain")
	}
	if invoice.AmtPaidSat != invoiceAmt {
		t.Fatalf("expected invoice to be settled with %d sat, got "+
			"%d sat", invoiceAmt, invoice.AmtPaidSat)
	}
}

// testSwitchCircuitPersistence creates a multihop network to ensure the sender
// and intermediaries are persisting their open payment circuits. After
// forwarding a packet via an outgoing link, all are restarted, and expected to
// forward a response back from the receiver once back online.
//
// The general flow of this test:
//   1. Carol --> Dave --> Alice --> Bob  forward payment
//   2.        X        X         X  Bob  restart sender and intermediaries
//   3. Carol <-- Dave <-- Alice <-- Bob  expect settle to propagate
func testSwitchCircuitPersistence(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(1000000)
	const pushAmt = btcutil.Amount(900000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// As preliminary setup, we'll create two new nodes: Carol and Dave,
	// such that we now have a 4 ndoe, 3 channel topology. Dave will make
	// a channel with Alice, and Carol with Dave. After this setup, the
	// network topology should now look like:
	//     Carol -> Dave -> Alice -> Bob
	//
	// First, we'll create Dave and establish a channel to Alice.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, dave, net.Alice,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointDave)
	daveChanTXID, err := getChanPointFundingTxid(chanPointDave)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	daveFundPoint := wire.OutPoint{
		Hash:  *daveChanTXID,
		Index: chanPointDave.OutputIndex,
	}

	// Next, we'll create Carol and establish a channel to from her to
	// Dave. Carol is started in htlchodl mode so that we can disconnect the
	// intermediary hops before starting the settle.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Create 5 invoices for Carol, which expect a payment from Bob for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	const paymentAmt = 1000
	payReqs, _, _, err := createPayReqs(
		carol, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
	if err != nil {
		t.Fatalf("dave didn't advertise his channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't advertise her channel in time: %v",
			err)
	}

	time.Sleep(time.Millisecond * 50)

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Wait until all nodes in the network have 5 outstanding htlcs.
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numPayments)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Restart the intermediaries and the sender.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	if err := net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	if err := net.RestartNode(net.Bob, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Ensure all of the intermediate links are reconnected.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, net.Alice, dave)
	if err != nil {
		t.Fatalf("unable to reconnect alice and dave: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, net.Bob, net.Alice)
	if err != nil {
		t.Fatalf("unable to reconnect bob and alice: %v", err)
	}

	// Ensure all nodes in the network still have 5 outstanding htlcs.
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numPayments)
		if predErr != nil {
			return false
		}
		return true

	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Now restart carol without hodl mode, to settle back the outstanding
	// payments.
	carol.SetExtraArgs(nil)
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, dave, carol)
	if err != nil {
		t.Fatalf("unable to reconnect dave and carol: %v", err)
	}

	// After the payments settle, there should be no active htlcs on any of
	// the nodes in the network.
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true

	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// At this point all the channels within our proto network should be
	// shifted by 5k satoshis in the direction of Carol, the sink within the
	// payment flow generated above. The order of asserts corresponds to
	// increasing of time is needed to embed the HTLC in commitment
	// transaction, in channel Bob->Alice->David->Carol, order is Carol,
	// David, Alice, Bob.
	var amountPaid = int64(5000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))

	// Lastly, we will send one more payment to ensure all channels are
	// still functioning properly.
	finalInvoice := &lnrpc.Invoice{
		Memo:  "testing",
		Value: paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := carol.AddInvoice(ctxt, finalInvoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	payReqs = []string{resp.PaymentRequest}

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	amountPaid = int64(6000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

// testSwitchOfflineDelivery constructs a set of multihop payments, and tests
// that the returning payments are not lost if a peer on the backwards path is
// offline when the settle/fails are received. We expect the payments to be
// buffered in memory, and transmitted as soon as the disconnect link comes back
// online.
//
// The general flow of this test:
//   1. Carol --> Dave --> Alice --> Bob  forward payment
//   2. Carol --- Dave  X  Alice --- Bob  disconnect intermediaries
//   3. Carol --- Dave  X  Alice <-- Bob  settle last hop
//   4. Carol <-- Dave <-- Alice --- Bob  reconnect, expect settle to propagate
func testSwitchOfflineDelivery(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(1000000)
	const pushAmt = btcutil.Amount(900000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// As preliminary setup, we'll create two new nodes: Carol and Dave,
	// such that we now have a 4 ndoe, 3 channel topology. Dave will make
	// a channel with Alice, and Carol with Dave. After this setup, the
	// network topology should now look like:
	//     Carol -> Dave -> Alice -> Bob
	//
	// First, we'll create Dave and establish a channel to Alice.
	dave, err := net.NewNode("Dave", []string{"--unsafe-disconnect"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, dave, net.Alice,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointDave)
	daveChanTXID, err := getChanPointFundingTxid(chanPointDave)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	daveFundPoint := wire.OutPoint{
		Hash:  *daveChanTXID,
		Index: chanPointDave.OutputIndex,
	}

	// Next, we'll create Carol and establish a channel to from her to
	// Dave. Carol is started in htlchodl mode so that we can disconnect the
	// intermediary hops before starting the settle.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Create 5 invoices for Carol, which expect a payment from Bob for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	const paymentAmt = 1000
	payReqs, _, _, err := createPayReqs(
		carol, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
	if err != nil {
		t.Fatalf("dave didn't advertise his channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't advertise her channel in time: %v",
			err)
	}

	time.Sleep(time.Millisecond * 50)

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Wait for all of the payments to reach Carol.
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numPayments)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// First, disconnect Dave and Alice so that their link is broken.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to disconnect alice from dave: %v", err)
	}

	// Then, reconnect them to ensure Dave doesn't just fail back the htlc.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to reconnect alice to dave: %v", err)
	}

	// Wait to ensure that the payment remain are not failed back after
	// reconnecting. All node should report the number payments initiated
	// for the duration of the interval.
	err = lntest.WaitInvariant(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numPayments)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*2)
	if err != nil {
		t.Fatalf("htlc change: %v", predErr)
	}

	// Now, disconnect Dave from Alice again before settling back the
	// payment.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.DisconnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to disconnect alice from dave: %v", err)
	}

	// Now restart carol without hodl mode, to settle back the outstanding
	// payments.
	carol.SetExtraArgs(nil)
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Wait for Carol to report no outstanding htlcs.
	carolNode := []*lntest.HarnessNode{carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(carolNode, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Now that the settles have reached Dave, reconnect him with Alice,
	// allowing the settles to return to the sender.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.EnsureConnected(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to reconnect alice to dave: %v", err)
	}

	// Wait until all outstanding htlcs in the network have been settled.
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// At this point all the channels within our proto network should be
	// shifted by 5k satoshis in the direction of Carol, the sink within the
	// payment flow generated above. The order of asserts corresponds to
	// increasing of time is needed to embed the HTLC in commitment
	// transaction, in channel Bob->Alice->David->Carol, order is Carol,
	// David, Alice, Bob.
	var amountPaid = int64(5000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))

	// Lastly, we will send one more payment to ensure all channels are
	// still functioning properly.
	finalInvoice := &lnrpc.Invoice{
		Memo:  "testing",
		Value: paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := carol.AddInvoice(ctxt, finalInvoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	payReqs = []string{resp.PaymentRequest}

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	amountPaid = int64(6000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

// testSwitchOfflineDeliveryPersistence constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
//   1. Carol --> Dave --> Alice --> Bob  forward payment
//   2. Carol --- Dave  X  Alice --- Bob  disconnect intermediaries
//   3. Carol --- Dave  X  Alice <-- Bob  settle last hop
//   4. Carol --- Dave  X         X  Bob  restart Alice
//   5. Carol <-- Dave <-- Alice --- Bob  expect settle to propagate
func testSwitchOfflineDeliveryPersistence(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(1000000)
	const pushAmt = btcutil.Amount(900000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// As preliminary setup, we'll create two new nodes: Carol and Dave,
	// such that we now have a 4 ndoe, 3 channel topology. Dave will make
	// a channel with Alice, and Carol with Dave. After this setup, the
	// network topology should now look like:
	//     Carol -> Dave -> Alice -> Bob
	//
	// First, we'll create Dave and establish a channel to Alice.
	dave, err := net.NewNode("Dave", []string{"--unsafe-disconnect"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, dave, net.Alice,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)

	networkChans = append(networkChans, chanPointDave)
	daveChanTXID, err := getChanPointFundingTxid(chanPointDave)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	daveFundPoint := wire.OutPoint{
		Hash:  *daveChanTXID,
		Index: chanPointDave.OutputIndex,
	}

	// Next, we'll create Carol and establish a channel to from her to
	// Dave. Carol is started in htlchodl mode so that we can disconnect the
	// intermediary hops before starting the settle.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Create 5 invoices for Carol, which expect a payment from Bob for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	const paymentAmt = 1000
	payReqs, _, _, err := createPayReqs(
		carol, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
	if err != nil {
		t.Fatalf("dave didn't advertise his channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't advertise her channel in time: %v",
			err)
	}

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	var predErr error
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numPayments)
		if predErr != nil {
			return false
		}
		return true

	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Disconnect the two intermediaries, Alice and Dave, by shutting down
	// Alice.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.StopNode(net.Alice); err != nil {
		t.Fatalf("unable to shutdown alice: %v", err)
	}

	// Now restart carol without hodl mode, to settle back the outstanding
	// payments.
	carol.SetExtraArgs(nil)
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Make Carol and Dave are reconnected before waiting for the htlcs to
	// clear.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, dave, carol)
	if err != nil {
		t.Fatalf("unable to reconnect dave and carol: %v", err)
	}

	// Wait for Carol to report no outstanding htlcs, and also for Dav to
	// receive all the settles from Carol.
	carolNode := []*lntest.HarnessNode{carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(carolNode, 0)
		if predErr != nil {
			return false
		}

		predErr = assertNumActiveHtlcsChanPoint(dave, carolFundPoint, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Finally, restart dave who received the settles, but was unable to
	// deliver them to Alice since they were disconnected.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to restart dave: %v", err)
	}
	if err = net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("unable to restart alice: %v", err)
	}

	// Force Dave and Alice to reconnect before waiting for the htlcs to
	// clear.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, dave, net.Alice)
	if err != nil {
		t.Fatalf("unable to reconnect dave and carol: %v", err)
	}

	// After reconnection succeeds, the settles should be propagated all
	// the way back to the sender. All nodes should report no active htlcs.
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// At this point all the channels within our proto network should be
	// shifted by 5k satoshis in the direction of Carol, the sink within the
	// payment flow generated above. The order of asserts corresponds to
	// increasing of time is needed to embed the HTLC in commitment
	// transaction, in channel Bob->Alice->David->Carol, order is Carol,
	// David, Alice, Bob.
	var amountPaid = int64(5000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))

	// Lastly, we will send one more payment to ensure all channels are
	// still functioning properly.
	finalInvoice := &lnrpc.Invoice{
		Memo:  "testing",
		Value: paymentAmt,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	resp, err := carol.AddInvoice(ctxt, finalInvoice)
	if err != nil {
		t.Fatalf("unable to add invoice: %v", err)
	}

	payReqs = []string{resp.PaymentRequest}

	// Before completing the final payment request, ensure that the
	// connection between Dave and Carol has been healed.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, dave, carol)
	if err != nil {
		t.Fatalf("unable to reconnect dave and carol: %v", err)
	}

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, true)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	amountPaid = int64(6000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*(numPayments+1)))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*(numPayments+1)), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*(numPayments+1))*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*(numPayments+1))*2, int64(0))

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

// testSwitchOfflineDeliveryOutgoingOffline constructs a set of multihop payments,
// and tests that the returning payments are not lost if a peer on the backwards
// path is offline when the settle/fails are received AND the peer buffering the
// responses is completely restarts. We expect the payments to be reloaded from
// disk, and transmitted as soon as the intermediaries are reconnected.
//
// The general flow of this test:
//   1. Carol --> Dave --> Alice --> Bob  forward payment
//   2. Carol --- Dave  X  Alice --- Bob  disconnect intermediaries
//   3. Carol --- Dave  X  Alice <-- Bob  settle last hop
//   4. Carol --- Dave  X         X       shutdown Bob, restart Alice
//   5. Carol <-- Dave <-- Alice  X       expect settle to propagate
func testSwitchOfflineDeliveryOutgoingOffline(
	net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(1000000)
	const pushAmt = btcutil.Amount(900000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel with 100k satoshis between Alice and Bob with Alice
	// being the sole funder of the channel.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	aliceChanTXID, err := getChanPointFundingTxid(chanPointAlice)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	aliceFundPoint := wire.OutPoint{
		Hash:  *aliceChanTXID,
		Index: chanPointAlice.OutputIndex,
	}

	// As preliminary setup, we'll create two new nodes: Carol and Dave,
	// such that we now have a 4 ndoe, 3 channel topology. Dave will make
	// a channel with Alice, and Carol with Dave. After this setup, the
	// network topology should now look like:
	//     Carol -> Dave -> Alice -> Bob
	//
	// First, we'll create Dave and establish a channel to Alice.
	dave, err := net.NewNode("Dave", []string{"--unsafe-disconnect"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
		t.Fatalf("unable to connect dave to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointDave := openChannelAndAssert(
		ctxt, t, net, dave, net.Alice,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointDave)
	daveChanTXID, err := getChanPointFundingTxid(chanPointDave)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	daveFundPoint := wire.OutPoint{
		Hash:  *daveChanTXID,
		Index: chanPointDave.OutputIndex,
	}

	// Next, we'll create Carol and establish a channel to from her to
	// Dave. Carol is started in htlchodl mode so that we can disconnect the
	// intermediary hops before starting the settle.
	carol, err := net.NewNode("Carol", []string{"--debughtlc", "--hodl.exit-settle"})
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	carolChanTXID, err := getChanPointFundingTxid(chanPointCarol)
	if err != nil {
		t.Fatalf("unable to get txid: %v", err)
	}
	carolFundPoint := wire.OutPoint{
		Hash:  *carolChanTXID,
		Index: chanPointCarol.OutputIndex,
	}

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Create 5 invoices for Carol, which expect a payment from Bob for 1k
	// satoshis with a different preimage each time.
	const numPayments = 5
	const paymentAmt = 1000
	payReqs, _, _, err := createPayReqs(
		carol, paymentAmt, numPayments,
	)
	if err != nil {
		t.Fatalf("unable to create pay reqs: %v", err)
	}

	// We'll wait for all parties to recognize the new channels within the
	// network.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
	if err != nil {
		t.Fatalf("dave didn't advertise his channel: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
	if err != nil {
		t.Fatalf("carol didn't advertise her channel in time: %v",
			err)
	}

	// Using Carol as the source, pay to the 5 invoices from Bob created
	// above.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = completePaymentRequests(ctxt, net.Bob, payReqs, false)
	if err != nil {
		t.Fatalf("unable to send payments: %v", err)
	}

	// Wait for all payments to reach Carol.
	var predErr error
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodes, numPayments)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Disconnect the two intermediaries, Alice and Dave, so that when carol
	// restarts, the response will be held by Dave.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.StopNode(net.Alice); err != nil {
		t.Fatalf("unable to shutdown alice: %v", err)
	}

	// Now restart carol without hodl mode, to settle back the outstanding
	// payments.
	carol.SetExtraArgs(nil)
	if err := net.RestartNode(carol, nil); err != nil {
		t.Fatalf("Node restart failed: %v", err)
	}

	// Wait for Carol to report no outstanding htlcs.
	carolNode := []*lntest.HarnessNode{carol}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(carolNode, 0)
		if predErr != nil {
			return false
		}

		predErr = assertNumActiveHtlcsChanPoint(dave, carolFundPoint, 0)
		if predErr != nil {
			return false
		}

		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// Now check that the total amount was transferred from Dave to Carol.
	// The amount transferred should be exactly equal to the invoice total
	// payment amount, 5k satsohis.
	const amountPaid = int64(5000)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", carol,
		carolFundPoint, int64(0), amountPaid)
	assertAmountPaid(t, "Dave(local) => Carol(remote)", dave,
		carolFundPoint, amountPaid, int64(0))

	// Shutdown carol and leave her offline for the rest of the test. This
	// is critical, as we wish to see if Dave can propragate settles even if
	// the outgoing link is never revived.
	shutdownAndAssert(net, t, carol)

	// Now restart Dave, ensuring he is both persisting the settles, and is
	// able to reforward them to Alice after recovering from a restart.
	if err := net.RestartNode(dave, nil); err != nil {
		t.Fatalf("unable to restart dave: %v", err)
	}
	if err = net.RestartNode(net.Alice, nil); err != nil {
		t.Fatalf("unable to restart alice: %v", err)
	}

	// Ensure that Dave is reconnected to Alice before waiting for the
	// htlcs to clear.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, dave, net.Alice)
	if err != nil {
		t.Fatalf("unable to reconnect alice and dave: %v", err)
	}

	// Since Carol has been shutdown permanently, we will wait until all
	// other nodes in the network report no active htlcs.
	nodesMinusCarol := []*lntest.HarnessNode{net.Bob, net.Alice, dave}
	err = lntest.WaitPredicate(func() bool {
		predErr = assertNumActiveHtlcs(nodesMinusCarol, 0)
		if predErr != nil {
			return false
		}
		return true
	}, time.Second*15)
	if err != nil {
		t.Fatalf("htlc mismatch: %v", predErr)
	}

	// When asserting the amount of satoshis moved, we'll factor in the
	// default base fee, as we didn't modify the fee structure when
	// creating the seed nodes in the network.
	const baseFee = 1

	// At this point, all channels (minus Carol, who is shutdown) should
	// show a shift of 5k satoshis towards Carol.  The order of asserts
	// corresponds to increasing of time is needed to embed the HTLC in
	// commitment transaction, in channel Bob->Alice->David, order is
	// David, Alice, Bob.
	assertAmountPaid(t, "Alice(local) => Dave(remote)", dave,
		daveFundPoint, int64(0), amountPaid+(baseFee*numPayments))
	assertAmountPaid(t, "Alice(local) => Dave(remote)", net.Alice,
		daveFundPoint, amountPaid+(baseFee*numPayments), int64(0))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Alice,
		aliceFundPoint, int64(0), amountPaid+((baseFee*numPayments)*2))
	assertAmountPaid(t, "Bob(local) => Alice(remote)", net.Bob,
		aliceFundPoint, amountPaid+(baseFee*numPayments)*2, int64(0))

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
}

// computeFee calculates the payment fee as specified in BOLT07
func computeFee(baseFee, feeRate, amt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
	return baseFee + amt*feeRate/1000000
}

// testQueryRoutes checks the response of queryroutes.
// We'll create the following network topology:
//      Alice --> Bob --> Carol --> Dave
// and query the daemon for routes from Alice to Dave.
func testQueryRoutes(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const chanAmt = btcutil.Amount(100000)
	var networkChans []*lnrpc.ChannelPoint

	// Open a channel between Alice and Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAlice := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointAlice)

	// Create Carol and establish a channel from Bob.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Bob); err != nil {
		t.Fatalf("unable to connect carol to bob: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, net.Bob)
	if err != nil {
		t.Fatalf("unable to send coins to bob: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointBob := openChannelAndAssert(
		ctxt, t, net, net.Bob, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointBob)

	// Create Dave and establish a channel from Carol.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create new nodes: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
		t.Fatalf("unable to connect dave to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarol := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)
	networkChans = append(networkChans, chanPointCarol)

	// Wait for all nodes to have seen all channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			point := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d): timeout waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, point, err)
			}
		}
	}

	// Query for routes to pay from Alice to Dave.
	const paymentAmt = 1000
	routesReq := &lnrpc.QueryRoutesRequest{
		PubKey:    dave.PubKeyStr,
		Amt:       paymentAmt,
		NumRoutes: 1,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	routesRes, err := net.Alice.QueryRoutes(ctxt, routesReq)
	if err != nil {
		t.Fatalf("unable to get route: %v", err)
	}

	const mSat = 1000
	feePerHopMSat := computeFee(1000, 1, paymentAmt*mSat)

	for i, route := range routesRes.Routes {
		expectedTotalFeesMSat :=
			lnwire.MilliSatoshi(len(route.Hops)-1) * feePerHopMSat
		expectedTotalAmtMSat := (paymentAmt * mSat) + expectedTotalFeesMSat

		if route.TotalFees != route.TotalFeesMsat/mSat {
			t.Fatalf("route %v: total fees %v (msat) does not "+
				"round down to %v (sat)",
				i, route.TotalFeesMsat, route.TotalFees)
		}
		if route.TotalFeesMsat != int64(expectedTotalFeesMSat) {
			t.Fatalf("route %v: total fees in msat expected %v got %v",
				i, expectedTotalFeesMSat, route.TotalFeesMsat)
		}

		if route.TotalAmt != route.TotalAmtMsat/mSat {
			t.Fatalf("route %v: total amt %v (msat) does not "+
				"round down to %v (sat)",
				i, route.TotalAmtMsat, route.TotalAmt)
		}
		if route.TotalAmtMsat != int64(expectedTotalAmtMSat) {
			t.Fatalf("route %v: total amt in msat expected %v got %v",
				i, expectedTotalAmtMSat, route.TotalAmtMsat)
		}

		// For all hops except the last, we check that fee equals feePerHop
		// and amount to forward deducts feePerHop on each hop.
		expectedAmtToForwardMSat := expectedTotalAmtMSat
		for j, hop := range route.Hops[:len(route.Hops)-1] {
			expectedAmtToForwardMSat -= feePerHopMSat

			if hop.Fee != hop.FeeMsat/mSat {
				t.Fatalf("route %v hop %v: fee %v (msat) does not "+
					"round down to %v (sat)",
					i, j, hop.FeeMsat, hop.Fee)
			}
			if hop.FeeMsat != int64(feePerHopMSat) {
				t.Fatalf("route %v hop %v: fee in msat expected %v got %v",
					i, j, feePerHopMSat, hop.FeeMsat)
			}

			if hop.AmtToForward != hop.AmtToForwardMsat/mSat {
				t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
					"round down to %v (sat)",
					i, j, hop.AmtToForwardMsat, hop.AmtToForward)
			}
			if hop.AmtToForwardMsat != int64(expectedAmtToForwardMSat) {
				t.Fatalf("route %v hop %v: amt to forward in msat "+
					"expected %v got %v",
					i, j, expectedAmtToForwardMSat, hop.AmtToForwardMsat)
			}
		}
		// Last hop should have zero fee and amount to forward should equal
		// payment amount.
		hop := route.Hops[len(route.Hops)-1]

		if hop.Fee != 0 || hop.FeeMsat != 0 {
			t.Fatalf("route %v hop %v: fee expected 0 got %v (sat) %v (msat)",
				i, len(route.Hops)-1, hop.Fee, hop.FeeMsat)
		}

		if hop.AmtToForward != hop.AmtToForwardMsat/mSat {
			t.Fatalf("route %v hop %v: amt to forward %v (msat) does not "+
				"round down to %v (sat)",
				i, len(route.Hops)-1, hop.AmtToForwardMsat, hop.AmtToForward)
		}
		if hop.AmtToForwardMsat != paymentAmt*mSat {
			t.Fatalf("route %v hop %v: amt to forward in msat "+
				"expected %v got %v",
				i, len(route.Hops)-1, paymentAmt*mSat, hop.AmtToForwardMsat)
		}
	}

	// We clean up the test case by closing channels that were created for
	// the duration of the tests.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBob, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}

// testRouteFeeCutoff tests that we are able to prevent querying routes and
// sending payments that incur a fee higher than the fee limit.
func testRouteFeeCutoff(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// For this test, we'll create the following topology:
	//
	//              --- Bob ---
	//            /             \
	// Alice ----                 ---- Dave
	//            \             /
	//              -- Carol --
	//
	// Alice will attempt to send payments to Dave that should not incur a
	// fee greater than the fee limit expressed as a percentage of the
	// amount and as a fixed amount of satoshis.
	const chanAmt = btcutil.Amount(100000)

	// Open a channel between Alice and Bob.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAliceBob := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Create Carol's node and open a channel between her and Alice with
	// Alice being the funder.
	carol, err := net.NewNode("Carol", nil)
	if err != nil {
		t.Fatalf("unable to create carol's node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
		t.Fatalf("unable to connect carol to alice: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
	if err != nil {
		t.Fatalf("unable to send coins to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAliceCarol := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Create Dave's node and open a channel between him and Bob with Bob
	// being the funder.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create dave's node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, dave, net.Bob); err != nil {
		t.Fatalf("unable to connect dave to bob: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointBobDave := openChannelAndAssert(
		ctxt, t, net, net.Bob, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Open a channel between Carol and Dave.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
		t.Fatalf("unable to connect carol to dave: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointCarolDave := openChannelAndAssert(
		ctxt, t, net, carol, dave,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Now that all the channels were set up, we'll wait for all the nodes
	// to have seen all the channels.
	nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
	nodeNames := []string{"alice", "bob", "carol", "dave"}
	networkChans := []*lnrpc.ChannelPoint{
		chanPointAliceBob, chanPointAliceCarol, chanPointBobDave,
		chanPointCarolDave,
	}
	for _, chanPoint := range networkChans {
		for i, node := range nodes {
			txid, err := getChanPointFundingTxid(chanPoint)
			if err != nil {
				t.Fatalf("unable to get txid: %v", err)
			}
			outpoint := wire.OutPoint{
				Hash:  *txid,
				Index: chanPoint.OutputIndex,
			}

			ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
			err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
			if err != nil {
				t.Fatalf("%s(%d) timed out waiting for "+
					"channel(%s) open: %v", nodeNames[i],
					node.NodeID, outpoint, err)
			}
		}
	}

	// The payments should only be successful across the route:
	//	Alice -> Bob -> Dave
	// Therefore, we'll update the fee policy on Carol's side for the
	// channel between her and Dave to invalidate the route:
	//	Alice -> Carol -> Dave
	baseFee := int64(10000)
	feeRate := int64(5)
	timeLockDelta := uint32(defaultBitcoinTimeLockDelta)

	expectedPolicy := &lnrpc.RoutingPolicy{
		FeeBaseMsat:      baseFee,
		FeeRateMilliMsat: testFeeBase * feeRate,
		TimeLockDelta:    timeLockDelta,
		MinHtlc:          1000, // default value
	}

	updateFeeReq := &lnrpc.PolicyUpdateRequest{
		BaseFeeMsat:   baseFee,
		FeeRate:       float64(feeRate),
		TimeLockDelta: timeLockDelta,
		Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
			ChanPoint: chanPointCarolDave,
		},
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if _, err := carol.UpdateChannelPolicy(ctxt, updateFeeReq); err != nil {
		t.Fatalf("unable to update chan policy: %v", err)
	}

	// Wait for Alice to receive the channel update from Carol.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceSub := subscribeGraphNotifications(t, ctxt, net.Alice)
	defer close(aliceSub.quit)

	waitForChannelUpdate(
		t, aliceSub,
		[]expectedChanUpdate{
			{carol.PubKeyStr, expectedPolicy, chanPointCarolDave},
		},
	)

	// We'll also need the channel IDs for Bob's channels in order to
	// confirm the route of the payments.
	listReq := &lnrpc.ListChannelsRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	listResp, err := net.Bob.ListChannels(ctxt, listReq)
	if err != nil {
		t.Fatalf("unable to retrieve bob's channels: %v", err)
	}

	var aliceBobChanID, bobDaveChanID uint64
	for _, channel := range listResp.Channels {
		switch channel.RemotePubkey {
		case net.Alice.PubKeyStr:
			aliceBobChanID = channel.ChanId
		case dave.PubKeyStr:
			bobDaveChanID = channel.ChanId
		}
	}

	if aliceBobChanID == 0 {
		t.Fatalf("channel between alice and bob not found")
	}
	if bobDaveChanID == 0 {
		t.Fatalf("channel between bob and dave not found")
	}
	hopChanIDs := []uint64{aliceBobChanID, bobDaveChanID}

	// checkRoute is a helper closure to ensure the route contains the
	// correct intermediate hops.
	checkRoute := func(route *lnrpc.Route) {
		if len(route.Hops) != 2 {
			t.Fatalf("expected two hops, got %d", len(route.Hops))
		}

		for i, hop := range route.Hops {
			if hop.ChanId != hopChanIDs[i] {
				t.Fatalf("expected chan id %d, got %d",
					hopChanIDs[i], hop.ChanId)
			}
		}
	}

	// We'll be attempting to send two payments from Alice to Dave. One will
	// have a fee cutoff expressed as a percentage of the amount and the
	// other will have it expressed as a fixed amount of satoshis.
	const paymentAmt = 100
	carolFee := computeFee(lnwire.MilliSatoshi(baseFee), 1, paymentAmt)

	// testFeeCutoff is a helper closure that will ensure the different
	// types of fee limits work as intended when querying routes and sending
	// payments.
	testFeeCutoff := func(feeLimit *lnrpc.FeeLimit) {
		queryRoutesReq := &lnrpc.QueryRoutesRequest{
			PubKey:    dave.PubKeyStr,
			Amt:       paymentAmt,
			FeeLimit:  feeLimit,
			NumRoutes: 2,
		}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		routesResp, err := net.Alice.QueryRoutes(ctxt, queryRoutesReq)
		if err != nil {
			t.Fatalf("unable to get routes: %v", err)
		}

		if len(routesResp.Routes) != 1 {
			t.Fatalf("expected one route, got %d",
				len(routesResp.Routes))
		}

		checkRoute(routesResp.Routes[0])

		invoice := &lnrpc.Invoice{Value: paymentAmt}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		invoiceResp, err := dave.AddInvoice(ctxt, invoice)
		if err != nil {
			t.Fatalf("unable to create invoice: %v", err)
		}

		sendReq := &lnrpc.SendRequest{
			PaymentRequest: invoiceResp.PaymentRequest,
			FeeLimit:       feeLimit,
		}
		ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
		paymentResp, err := net.Alice.SendPaymentSync(ctxt, sendReq)
		if err != nil {
			t.Fatalf("unable to send payment: %v", err)
		}
		if paymentResp.PaymentError != "" {
			t.Fatalf("unable to send payment: %v",
				paymentResp.PaymentError)
		}

		checkRoute(paymentResp.PaymentRoute)
	}

	// We'll start off using percentages first. Since the fee along the
	// route using Carol as an intermediate hop is 10% of the payment's
	// amount, we'll use a lower percentage in order to invalid that route.
	feeLimitPercent := &lnrpc.FeeLimit{
		Limit: &lnrpc.FeeLimit_Percent{
			Percent: baseFee/1000 - 1,
		},
	}
	testFeeCutoff(feeLimitPercent)

	// Now we'll test using fixed fee limit amounts. Since we computed the
	// fee for the route using Carol as an intermediate hop earlier, we can
	// use a smaller value in order to invalidate that route.
	feeLimitFixed := &lnrpc.FeeLimit{
		Limit: &lnrpc.FeeLimit_Fixed{
			Fixed: int64(carolFee.ToSatoshis()) - 1,
		},
	}
	testFeeCutoff(feeLimitFixed)

	// Once we're done, close the channels and shut down the nodes created
	// throughout this test.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceBob, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAliceCarol, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPointBobDave, false)
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, carol, chanPointCarolDave, false)
}

// testSendUpdateDisableChannel ensures that a channel update with the disable
// flag set is sent once a channel has been either unilaterally or cooperatively
// closed.
func testSendUpdateDisableChannel(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	const (
		chanAmt = 100000
	)

	// Open a channel between Alice and Bob and Alice and Carol. These will
	// be closed later on in order to trigger channel update messages
	// marking the channels as disabled.
	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAliceBob := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	carol, err := net.NewNode("Carol", []string{
		"--minbackoff=10s",
		"--unsafe-disconnect",
		"--chan-enable-timeout=1.5s",
		"--chan-disable-timeout=3s",
		"--chan-status-sample-interval=.5s",
	})
	if err != nil {
		t.Fatalf("unable to create carol's node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Alice, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointAliceCarol := openChannelAndAssert(
		ctxt, t, net, net.Alice, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// We create a new node Eve that has an inactive channel timeout of
	// just 2 seconds (down from the default 20m). It will be used to test
	// channel updates for channels going inactive.
	eve, err := net.NewNode("Eve", []string{
		"--minbackoff=10s",
		"--chan-enable-timeout=1.5s",
		"--chan-disable-timeout=3s",
		"--chan-status-sample-interval=.5s",
	})
	if err != nil {
		t.Fatalf("unable to create eve's node: %v", err)
	}
	defer shutdownAndAssert(net, t, eve)

	// Give Eve some coins.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, eve)
	if err != nil {
		t.Fatalf("unable to send coins to eve: %v", err)
	}

	// Connect Eve to Carol and Bob, and open a channel to carol.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, eve, carol); err != nil {
		t.Fatalf("unable to connect alice to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, eve, net.Bob); err != nil {
		t.Fatalf("unable to connect eve to bob: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPointEveCarol := openChannelAndAssert(
		ctxt, t, net, eve, carol,
		lntest.OpenChannelParams{
			Amt: chanAmt,
		},
	)

	// Launch a node for Dave which will connect to Bob in order to receive
	// graph updates from. This will ensure that the channel updates are
	// propagated throughout the network.
	dave, err := net.NewNode("Dave", nil)
	if err != nil {
		t.Fatalf("unable to create dave's node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, net.Bob, dave); err != nil {
		t.Fatalf("unable to connect bob to dave: %v", err)
	}

	daveSub := subscribeGraphNotifications(t, ctxb, dave)
	defer close(daveSub.quit)

	// We should expect to see a channel update with the default routing
	// policy, except that it should indicate the channel is disabled.
	expectedPolicy := &lnrpc.RoutingPolicy{
		FeeBaseMsat:      int64(defaultBitcoinBaseFeeMSat),
		FeeRateMilliMsat: int64(defaultBitcoinFeeRate),
		TimeLockDelta:    defaultBitcoinTimeLockDelta,
		MinHtlc:          1000, // default value
		Disabled:         true,
	}

	// Let Carol go offline. Since Eve has an inactive timeout of 2s, we
	// expect her to send an update disabling the channel.
	restartCarol, err := net.SuspendNode(carol)
	if err != nil {
		t.Fatalf("unable to suspend carol: %v", err)
	}
	waitForChannelUpdate(
		t, daveSub,
		[]expectedChanUpdate{
			{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
		},
	)

	// We restart Carol. Since the channel now becomes active again, Eve
	// should send a ChannelUpdate setting the channel no longer disabled.
	if err := restartCarol(); err != nil {
		t.Fatalf("unable to restart carol: %v", err)
	}

	expectedPolicy.Disabled = false
	waitForChannelUpdate(
		t, daveSub,
		[]expectedChanUpdate{
			{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
		},
	)

	// Now we'll test a long disconnection. Disconnect Carol and Eve and
	// ensure they both detect each other as disabled. Their min backoffs
	// are high enough to not interfere with disabling logic.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.DisconnectNodes(ctxt, carol, eve); err != nil {
		t.Fatalf("unable to disconnect Carol from Eve: %v", err)
	}

	// Wait for a disable from both Carol and Eve to come through.
	expectedPolicy.Disabled = true
	waitForChannelUpdate(
		t, daveSub,
		[]expectedChanUpdate{
			{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
			{carol.PubKeyStr, expectedPolicy, chanPointEveCarol},
		},
	)

	// Reconnect Carol and Eve, this should cause them to reenable the
	// channel from both ends after a short delay.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.EnsureConnected(ctxt, carol, eve); err != nil {
		t.Fatalf("unable to reconnect Carol to Eve: %v", err)
	}

	expectedPolicy.Disabled = false
	waitForChannelUpdate(
		t, daveSub,
		[]expectedChanUpdate{
			{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
			{carol.PubKeyStr, expectedPolicy, chanPointEveCarol},
		},
	)

	// Now we'll test a short disconnection. Disconnect Carol and Eve, then
	// reconnect them after one second so that their scheduled disables are
	// aborted. One second is twice the status sample interval, so this
	// should allow for the disconnect to be detected, but still leave time
	// to cancel the announcement before the 3 second inactive timeout is
	// hit.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.DisconnectNodes(ctxt, carol, eve); err != nil {
		t.Fatalf("unable to disconnect Carol from Eve: %v", err)
	}
	time.Sleep(time.Second)
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	if err := net.EnsureConnected(ctxt, eve, carol); err != nil {
		t.Fatalf("unable to reconnect Carol to Eve: %v", err)
	}

	// Since the disable should have been canceled by both Carol and Eve, we
	// expect no channel updates to appear on the network.
	assertNoChannelUpdates(t, daveSub, 4*time.Second)

	// Close Alice's channels with Bob and Carol cooperatively and
	// unilaterally respectively.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	_, _, err = net.CloseChannel(ctxt, net.Alice, chanPointAliceBob, false)
	if err != nil {
		t.Fatalf("unable to close channel: %v", err)
	}

	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	_, _, err = net.CloseChannel(ctxt, net.Alice, chanPointAliceCarol, true)
	if err != nil {
		t.Fatalf("unable to close channel: %v", err)
	}

	// Now that the channel close processes have been started, we should
	// receive an update marking each as disabled.
	expectedPolicy.Disabled = true
	waitForChannelUpdate(
		t, daveSub,
		[]expectedChanUpdate{
			{net.Alice.PubKeyStr, expectedPolicy, chanPointAliceBob},
			{net.Alice.PubKeyStr, expectedPolicy, chanPointAliceCarol},
		},
	)

	// Finally, close the channels by mining the closing transactions.
	mineBlocks(t, net, 1, 2)

	// Also do this check for Eve's channel with Carol.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	_, _, err = net.CloseChannel(ctxt, eve, chanPointEveCarol, false)
	if err != nil {
		t.Fatalf("unable to close channel: %v", err)
	}

	waitForChannelUpdate(
		t, daveSub,
		[]expectedChanUpdate{
			{eve.PubKeyStr, expectedPolicy, chanPointEveCarol},
		},
	)
	mineBlocks(t, net, 1, 1)
}

// testAbandonChannel abandones a channel and asserts that it is no
// longer open and not in one of the pending closure states. It also
// verifies that the abandoned channel is reported as closed with close
// type 'abandoned'.
func testAbandonChannel(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First establish a channel between Alice and Bob.
	channelParam := lntest.OpenChannelParams{
		Amt:     maxBtcFundingAmount,
		PushAmt: btcutil.Amount(100000),
	}

	ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, net.Alice, net.Bob, channelParam)

	// Wait for channel to be confirmed open.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err := net.Alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("alice didn't report channel: %v", err)
	}
	err = net.Bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("bob didn't report channel: %v", err)
	}

	// Send request to abandon channel.
	abandonChannelRequest := &lnrpc.AbandonChannelRequest{
		ChannelPoint: chanPoint,
	}

	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	_, err = net.Alice.AbandonChannel(ctxt, abandonChannelRequest)
	if err != nil {
		t.Fatalf("unable to abandon channel: %v", err)
	}

	// Assert that channel in no longer open.
	listReq := &lnrpc.ListChannelsRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceChannelList, err := net.Alice.ListChannels(ctxt, listReq)
	if err != nil {
		t.Fatalf("unable to list channels: %v", err)
	}
	if len(aliceChannelList.Channels) != 0 {
		t.Fatalf("alice should only have no channels open, "+
			"instead she has %v",
			len(aliceChannelList.Channels))
	}

	// Assert that channel is not pending closure.
	pendingReq := &lnrpc.PendingChannelsRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	alicePendingList, err := net.Alice.PendingChannels(ctxt, pendingReq)
	if err != nil {
		t.Fatalf("unable to list pending channels: %v", err)
	}
	if len(alicePendingList.PendingClosingChannels) != 0 {
		t.Fatalf("alice should only have no pending closing channels, "+
			"instead she has %v",
			len(alicePendingList.PendingClosingChannels))
	}
	if len(alicePendingList.PendingForceClosingChannels) != 0 {
		t.Fatalf("alice should only have no pending force closing "+
			"channels instead she has %v",
			len(alicePendingList.PendingForceClosingChannels))
	}
	if len(alicePendingList.WaitingCloseChannels) != 0 {
		t.Fatalf("alice should only have no waiting close "+
			"channels instead she has %v",
			len(alicePendingList.WaitingCloseChannels))
	}

	// Assert that channel is listed as abandoned.
	closedReq := &lnrpc.ClosedChannelsRequest{
		Abandoned: true,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	aliceClosedList, err := net.Alice.ClosedChannels(ctxt, closedReq)
	if err != nil {
		t.Fatalf("unable to list closed channels: %v", err)
	}
	if len(aliceClosedList.Channels) != 1 {
		t.Fatalf("alice should only have a single abandoned channel, "+
			"instead she has %v",
			len(aliceClosedList.Channels))
	}

	// Now that we're done with the test, the channel can be closed. This is
	// necessary to avoid unexpected outcomes of other tests that use Bob's
	// lnd instance.
	ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
	closeChannelAndAssert(ctxt, t, net, net.Bob, chanPoint, true)

	// Cleanup by mining the force close and sweep transaction.
	cleanupForceClose(t, net, net.Bob, chanPoint)
}

// testSweepAllCoins tests that we're able to properly sweep all coins from the
// wallet into a single target address at the specified fee rate.
func testSweepAllCoins(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll make a new node, ainz who'll we'll use to test wallet
	// sweeping.
	ainz, err := net.NewNode("Ainz", nil)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, ainz)

	// Next, we'll give Ainz exactly 2 utxos of 1 BTC each, with one of
	// them being p2wkh and the other being a n2wpkh address.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, ainz)
	if err != nil {
		t.Fatalf("unable to send coins to eve: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoinsNP2WKH(ctxt, btcutil.SatoshiPerBitcoin, ainz)
	if err != nil {
		t.Fatalf("unable to send coins to eve: %v", err)
	}

	// Ensure that we can't send coins to our own Pubkey.
	info, err := ainz.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
	if err != nil {
		t.Fatalf("unable to get node info: %v", err)
	}

	sweepReq := &lnrpc.SendCoinsRequest{
		Addr:    info.IdentityPubkey,
		SendAll: true,
	}
	_, err = ainz.SendCoins(ctxt, sweepReq)
	if err == nil {
		t.Fatalf("expected SendCoins to users own pubkey to fail")
	}

	// Ensure that we can't send coins to another users Pubkey.
	info, err = net.Alice.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
	if err != nil {
		t.Fatalf("unable to get node info: %v", err)
	}

	sweepReq = &lnrpc.SendCoinsRequest{
		Addr:    info.IdentityPubkey,
		SendAll: true,
	}
	_, err = ainz.SendCoins(ctxt, sweepReq)
	if err == nil {
		t.Fatalf("expected SendCoins to Alices pubkey to fail")
	}

	// With the two coins above mined, we'll now instruct ainz to sweep all
	// the coins to an external address not under its control.
	// We will first attempt to send the coins to addresses that are not
	// compatible with the current network. This is to test that the wallet
	// will prevent any onchain transactions to addresses that are not on the
	// same network as the user.

	// Send coins to a testnet3 address.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	sweepReq = &lnrpc.SendCoinsRequest{
		Addr:    "tb1qfc8fusa98jx8uvnhzavxccqlzvg749tvjw82tg",
		SendAll: true,
	}
	_, err = ainz.SendCoins(ctxt, sweepReq)
	if err == nil {
		t.Fatalf("expected SendCoins to different network to fail")
	}

	// Send coins to a mainnet address.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	sweepReq = &lnrpc.SendCoinsRequest{
		Addr:    "1MPaXKp5HhsLNjVSqaL7fChE3TVyrTMRT3",
		SendAll: true,
	}
	_, err = ainz.SendCoins(ctxt, sweepReq)
	if err == nil {
		t.Fatalf("expected SendCoins to different network to fail")
	}

	// Send coins to a compatible address.
	minerAddr, err := net.Miner.NewAddress()
	if err != nil {
		t.Fatalf("unable to create new miner addr: %v", err)
	}

	sweepReq = &lnrpc.SendCoinsRequest{
		Addr:    minerAddr.String(),
		SendAll: true,
	}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	_, err = ainz.SendCoins(ctxt, sweepReq)
	if err != nil {
		t.Fatalf("unable to sweep coins: %v", err)
	}

	// We'll mine a block which should include the sweep transaction we
	// generated above.
	block := mineBlocks(t, net, 1, 1)[0]

	// The sweep transaction should have exactly two inputs as we only had
	// two UTXOs in the wallet.
	sweepTx := block.Transactions[1]
	if len(sweepTx.TxIn) != 2 {
		t.Fatalf("expected 2 inputs instead have %v", len(sweepTx.TxIn))
	}

	// Finally, Ainz should now have no coins at all within his wallet.
	balReq := &lnrpc.WalletBalanceRequest{}
	resp, err := ainz.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get ainz's balance: %v", err)
	}
	switch {
	case resp.ConfirmedBalance != 0:
		t.Fatalf("expected no confirmed balance, instead have %v",
			resp.ConfirmedBalance)

	case resp.UnconfirmedBalance != 0:
		t.Fatalf("expected no unconfirmed balance, instead have %v",
			resp.UnconfirmedBalance)
	}

	// If we try again, but this time specifying an amount, then the call
	// should fail.
	sweepReq.Amount = 10000
	_, err = ainz.SendCoins(ctxt, sweepReq)
	if err == nil {
		t.Fatalf("sweep attempt should fail")
	}
}

// testChannelBackupUpdates tests that both the streaming channel update RPC,
// and the on-disk channels.backup are updated each time a channel is
// opened/closed.
func testChannelBackupUpdates(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll make a temp directory that we'll use to store our
	// backup file, so we can check in on it during the test easily.
	backupDir, err := ioutil.TempDir("", "")
	if err != nil {
		t.Fatalf("unable to create backup dir: %v", err)
	}
	defer os.RemoveAll(backupDir)

	// First, we'll create a new node, Carol. We'll also create a temporary
	// file that Carol will use to store her channel backups.
	backupFilePath := filepath.Join(
		backupDir, chanbackup.DefaultBackupFileName,
	)
	carolArgs := fmt.Sprintf("--backupfilepath=%v", backupFilePath)
	carol, err := net.NewNode("carol", []string{carolArgs})
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// Next, we'll register for streaming notifications for changes to the
	// backup file.
	backupStream, err := carol.SubscribeChannelBackups(
		ctxb, &lnrpc.ChannelBackupSubscription{},
	)
	if err != nil {
		t.Fatalf("unable to create backup stream: %v", err)
	}

	// We'll use this goroutine to proxy any updates to a channel we can
	// easily use below.
	var wg sync.WaitGroup
	backupUpdates := make(chan *lnrpc.ChanBackupSnapshot)
	streamErr := make(chan error)
	streamQuit := make(chan struct{})

	wg.Add(1)
	go func() {
		defer wg.Done()
		for {
			snapshot, err := backupStream.Recv()
			if err != nil {
				select {
				case streamErr <- err:
				case <-streamQuit:
					return
				}
			}

			select {
			case backupUpdates <- snapshot:
			case <-streamQuit:
				return
			}
		}
	}()
	defer close(streamQuit)

	// With Carol up, we'll now connect her to Alice, and open a channel
	// between them.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
		t.Fatalf("unable to connect carol to alice: %v", err)
	}

	// Next, we'll open two channels between Alice and Carol back to back.
	var chanPoints []*lnrpc.ChannelPoint
	numChans := 2
	chanAmt := btcutil.Amount(1000000)
	for i := 0; i < numChans; i++ {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		chanPoint := openChannelAndAssert(
			ctxt, t, net, net.Alice, carol,
			lntest.OpenChannelParams{
				Amt: chanAmt,
			},
		)

		chanPoints = append(chanPoints, chanPoint)
	}

	// Using this helper function, we'll maintain a pointer to the latest
	// channel backup so we can compare it to the on disk state.
	var currentBackup *lnrpc.ChanBackupSnapshot
	assertBackupNtfns := func(numNtfns int) {
		for i := 0; i < numNtfns; i++ {
			select {
			case err := <-streamErr:
				t.Fatalf("error with backup stream: %v", err)

			case currentBackup = <-backupUpdates:

			case <-time.After(time.Second * 5):
				t.Fatalf("didn't receive channel backup "+
					"notification %v", i+1)
			}
		}
	}

	// assertBackupFileState is a helper function that we'll use to compare
	// the on disk back up file to our currentBackup pointer above.
	assertBackupFileState := func() {
		err := lntest.WaitNoError(func() error {
			packedBackup, err := ioutil.ReadFile(backupFilePath)
			if err != nil {
				return fmt.Errorf("unable to read backup "+
					"file: %v", err)
			}

			// As each back up file will be encrypted with a fresh
			// nonce, we can't compare them directly, so instead
			// we'll compare the length which is a proxy for the
			// number of channels that the multi-backup contains.
			rawBackup := currentBackup.MultiChanBackup.MultiChanBackup
			if len(rawBackup) != len(packedBackup) {
				return fmt.Errorf("backup files don't match: "+
					"expected %x got %x", rawBackup, packedBackup)
			}

			// Additionally, we'll assert that both backups up
			// returned are valid.
			for i, backup := range [][]byte{rawBackup, packedBackup} {
				snapshot := &lnrpc.ChanBackupSnapshot{
					MultiChanBackup: &lnrpc.MultiChanBackup{
						MultiChanBackup: backup,
					},
				}
				_, err := carol.VerifyChanBackup(ctxb, snapshot)
				if err != nil {
					return fmt.Errorf("unable to verify "+
						"backup #%d: %v", i, err)
				}
			}

			return nil
		}, time.Second*15)
		if err != nil {
			t.Fatalf("backup state invalid: %v", err)
		}
	}

	// As these two channels were just open, we should've got two
	// notifications for channel backups.
	assertBackupNtfns(2)

	// The on disk file should also exactly match the latest backup that we
	// have.
	assertBackupFileState()

	// Next, we'll close the channels one by one. After each channel
	// closure, we should get a notification, and the on-disk state should
	// match this state as well.
	for i := 0; i < numChans; i++ {
		// To ensure force closes also trigger an update, we'll force
		// close half of the channels.
		forceClose := i%2 == 0

		chanPoint := chanPoints[i]

		ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
		closeChannelAndAssert(
			ctxt, t, net, net.Alice, chanPoint, forceClose,
		)

		// We should get a single notification after closing, and the
		// on-disk state should match this latest notifications.
		assertBackupNtfns(1)
		assertBackupFileState()

		// If we force closed the channel, then we'll mine enough
		// blocks to ensure all outputs have been swept.
		if forceClose {
			cleanupForceClose(t, net, net.Alice, chanPoint)
		}
	}
}

// testExportChannelBackup tests that we're able to properly export either a
// targeted channel's backup, or export backups of all the currents open
// channels.
func testExportChannelBackup(net *lntest.NetworkHarness, t *harnessTest) {
	ctxb := context.Background()

	// First, we'll create our primary test node: Carol. We'll use Carol to
	// open channels and also export backups that we'll examine throughout
	// the test.
	carol, err := net.NewNode("carol", nil)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// With Carol up, we'll now connect her to Alice, and open a channel
	// between them.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	if err := net.ConnectNodes(ctxt, carol, net.Alice); err != nil {
		t.Fatalf("unable to connect carol to alice: %v", err)
	}

	// Next, we'll open two channels between Alice and Carol back to back.
	var chanPoints []*lnrpc.ChannelPoint
	numChans := 2
	chanAmt := btcutil.Amount(1000000)
	for i := 0; i < numChans; i++ {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		chanPoint := openChannelAndAssert(
			ctxt, t, net, net.Alice, carol,
			lntest.OpenChannelParams{
				Amt: chanAmt,
			},
		)

		chanPoints = append(chanPoints, chanPoint)
	}

	// Now that the channels are open, we should be able to fetch the
	// backups of each of the channels.
	for _, chanPoint := range chanPoints {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		req := &lnrpc.ExportChannelBackupRequest{
			ChanPoint: chanPoint,
		}
		chanBackup, err := carol.ExportChannelBackup(ctxt, req)
		if err != nil {
			t.Fatalf("unable to fetch backup for channel %v: %v",
				chanPoint, err)
		}

		// The returned backup should be full populated. Since it's
		// encrypted, we can't assert any more than that atm.
		if len(chanBackup.ChanBackup) == 0 {
			t.Fatalf("obtained empty backup for channel: %v", chanPoint)
		}

		// The specified chanPoint in the response should match our
		// requested chanPoint.
		if chanBackup.ChanPoint.String() != chanPoint.String() {
			t.Fatalf("chanPoint mismatched: expected %v, got %v",
				chanPoint.String(),
				chanBackup.ChanPoint.String())
		}
	}

	// Before we proceed, we'll make two utility methods we'll use below
	// for our primary assertions.
	assertNumSingleBackups := func(numSingles int) {
		err := lntest.WaitNoError(func() error {
			ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
			req := &lnrpc.ChanBackupExportRequest{}
			chanSnapshot, err := carol.ExportAllChannelBackups(
				ctxt, req,
			)
			if err != nil {
				return fmt.Errorf("unable to export channel "+
					"backup: %v", err)
			}

			if chanSnapshot.SingleChanBackups == nil {
				return fmt.Errorf("single chan backups not " +
					"populated")
			}

			backups := chanSnapshot.SingleChanBackups.ChanBackups
			if len(backups) != numSingles {
				return fmt.Errorf("expected %v singles, "+
					"got %v", len(backups), numSingles)
			}

			return nil
		}, defaultTimeout)
		if err != nil {
			t.Fatalf(err.Error())
		}
	}
	assertMultiBackupFound := func() func(bool, map[wire.OutPoint]struct{}) {
		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		req := &lnrpc.ChanBackupExportRequest{}
		chanSnapshot, err := carol.ExportAllChannelBackups(ctxt, req)
		if err != nil {
			t.Fatalf("unable to export channel backup: %v", err)
		}

		return func(found bool, chanPoints map[wire.OutPoint]struct{}) {
			switch {
			case found && chanSnapshot.MultiChanBackup == nil:
				t.Fatalf("multi-backup not present")

			case !found && chanSnapshot.MultiChanBackup != nil &&
				(len(chanSnapshot.MultiChanBackup.MultiChanBackup) !=
					chanbackup.NilMultiSizePacked):

				t.Fatalf("found multi-backup when non should " +
					"be found")
			}

			if !found {
				return
			}

			backedUpChans := chanSnapshot.MultiChanBackup.ChanPoints
			if len(chanPoints) != len(backedUpChans) {
				t.Fatalf("expected %v chans got %v", len(chanPoints),
					len(backedUpChans))
			}

			for _, chanPoint := range backedUpChans {
				wirePoint := rpcPointToWirePoint(t, chanPoint)
				if _, ok := chanPoints[wirePoint]; !ok {
					t.Fatalf("unexpected backup: %v", wirePoint)
				}
			}
		}
	}

	chans := make(map[wire.OutPoint]struct{})
	for _, chanPoint := range chanPoints {
		chans[rpcPointToWirePoint(t, chanPoint)] = struct{}{}
	}

	// We should have exactly two single channel backups contained, and we
	// should also have a multi-channel backup.
	assertNumSingleBackups(2)
	assertMultiBackupFound()(true, chans)

	// We'll now close each channel on by one. After we close a channel, we
	// shouldn't be able to find that channel as a backup still. We should
	// also have one less single written to disk.
	for i, chanPoint := range chanPoints {
		ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
		closeChannelAndAssert(
			ctxt, t, net, net.Alice, chanPoint, false,
		)

		assertNumSingleBackups(len(chanPoints) - i - 1)

		delete(chans, rpcPointToWirePoint(t, chanPoint))
		assertMultiBackupFound()(true, chans)
	}

	// At this point we shouldn't have any single or multi-chan backups at
	// all.
	assertNumSingleBackups(0)
	assertMultiBackupFound()(false, nil)
}

// nodeRestorer is a function closure that allows each chanRestoreTestCase to
// control exactly *how* the prior node is restored. This might be using an
// backup obtained over RPC, or the file system, etc.
type nodeRestorer func() (*lntest.HarnessNode, error)

// chanRestoreTestCase describes a test case for an end to end SCB restoration
// work flow. One node will start from scratch using an existing SCB. At the
// end of the est, both nodes should be made whole via the DLP protocol.
type chanRestoreTestCase struct {
	// name is the name of the target test case.
	name string

	// channelsUpdated is false then this means that no updates
	// have taken place within the channel before restore.
	// Otherwise, HTLCs will be settled between the two parties
	// before restoration modifying the balance beyond the initial
	// allocation.
	channelsUpdated bool

	// initiator signals if Dave should be the one that opens the
	// channel to Alice, or if it should be the other way around.
	initiator bool

	// private signals if the channel from Dave to Carol should be
	// private or not.
	private bool

	// restoreMethod takes an old node, then returns a function
	// closure that'll return the same node, but with its state
	// restored via a custom method. We use this to abstract away
	// _how_ a node is restored from our assertions once the node
	// has been fully restored itself.
	restoreMethod func(oldNode *lntest.HarnessNode,
		backupFilePath string,
		mnemonic []string) (nodeRestorer, error)
}

// testChanRestoreScenario executes a chanRestoreTestCase from end to end,
// ensuring that after Dave restores his channel state according to the
// testCase, the DLP protocol is executed properly and both nodes are made
// whole.
func testChanRestoreScenario(t *harnessTest, net *lntest.NetworkHarness,
	testCase *chanRestoreTestCase, password []byte) {

	const (
		chanAmt = btcutil.Amount(10000000)
		pushAmt = btcutil.Amount(5000000)
	)

	ctxb := context.Background()

	// First, we'll create a brand new node we'll use within the test. If
	// we have a custom backup file specified, then we'll also create that
	// for use.
	dave, mnemonic, err := net.NewNodeWithSeed(
		"dave", nil, password,
	)
	if err != nil {
		t.Fatalf("unable to create new node: %v", err)
	}
	defer shutdownAndAssert(net, t, dave)
	carol, err := net.NewNode("carol", nil)
	if err != nil {
		t.Fatalf("unable to make new node: %v", err)
	}
	defer shutdownAndAssert(net, t, carol)

	// Now that our new node is created, we'll give him some coins it can
	// use to open channels with Carol.
	ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
	err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
	if err != nil {
		t.Fatalf("unable to send coins to dave: %v", err)
	}

	var from, to *lntest.HarnessNode
	if testCase.initiator {
		from, to = dave, carol
	} else {
		from, to = carol, dave
	}

	// Next, we'll connect Dave to Carol, and open a new channel to her
	// with a portion pushed.
	if err := net.ConnectNodes(ctxt, dave, carol); err != nil {
		t.Fatalf("unable to connect dave to carol: %v", err)
	}
	ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
	chanPoint := openChannelAndAssert(
		ctxt, t, net, from, to,
		lntest.OpenChannelParams{
			Amt:     chanAmt,
			PushAmt: pushAmt,
			Private: testCase.private,
		},
	)

	// Wait for both sides to see the opened channel.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = dave.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("dave didn't report channel: %v", err)
	}
	err = carol.WaitForNetworkChannelOpen(ctxt, chanPoint)
	if err != nil {
		t.Fatalf("carol didn't report channel: %v", err)
	}

	// If both parties should start with existing channel updates, then
	// we'll send+settle an HTLC between 'from' and 'to' now.
	if testCase.channelsUpdated {
		invoice := &lnrpc.Invoice{
			Memo:  "testing",
			Value: 10000,
		}
		invoiceResp, err := to.AddInvoice(ctxt, invoice)
		if err != nil {
			t.Fatalf("unable to add invoice: %v", err)
		}

		ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
		err = completePaymentRequests(
			ctxt, from, []string{invoiceResp.PaymentRequest},
			true,
		)
		if err != nil {
			t.Fatalf("unable to complete payments: %v", err)
		}
	}

	// Before we start the recovery, we'll record the balances of both
	// Carol and Dave to ensure they both sweep their coins at the end.
	balReq := &lnrpc.WalletBalanceRequest{}
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	carolBalResp, err := carol.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	carolStartingBalance := carolBalResp.ConfirmedBalance

	daveBalance, err := dave.WalletBalance(ctxt, balReq)
	if err != nil {
		t.Fatalf("unable to get carol's balance: %v", err)
	}
	daveStartingBalance := daveBalance.ConfirmedBalance

	// At this point, we'll now execute the restore method to give us the
	// new node we should attempt our assertions against.
	backupFilePath := dave.ChanBackupPath()
	restoredNodeFunc, err := testCase.restoreMethod(
		dave, backupFilePath, mnemonic,
	)
	if err != nil {
		t.Fatalf("unable to prep node restoration: %v", err)
	}

	// TODO(roasbeef): assert recovery state in channel

	// Now that we're able to make our restored now, we'll shutdown the old
	// Dave node as we'll be storing it shortly below.
	shutdownAndAssert(net, t, dave)

	// Next, we'll make a new Dave and start the bulk of our recovery
	// workflow.
	dave, err = restoredNodeFunc()
	if err != nil {
		t.Fatalf("unable to restore node: %v", err)
	}

	// Now that we have our new node up, we expect that it'll re-connect to
	// Carol automatically based on the restored backup.
	ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
	err = net.EnsureConnected(ctxt, dave, carol)
	if err != nil {
		t.Fatalf("node didn't connect after recovery: %v", err)
	}

	// TODO(roasbeef): move dave restarts?

	// Now we'll assert that both sides properly execute the DLP protocol.
	// We grab their balances now to ensure that they're made whole at the
	// end of the protocol.
	assertDLPExecuted(
		net, t, carol, carolStartingBalance, dave, daveStartingBalance,
	)
}

// chanRestoreViaRPC is a helper test method that returns a nodeRestorer
// instance which will restore the target node from a password+seed, then
// trigger a SCB restore using the RPC interface.
func chanRestoreViaRPC(net *lntest.NetworkHarness,
	password []byte, mnemonic []string,
	multi []byte) (nodeRestorer, error) {

	backup := &lnrpc.RestoreChanBackupRequest_MultiChanBackup{
		MultiChanBackup: multi,
	}

	ctxb := context.Background()

	return func() (*lntest.HarnessNode, error) {
		newNode, err := net.RestoreNodeWithSeed(
			"dave", nil, password, mnemonic, 1000, nil,
		)
		if err != nil {
			return nil, fmt.Errorf("unable to "+
				"restore node: %v", err)
		}

		_, err = newNode.RestoreChannelBackups(
			ctxb, &lnrpc.RestoreChanBackupRequest{
				Backup: backup,
			},
		)
		if err != nil {
			return nil, fmt.Errorf("unable "+
				"to restore backups: %v", err)
		}

		return newNode, nil
	}, nil
}

// testChannelBackupRestore tests that we're able to recover from, and initiate
// the DLP protocol via: the RPC restore command, restoring on unlock, and
// restoring from initial wallet creation. We'll also alternate between
// restoring form the on disk file, and restoring from the exported RPC command
// as well.
func testChannelBackupRestore(net *lntest.NetworkHarness, t *harnessTest) {
	password := []byte("El Psy Kongroo")

	ctxb := context.Background()

	var testCases = []chanRestoreTestCase{
		// Restore from backups obtained via the RPC interface. Dave
		// was the initiator, of the non-advertised channel.
		{
			name:            "restore from RPC backup",
			channelsUpdated: false,
			initiator:       true,
			private:         false,
			restoreMethod: func(oldNode *lntest.HarnessNode,
				backupFilePath string,
				mnemonic []string) (nodeRestorer, error) {

				// For this restoration method, we'll grab the
				// current multi-channel backup from the old
				// node, and use it to restore a new node
				// within the closure.
				req := &lnrpc.ChanBackupExportRequest{}
				chanBackup, err := oldNode.ExportAllChannelBackups(
					ctxb, req,
				)
				if err != nil {
					return nil, fmt.Errorf("unable to obtain "+
						"channel backup: %v", err)
				}

				multi := chanBackup.MultiChanBackup.MultiChanBackup

				// In our nodeRestorer function, we'll restore
				// the node from seed, then manually recover
				// the channel backup.
				return chanRestoreViaRPC(
					net, password, mnemonic, multi,
				)
			},
		},

		// Restore the backup from the on-disk file, using the RPC
		// interface.
		{
			name:      "restore from backup file",
			initiator: true,
			private:   false,
			restoreMethod: func(oldNode *lntest.HarnessNode,
				backupFilePath string,
				mnemonic []string) (nodeRestorer, error) {

				// Read the entire Multi backup stored within
				// this node's chaannels.backup file.
				multi, err := ioutil.ReadFile(backupFilePath)
				if err != nil {
					return nil, err
				}

				// Now that we have Dave's backup file, we'll
				// create a new nodeRestorer that will restore
				// using the on-disk channels.backup.
				return chanRestoreViaRPC(
					net, password, mnemonic, multi,
				)
			},
		},

		// Restore the backup as part of node initialization with the
		// prior mnemonic and new backup seed.
		{
			name:      "restore during creation",
			initiator: true,
			private:   false,
			restoreMethod: func(oldNode *lntest.HarnessNode,
				backupFilePath string,
				mnemonic []string) (nodeRestorer, error) {

				// First, fetch the current backup state as is,
				// to obtain our latest Multi.
				chanBackup, err := oldNode.ExportAllChannelBackups(
					ctxb, &lnrpc.ChanBackupExportRequest{},
				)
				if err != nil {
					return nil, fmt.Errorf("unable to obtain "+
						"channel backup: %v", err)
				}
				backupSnapshot := &lnrpc.ChanBackupSnapshot{
					MultiChanBackup: chanBackup.MultiChanBackup,
				}

				// Create a new nodeRestorer that will restore
				// the node using the Multi backup we just
				// obtained above.
				return func() (*lntest.HarnessNode, error) {
					return net.RestoreNodeWithSeed(
						"dave", nil, password,
						mnemonic, 1000, backupSnapshot,
					)
				}, nil
			},
		},

		// Restore the backup once the node has already been
		// re-created, using the Unlock call.
		{
			name:      "restore during unlock",
			initiator: true,
			private:   false,
			restoreMethod: func(oldNode *lntest.HarnessNode,
				backupFilePath string,
				mnemonic []string) (nodeRestorer, error) {

				// First, fetch the current backup state as is,
				// to obtain our latest Multi.
				chanBackup, err := oldNode.ExportAllChannelBackups(
					ctxb, &lnrpc.ChanBackupExportRequest{},
				)
				if err != nil {
					return nil, fmt.Errorf("unable to obtain "+
						"channel backup: %v", err)
				}
				backupSnapshot := &lnrpc.ChanBackupSnapshot{
					MultiChanBackup: chanBackup.MultiChanBackup,
				}

				// Create a new nodeRestorer that will restore
				// the node with its seed, but no channel
				// backup, shutdown this initialized node, then
				// restart it again using Unlock.
				return func() (*lntest.HarnessNode, error) {
					newNode, err := net.RestoreNodeWithSeed(
						"dave", nil, password,
						mnemonic, 1000, nil,
					)
					if err != nil {
						return nil, err
					}

					err = net.RestartNode(
						newNode, nil, backupSnapshot,
					)
					if err != nil {
						return nil, err
					}

					return newNode, nil
				}, nil
			},
		},
	}

	// TODO(roasbeef): online vs offline close?

	// TODO(roasbeef): need to re-trigger the on-disk file once the node
	// ann is updated?

	for _, testCase := range testCases {
		success := t.t.Run(testCase.name, func(t *testing.T) {
			h := newHarnessTest(t)
			testChanRestoreScenario(h, net, &testCase, password)
		})
		if !success {
			break
		}
	}
}

type testCase struct {
	name string
	test func(net *lntest.NetworkHarness, t *harnessTest)
}

var testsCases = []*testCase{
	{
		name: "sweep coins",
		test: testSweepAllCoins,
	},
	{
		name: "onchain fund recovery",
		test: testOnchainFundRecovery,
	},
	{
		name: "basic funding flow",
		test: testBasicChannelFunding,
	},
	{
		name: "unconfirmed channel funding",
		test: testUnconfirmedChannelFunding,
	},
	{
		name: "update channel policy",
		test: testUpdateChannelPolicy,
	},
	{
		name: "open channel reorg test",
		test: testOpenChannelAfterReorg,
	},
	{
		name: "disconnecting target peer",
		test: testDisconnectingTargetPeer,
	},
	{
		name: "graph topology notifications",
		test: testGraphTopologyNotifications,
	},
	{
		name: "funding flow persistence",
		test: testChannelFundingPersistence,
	},
	{
		name: "channel force closure",
		test: testChannelForceClosure,
	},
	{
		name: "channel balance",
		test: testChannelBalance,
	},
	{
		name: "channel unsettled balance",
		test: testChannelUnsettledBalance,
	},
	{
		name: "single hop invoice",
		test: testSingleHopInvoice,
	},
	{
		name: "sphinx replay persistence",
		test: testSphinxReplayPersistence,
	},
	{
		name: "list outgoing payments",
		test: testListPayments,
	},
	{
		name: "max pending channel",
		test: testMaxPendingChannels,
	},
	{
		name: "multi-hop payments",
		test: testMultiHopPayments,
	},
	{
		name: "single-hop send to route",
		test: testSingleHopSendToRoute,
	},
	{
		name: "multi-hop send to route",
		test: testMultiHopSendToRoute,
	},
	{
		name: "send to route error propagation",
		test: testSendToRouteErrorPropagation,
	},
	{
		name: "unannounced channels",
		test: testUnannouncedChannels,
	},
	{
		name: "private channels",
		test: testPrivateChannels,
	},
	{
		name: "invoice routing hints",
		test: testInvoiceRoutingHints,
	},
	{
		name: "multi-hop payments over private channels",
		test: testMultiHopOverPrivateChannels,
	},
	{
		name: "multiple channel creation and update subscription",
		test: testBasicChannelCreationAndUpdates,
	},
	{
		name: "invoice update subscription",
		test: testInvoiceSubscriptions,
	},
	{
		name: "multi-hop htlc error propagation",
		test: testHtlcErrorPropagation,
	},
	// TODO(roasbeef): multi-path integration test
	{
		name: "node announcement",
		test: testNodeAnnouncement,
	},
	{
		name: "node sign verify",
		test: testNodeSignVerify,
	},
	{
		name: "async payments benchmark",
		test: testAsyncPayments,
	},
	{
		name: "async bidirectional payments",
		test: testBidirectionalAsyncPayments,
	},
	{
		// bob: outgoing our commit timeout
		// carol: incoming their commit watch and see timeout
		name: "test multi-hop htlc local force close immediate expiry",
		test: testMultiHopHtlcLocalTimeout,
	},
	{
		// bob: outgoing watch and see, they sweep on chain
		// carol: incoming our commit, know preimage
		name: "test multi-hop htlc receiver chain claim",
		test: testMultiHopReceiverChainClaim,
	},
	{
		// bob: outgoing our commit watch and see timeout
		// carol: incoming their commit watch and see timeout
		name: "test multi-hop local force close on-chain htlc timeout",
		test: testMultiHopLocalForceCloseOnChainHtlcTimeout,
	},
	{
		// bob: outgoing their commit watch and see timeout
		// carol: incoming our commit watch and see timeout
		name: "test multi-hop remote force close on-chain htlc timeout",
		test: testMultiHopRemoteForceCloseOnChainHtlcTimeout,
	},
	{
		// bob: outgoing our commit watch and see, they sweep on chain
		// bob: incoming our commit watch and learn preimage
		// carol: incoming their commit know preimage
		name: "test multi-hop htlc local chain claim",
		test: testMultiHopHtlcLocalChainClaim,
	},
	{
		// bob: outgoing their commit watch and see, they sweep on chain
		// bob: incoming their commit watch and learn preimage
		// carol: incoming our commit know preimage
		name: "test multi-hop htlc remote chain claim",
		test: testMultiHopHtlcRemoteChainClaim,
	},
	{
		name: "switch circuit persistence",
		test: testSwitchCircuitPersistence,
	},
	{
		name: "switch offline delivery",
		test: testSwitchOfflineDelivery,
	},
	{
		name: "switch offline delivery persistence",
		test: testSwitchOfflineDeliveryPersistence,
	},
	{
		name: "switch offline delivery outgoing offline",
		test: testSwitchOfflineDeliveryOutgoingOffline,
	},
	{
		// TODO(roasbeef): test always needs to be last as Bob's state
		// is borked since we trick him into attempting to cheat Alice?
		name: "revoked uncooperative close retribution",
		test: testRevokedCloseRetribution,
	},
	{
		name: "failing link",
		test: testFailingChannel,
	},
	{
		name: "garbage collect link nodes",
		test: testGarbageCollectLinkNodes,
	},
	{
		name: "abandonchannel",
		test: testAbandonChannel,
	},
	{
		name: "revoked uncooperative close retribution zero value remote output",
		test: testRevokedCloseRetributionZeroValueRemoteOutput,
	},
	{
		name: "revoked uncooperative close retribution remote hodl",
		test: testRevokedCloseRetributionRemoteHodl,
	},
	{
		name: "data loss protection",
		test: testDataLossProtection,
	},
	{
		name: "query routes",
		test: testQueryRoutes,
	},
	{
		name: "route fee cutoff",
		test: testRouteFeeCutoff,
	},
	{
		name: "send update disable channel",
		test: testSendUpdateDisableChannel,
	},
	{
		name: "streaming channel backup update",
		test: testChannelBackupUpdates,
	},
	{
		name: "export channel backup",
		test: testExportChannelBackup,
	},
	{
		name: "channel backup restore",
		test: testChannelBackupRestore,
	},
}

// TestLightningNetworkDaemon performs a series of integration tests amongst a
// programmatically driven network of lnd nodes.
func TestLightningNetworkDaemon(t *testing.T) {
	ht := newHarnessTest(t)

	// Start a btcd chain backend.
	chainBackend, cleanUp, err := lntest.NewBtcdBackend()
	if err != nil {
		ht.Fatalf("unable to start btcd: %v", err)
	}
	defer cleanUp()

	// Declare the network harness here to gain access to its
	// 'OnTxAccepted' call back.
	var lndHarness *lntest.NetworkHarness

	// Create an instance of the btcd's rpctest.Harness that will act as
	// the miner for all tests. This will be used to fund the wallets of
	// the nodes within the test network and to drive blockchain related
	// events within the network. Revert the default setting of accepting
	// non-standard transactions on simnet to reject them. Transactions on
	// the lightning network should always be standard to get better
	// guarantees of getting included in to blocks.
	//
	// We will also connect it to our chain backend.
	minerLogDir := "./.minerlogs"
	args := []string{
		"--rejectnonstd",
		"--txindex",
		"--debuglevel=debug",
		"--logdir=" + minerLogDir,
		"--trickleinterval=100ms",
		"--connect=" + chainBackend.P2PAddr(),
	}
	handlers := &rpcclient.NotificationHandlers{
		OnTxAccepted: func(hash *chainhash.Hash, amt btcutil.Amount) {
			lndHarness.OnTxAccepted(hash)
		},
	}

	miner, err := rpctest.New(harnessNetParams, handlers, args)
	if err != nil {
		ht.Fatalf("unable to create mining node: %v", err)
	}
	defer func() {
		miner.TearDown()

		// After shutting down the miner, we'll make a copy of the log
		// file before deleting the temporary log dir.
		logFile := fmt.Sprintf(
			"%s/%s/btcd.log", minerLogDir, harnessNetParams.Name,
		)
		err := lntest.CopyFile("./output_btcd_miner.log", logFile)
		if err != nil {
			fmt.Printf("unable to copy file: %v\n", err)
		}
		if err = os.RemoveAll(minerLogDir); err != nil {
			fmt.Printf("Cannot remove dir %s: %v\n",
				minerLogDir, err)
		}
	}()

	if err := miner.SetUp(true, 50); err != nil {
		ht.Fatalf("unable to set up mining node: %v", err)
	}
	if err := miner.Node.NotifyNewTransactions(false); err != nil {
		ht.Fatalf("unable to request transaction notifications: %v", err)
	}

	// Now we can set up our test harness (LND instance), with the chain
	// backend we just created.
	lndHarness, err = lntest.NewNetworkHarness(miner, chainBackend)
	if err != nil {
		ht.Fatalf("unable to create lightning network harness: %v", err)
	}
	defer lndHarness.TearDownAll()

	// Spawn a new goroutine to watch for any fatal errors that any of the
	// running lnd processes encounter. If an error occurs, then the test
	// case should naturally as a result and we log the server error here to
	// help debug.
	go func() {
		for {
			select {
			case err, more := <-lndHarness.ProcessErrors():
				if !more {
					return
				}
				ht.Logf("lnd finished with error (stderr):\n%v", err)
			}
		}
	}()

	// Next mine enough blocks in order for segwit and the CSV package
	// soft-fork to activate on SimNet.
	numBlocks := chaincfg.SimNetParams.MinerConfirmationWindow * 2
	if _, err := miner.Node.Generate(numBlocks); err != nil {
		ht.Fatalf("unable to generate blocks: %v", err)
	}

	// With the btcd harness created, we can now complete the
	// initialization of the network. args - list of lnd arguments,
	// example: "--debuglevel=debug"
	// TODO(roasbeef): create master balanced channel with all the monies?
	if err = lndHarness.SetUp(nil); err != nil {
		ht.Fatalf("unable to set up test lightning network: %v", err)
	}

	t.Logf("Running %v integration tests", len(testsCases))
	for _, testCase := range testsCases {
		logLine := fmt.Sprintf("STARTING ============ %v ============\n",
			testCase.name)

		err := lndHarness.EnsureConnected(
			context.Background(), lndHarness.Alice, lndHarness.Bob,
		)
		if err != nil {
			t.Fatalf("unable to connect alice to bob: %v", err)
		}

		if err := lndHarness.Alice.AddToLog(logLine); err != nil {
			t.Fatalf("unable to add to log: %v", err)
		}
		if err := lndHarness.Bob.AddToLog(logLine); err != nil {
			t.Fatalf("unable to add to log: %v", err)
		}

		success := t.Run(testCase.name, func(t1 *testing.T) {
			ht := newHarnessTest(t1)
			ht.RunTestCase(testCase, lndHarness)
		})

		// Stop at the first failure. Mimic behavior of original test
		// framework.
		if !success {
			break
		}
	}
}