package htlcswitch import ( "container/list" "errors" "sync" "time" "github.com/lightningnetwork/lnd/lnwire" ) // ErrMailBoxShuttingDown is returned when the mailbox is interrupted by a // shutdown request. var ErrMailBoxShuttingDown = errors.New("mailbox is shutting down") // MailBox is an interface which represents a concurrent-safe, in-order // delivery queue for messages from the network and also from the main switch. // This struct servers as a buffer between incoming messages, and messages to // the handled by the link. Each of the mutating methods within this interface // should be implemented in a non-blocking manner. type MailBox interface { // AddMessage appends a new message to the end of the message queue. AddMessage(msg lnwire.Message) error // AddPacket appends a new message to the end of the packet queue. AddPacket(pkt *htlcPacket) error // HasPacket queries the packets for a circuit key, this is used to drop // packets bound for the switch that already have a queued response. HasPacket(CircuitKey) bool // AckPacket removes a packet from the mailboxes in-memory replay // buffer. This will prevent a packet from being delivered after a link // restarts if the switch has remained online. AckPacket(CircuitKey) // MessageOutBox returns a channel that any new messages ready for // delivery will be sent on. MessageOutBox() chan lnwire.Message // PacketOutBox returns a channel that any new packets ready for // delivery will be sent on. PacketOutBox() chan *htlcPacket // Clears any pending wire messages from the inbox. ResetMessages() error // Reset the packet head to point at the first element in the list. ResetPackets() error // Start starts the mailbox and any goroutines it needs to operate // properly. Start() // Stop signals the mailbox and its goroutines for a graceful shutdown. Stop() } // memoryMailBox is an implementation of the MailBox struct backed by purely // in-memory queues. type memoryMailBox struct { started sync.Once stopped sync.Once wireMessages *list.List wireMtx sync.Mutex wireCond *sync.Cond messageOutbox chan lnwire.Message msgReset chan chan struct{} htlcPkts *list.List pktIndex map[CircuitKey]*list.Element pktHead *list.Element pktMtx sync.Mutex pktCond *sync.Cond pktOutbox chan *htlcPacket pktReset chan chan struct{} wg sync.WaitGroup quit chan struct{} } // newMemoryMailBox creates a new instance of the memoryMailBox. func newMemoryMailBox() *memoryMailBox { box := &memoryMailBox{ wireMessages: list.New(), htlcPkts: list.New(), messageOutbox: make(chan lnwire.Message), pktOutbox: make(chan *htlcPacket), msgReset: make(chan chan struct{}, 1), pktReset: make(chan chan struct{}, 1), pktIndex: make(map[CircuitKey]*list.Element), quit: make(chan struct{}), } box.wireCond = sync.NewCond(&box.wireMtx) box.pktCond = sync.NewCond(&box.pktMtx) return box } // A compile time assertion to ensure that memoryMailBox meets the MailBox // interface. var _ MailBox = (*memoryMailBox)(nil) // courierType is an enum that reflects the distinct types of messages a // MailBox can handle. Each type will be placed in an isolated mail box and // will have a dedicated goroutine for delivering the messages. type courierType uint8 const ( // wireCourier is a type of courier that handles wire messages. wireCourier courierType = iota // pktCourier is a type of courier that handles htlc packets. pktCourier ) // Start starts the mailbox and any goroutines it needs to operate properly. // // NOTE: This method is part of the MailBox interface. func (m *memoryMailBox) Start() { m.started.Do(func() { m.wg.Add(2) go m.mailCourier(wireCourier) go m.mailCourier(pktCourier) }) } // ResetMessages blocks until all buffered wire messages are cleared. func (m *memoryMailBox) ResetMessages() error { msgDone := make(chan struct{}) select { case m.msgReset <- msgDone: return m.signalUntilReset(wireCourier, msgDone) case <-m.quit: return ErrMailBoxShuttingDown } } // ResetPackets blocks until the head of packets buffer is reset, causing the // packets to be redelivered in order. func (m *memoryMailBox) ResetPackets() error { pktDone := make(chan struct{}) select { case m.pktReset <- pktDone: return m.signalUntilReset(pktCourier, pktDone) case <-m.quit: return ErrMailBoxShuttingDown } } // signalUntilReset strobes the condition variable for the specified inbox type // until receiving a response that the mailbox has processed a reset. func (m *memoryMailBox) signalUntilReset(cType courierType, done chan struct{}) error { for { switch cType { case wireCourier: m.wireCond.Signal() case pktCourier: m.pktCond.Signal() } select { case <-time.After(time.Millisecond): continue case <-done: return nil case <-m.quit: return ErrMailBoxShuttingDown } } } // AckPacket removes the packet identified by it's incoming circuit key from the // queue of packets to be delivered. // // NOTE: It is safe to call this method multiple times for the same circuit key. func (m *memoryMailBox) AckPacket(inKey CircuitKey) { m.pktCond.L.Lock() entry, ok := m.pktIndex[inKey] if !ok { m.pktCond.L.Unlock() return } m.htlcPkts.Remove(entry) delete(m.pktIndex, inKey) m.pktCond.L.Unlock() } // HasPacket queries the packets for a circuit key, this is used to drop packets // bound for the switch that already have a queued response. func (m *memoryMailBox) HasPacket(inKey CircuitKey) bool { m.pktCond.L.Lock() _, ok := m.pktIndex[inKey] m.pktCond.L.Unlock() return ok } // Stop signals the mailbox and its goroutines for a graceful shutdown. // // NOTE: This method is part of the MailBox interface. func (m *memoryMailBox) Stop() { m.stopped.Do(func() { close(m.quit) m.wireCond.Signal() m.pktCond.Signal() }) } // mailCourier is a dedicated goroutine whose job is to reliably deliver // messages of a particular type. There are two types of couriers: wire // couriers, and mail couriers. Depending on the passed courierType, this // goroutine will assume one of two roles. func (m *memoryMailBox) mailCourier(cType courierType) { defer m.wg.Done() // TODO(roasbeef): refactor... for { // First, we'll check our condition. If our target mailbox is // empty, then we'll wait until a new item is added. switch cType { case wireCourier: m.wireCond.L.Lock() for m.wireMessages.Front() == nil { m.wireCond.Wait() select { case msgDone := <-m.msgReset: m.wireMessages.Init() close(msgDone) case <-m.quit: m.wireCond.L.Unlock() return default: } } case pktCourier: m.pktCond.L.Lock() for m.pktHead == nil { m.pktCond.Wait() select { // Resetting the packet queue means just moving // our pointer to the front. This ensures that // any un-ACK'd messages are re-delivered upon // reconnect. case pktDone := <-m.pktReset: m.pktHead = m.htlcPkts.Front() close(pktDone) case <-m.quit: m.pktCond.L.Unlock() return default: } } } var ( nextPkt *htlcPacket nextMsg lnwire.Message ) switch cType { // Grab the datum off the front of the queue, shifting the // slice's reference down one in order to remove the datum from // the queue. case wireCourier: entry := m.wireMessages.Front() nextMsg = m.wireMessages.Remove(entry).(lnwire.Message) // For packets, we actually never remove an item until it has // been ACK'd by the link. This ensures that if a read packet // doesn't make it into a commitment, then it'll be // re-delivered once the link comes back online. case pktCourier: nextPkt = m.pktHead.Value.(*htlcPacket) m.pktHead = m.pktHead.Next() } // Now that we're done with the condition, we can unlock it to // allow any callers to append to the end of our target queue. switch cType { case wireCourier: m.wireCond.L.Unlock() case pktCourier: m.pktCond.L.Unlock() } // With the next message obtained, we'll now select to attempt // to deliver the message. If we receive a kill signal, then // we'll bail out. switch cType { case wireCourier: select { case m.messageOutbox <- nextMsg: case msgDone := <-m.msgReset: m.wireCond.L.Lock() m.wireMessages.Init() m.wireCond.L.Unlock() close(msgDone) case <-m.quit: return } case pktCourier: select { case m.pktOutbox <- nextPkt: case pktDone := <-m.pktReset: m.pktCond.L.Lock() m.pktHead = m.htlcPkts.Front() m.pktCond.L.Unlock() close(pktDone) case <-m.quit: return } } } } // AddMessage appends a new message to the end of the message queue. // // NOTE: This method is safe for concrete use and part of the MailBox // interface. func (m *memoryMailBox) AddMessage(msg lnwire.Message) error { // First, we'll lock the condition, and add the message to the end of // the wire message inbox. m.wireCond.L.Lock() m.wireMessages.PushBack(msg) m.wireCond.L.Unlock() // With the message added, we signal to the mailCourier that there are // additional messages to deliver. m.wireCond.Signal() return nil } // AddPacket appends a new message to the end of the packet queue. // // NOTE: This method is safe for concrete use and part of the MailBox // interface. func (m *memoryMailBox) AddPacket(pkt *htlcPacket) error { // First, we'll lock the condition, and add the packet to the end of // the htlc packet inbox. m.pktCond.L.Lock() if _, ok := m.pktIndex[pkt.inKey()]; ok { m.pktCond.L.Unlock() return nil } entry := m.htlcPkts.PushBack(pkt) m.pktIndex[pkt.inKey()] = entry if m.pktHead == nil { m.pktHead = entry } m.pktCond.L.Unlock() // With the packet added, we signal to the mailCourier that there are // additional packets to consume. m.pktCond.Signal() return nil } // MessageOutBox returns a channel that any new messages ready for delivery // will be sent on. // // NOTE: This method is part of the MailBox interface. func (m *memoryMailBox) MessageOutBox() chan lnwire.Message { return m.messageOutbox } // PacketOutBox returns a channel that any new packets ready for delivery will // be sent on. // // NOTE: This method is part of the MailBox interface. func (m *memoryMailBox) PacketOutBox() chan *htlcPacket { return m.pktOutbox } // mailOrchestrator is responsible for coordinating the creation and lifecycle // of mailboxes used within the switch. It supports the ability to create // mailboxes, reassign their short channel id's, deliver htlc packets, and // queue packets for mailboxes that have not been created due to a link's late // registration. type mailOrchestrator struct { mu sync.RWMutex // mailboxes caches exactly one mailbox for all known channels. mailboxes map[lnwire.ChannelID]MailBox // liveIndex maps a live short chan id to the primary mailbox key. // An index in liveIndex map is only entered under two conditions: // 1. A link has a non-zero short channel id at time of AddLink. // 2. A link receives a non-zero short channel via UpdateShortChanID. liveIndex map[lnwire.ShortChannelID]lnwire.ChannelID // TODO(conner): add another pair of indexes: // chan_id -> short_chan_id // short_chan_id -> mailbox // so that Deliver can lookup mailbox directly once live, // but still queriable by channel_id. // unclaimedPackets maps a live short chan id to queue of packets if no // mailbox has been created. unclaimedPackets map[lnwire.ShortChannelID][]*htlcPacket } // newMailOrchestrator initializes a fresh mailOrchestrator. func newMailOrchestrator() *mailOrchestrator { return &mailOrchestrator{ mailboxes: make(map[lnwire.ChannelID]MailBox), liveIndex: make(map[lnwire.ShortChannelID]lnwire.ChannelID), unclaimedPackets: make(map[lnwire.ShortChannelID][]*htlcPacket), } } // Stop instructs the orchestrator to stop all active mailboxes. func (mo *mailOrchestrator) Stop() { for _, mailbox := range mo.mailboxes { mailbox.Stop() } } // GetOrCreateMailBox returns an existing mailbox belonging to `chanID`, or // creates and returns a new mailbox if none is found. func (mo *mailOrchestrator) GetOrCreateMailBox(chanID lnwire.ChannelID) MailBox { // First, try lookup the mailbox directly using only the shared mutex. mo.mu.RLock() mailbox, ok := mo.mailboxes[chanID] if ok { mo.mu.RUnlock() return mailbox } mo.mu.RUnlock() // Otherwise, we will try again with exclusive lock, creating a mailbox // if one still has not been created. mo.mu.Lock() mailbox = mo.exclusiveGetOrCreateMailBox(chanID) mo.mu.Unlock() return mailbox } // exclusiveGetOrCreateMailBox checks for the existence of a mailbox for the // given channel id. If none is found, a new one is creates, started, and // recorded. // // NOTE: This method MUST be invoked with the mailOrchestrator's exclusive lock. func (mo *mailOrchestrator) exclusiveGetOrCreateMailBox( chanID lnwire.ChannelID) MailBox { mailbox, ok := mo.mailboxes[chanID] if !ok { mailbox = newMemoryMailBox() mailbox.Start() mo.mailboxes[chanID] = mailbox } return mailbox } // BindLiveShortChanID registers that messages bound for a particular short // channel id should be forwarded to the mailbox corresponding to the given // channel id. This method also checks to see if there are any unclaimed // packets for this short_chan_id. If any are found, they are delivered to the // mailbox and removed (marked as claimed). func (mo *mailOrchestrator) BindLiveShortChanID(mailbox MailBox, cid lnwire.ChannelID, sid lnwire.ShortChannelID) { mo.mu.Lock() // Update the mapping from short channel id to mailbox's channel id. mo.liveIndex[sid] = cid // Retrieve any unclaimed packets destined for this mailbox. pkts := mo.unclaimedPackets[sid] delete(mo.unclaimedPackets, sid) mo.mu.Unlock() // Deliver the unclaimed packets. for _, pkt := range pkts { mailbox.AddPacket(pkt) } } // Deliver lookups the target mailbox using the live index from short_chan_id // to channel_id. If the mailbox is found, the message is delivered directly. // Otherwise the packet is recorded as unclaimed, and will be delivered to the // mailbox upon the subsequent call to BindLiveShortChanID. func (mo *mailOrchestrator) Deliver( sid lnwire.ShortChannelID, pkt *htlcPacket) error { var ( mailbox MailBox found bool ) // First, try to find the channel id for the target short_chan_id. If // the link is live, we will also look up the created mailbox. mo.mu.RLock() chanID, isLive := mo.liveIndex[sid] if isLive { mailbox, found = mo.mailboxes[chanID] } mo.mu.RUnlock() // The link is live and target mailbox was found, deliver immediately. if isLive && found { return mailbox.AddPacket(pkt) } // If we detected that the link has not been made live, we will acquire // the exclusive lock preemptively in order to queue this packet in the // list of unclaimed packets. mo.mu.Lock() // Double check to see if the mailbox has been not made live since the // release of the shared lock. // // NOTE: Checking again with the exclusive lock held prevents a race // condition where BindLiveShortChanID is interleaved between the // release of the shared lock, and acquiring the exclusive lock. The // result would be stuck packets, as they wouldn't be redelivered until // the next call to BindLiveShortChanID, which is expected to occur // infrequently. chanID, isLive = mo.liveIndex[sid] if isLive { // Reaching this point indicates the mailbox is actually live. // We'll try to load the mailbox using the fresh channel id. // // NOTE: This should never create a new mailbox, as the live // index should only be set if the mailbox had been initialized // beforehand. However, this does ensure that this case is // handled properly in the event that it could happen. mailbox = mo.exclusiveGetOrCreateMailBox(chanID) mo.mu.Unlock() // Deliver the packet to the mailbox if it was found or created. return mailbox.AddPacket(pkt) } // Finally, if the channel id is still not found in the live index, // we'll add this to the list of unclaimed packets. These will be // delivered upon the next call to BindLiveShortChanID. mo.unclaimedPackets[sid] = append(mo.unclaimedPackets[sid], pkt) mo.mu.Unlock() return nil }