package autopilot import ( "bytes" "math/big" "net" "sync/atomic" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcutil" "github.com/coreos/bbolt" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/lnwire" ) var ( testSig = &btcec.Signature{ R: new(big.Int), S: new(big.Int), } _, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10) _, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10) chanIDCounter uint64 // To be used atomically. ) // databaseChannelGraph wraps a channeldb.ChannelGraph instance with the // necessary API to properly implement the autopilot.ChannelGraph interface. // // TODO(roasbeef): move inmpl to main package? type databaseChannelGraph struct { db *channeldb.ChannelGraph } // A compile time assertion to ensure databaseChannelGraph meets the // autopilot.ChannelGraph interface. var _ ChannelGraph = (*databaseChannelGraph)(nil) // ChannelGraphFromDatabase returns an instance of the autopilot.ChannelGraph // backed by a live, open channeldb instance. func ChannelGraphFromDatabase(db *channeldb.ChannelGraph) ChannelGraph { return &databaseChannelGraph{ db: db, } } // type dbNode is a wrapper struct around a database transaction an // channeldb.LightningNode. The wrapper method implement the autopilot.Node // interface. type dbNode struct { tx *bolt.Tx node *channeldb.LightningNode } // A compile time assertion to ensure dbNode meets the autopilot.Node // interface. var _ Node = (*dbNode)(nil) // PubKey is the identity public key of the node. This will be used to attempt // to target a node for channel opening by the main autopilot agent. // // NOTE: Part of the autopilot.Node interface. func (d dbNode) PubKey() *btcec.PublicKey { pubKey, _ := d.node.PubKey() return pubKey } // Addrs returns a slice of publicly reachable public TCP addresses that the // peer is known to be listening on. // // NOTE: Part of the autopilot.Node interface. func (d dbNode) Addrs() []net.Addr { return d.node.Addresses } // ForEachChannel is a higher-order function that will be used to iterate // through all edges emanating from/to the target node. For each active // channel, this function should be called with the populated ChannelEdge that // describes the active channel. // // NOTE: Part of the autopilot.Node interface. func (d dbNode) ForEachChannel(cb func(ChannelEdge) error) error { return d.node.ForEachChannel(d.tx, func(tx *bolt.Tx, ei *channeldb.ChannelEdgeInfo, ep, _ *channeldb.ChannelEdgePolicy) error { pubkey, _ := ep.Node.PubKey() edge := ChannelEdge{ Channel: Channel{ ChanID: lnwire.NewShortChanIDFromInt(ep.ChannelID), Capacity: ei.Capacity, FundedAmt: ei.Capacity, Node: NewNodeID(pubkey), }, Peer: dbNode{ tx: tx, node: ep.Node, }, } return cb(edge) }) } // ForEachNode is a higher-order function that should be called once for each // connected node within the channel graph. If the passed callback returns an // error, then execution should be terminated. // // NOTE: Part of the autopilot.ChannelGraph interface. func (d *databaseChannelGraph) ForEachNode(cb func(Node) error) error { return d.db.ForEachNode(nil, func(tx *bolt.Tx, n *channeldb.LightningNode) error { // We'll skip over any node that doesn't have any advertised // addresses. As we won't be able to reach them to actually // open any channels. if len(n.Addresses) == 0 { return nil } node := dbNode{ tx: tx, node: n, } return cb(node) }) } // addRandChannel creates a new channel two target nodes. This function is // meant to aide in the generation of random graphs for use within test cases // the exercise the autopilot package. func (d *databaseChannelGraph) addRandChannel(node1, node2 *btcec.PublicKey, capacity btcutil.Amount) (*ChannelEdge, *ChannelEdge, error) { fetchNode := func(pub *btcec.PublicKey) (*channeldb.LightningNode, error) { if pub != nil { dbNode, err := d.db.FetchLightningNode(pub) switch { case err == channeldb.ErrGraphNodeNotFound: fallthrough case err == channeldb.ErrGraphNotFound: graphNode := &channeldb.LightningNode{ HaveNodeAnnouncement: true, Addresses: []net.Addr{ &net.TCPAddr{ IP: bytes.Repeat([]byte("a"), 16), }, }, Features: lnwire.NewFeatureVector(nil, lnwire.GlobalFeatures), AuthSigBytes: testSig.Serialize(), } graphNode.AddPubKey(pub) if err := d.db.AddLightningNode(graphNode); err != nil { return nil, err } case err != nil: return nil, err } return dbNode, nil } nodeKey, err := randKey() if err != nil { return nil, err } dbNode := &channeldb.LightningNode{ HaveNodeAnnouncement: true, Addresses: []net.Addr{ &net.TCPAddr{ IP: bytes.Repeat([]byte("a"), 16), }, }, Features: lnwire.NewFeatureVector(nil, lnwire.GlobalFeatures), AuthSigBytes: testSig.Serialize(), } dbNode.AddPubKey(nodeKey) if err := d.db.AddLightningNode(dbNode); err != nil { return nil, err } return dbNode, nil } vertex1, err := fetchNode(node1) if err != nil { return nil, nil, err } vertex2, err := fetchNode(node2) if err != nil { return nil, nil, err } var lnNode1, lnNode2 *btcec.PublicKey if bytes.Compare(vertex1.PubKeyBytes[:], vertex2.PubKeyBytes[:]) == -1 { lnNode1, _ = vertex1.PubKey() lnNode2, _ = vertex2.PubKey() } else { lnNode1, _ = vertex2.PubKey() lnNode2, _ = vertex1.PubKey() } chanID := randChanID() edge := &channeldb.ChannelEdgeInfo{ ChannelID: chanID.ToUint64(), Capacity: capacity, } edge.AddNodeKeys(lnNode1, lnNode2, lnNode1, lnNode2) if err := d.db.AddChannelEdge(edge); err != nil { return nil, nil, err } edgePolicy := &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: chanID.ToUint64(), LastUpdate: time.Now(), TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, Flags: 0, } if err := d.db.UpdateEdgePolicy(edgePolicy); err != nil { return nil, nil, err } edgePolicy = &channeldb.ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: chanID.ToUint64(), LastUpdate: time.Now(), TimeLockDelta: 10, MinHTLC: 1, FeeBaseMSat: 10, FeeProportionalMillionths: 10000, Flags: 1, } if err := d.db.UpdateEdgePolicy(edgePolicy); err != nil { return nil, nil, err } return &ChannelEdge{ Channel: Channel{ ChanID: chanID, Capacity: capacity, }, Peer: dbNode{ node: vertex1, }, }, &ChannelEdge{ Channel: Channel{ ChanID: chanID, Capacity: capacity, }, Peer: dbNode{ node: vertex2, }, }, nil } // memChannelGraph is an implementation of the autopilot.ChannelGraph backed by // an in-memory graph. type memChannelGraph struct { graph map[NodeID]memNode } // A compile time assertion to ensure memChannelGraph meets the // autopilot.ChannelGraph interface. var _ ChannelGraph = (*memChannelGraph)(nil) // newMemChannelGraph creates a new blank in-memory channel graph // implementation. func newMemChannelGraph() *memChannelGraph { return &memChannelGraph{ graph: make(map[NodeID]memNode), } } // ForEachNode is a higher-order function that should be called once for each // connected node within the channel graph. If the passed callback returns an // error, then execution should be terminated. // // NOTE: Part of the autopilot.ChannelGraph interface. func (m memChannelGraph) ForEachNode(cb func(Node) error) error { for _, node := range m.graph { if err := cb(node); err != nil { return err } } return nil } // randChanID generates a new random channel ID. func randChanID() lnwire.ShortChannelID { id := atomic.AddUint64(&chanIDCounter, 1) return lnwire.NewShortChanIDFromInt(id) } // randKey returns a random public key. func randKey() (*btcec.PublicKey, error) { priv, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { return nil, err } return priv.PubKey(), nil } // addRandChannel creates a new channel two target nodes. This function is // meant to aide in the generation of random graphs for use within test cases // the exercise the autopilot package. func (m *memChannelGraph) addRandChannel(node1, node2 *btcec.PublicKey, capacity btcutil.Amount) (*ChannelEdge, *ChannelEdge, error) { var ( vertex1, vertex2 memNode ok bool ) if node1 != nil { vertex1, ok = m.graph[NewNodeID(node1)] if !ok { vertex1 = memNode{ pub: node1, } } } else { newPub, err := randKey() if err != nil { return nil, nil, err } vertex1 = memNode{ pub: newPub, } } if node2 != nil { vertex2, ok = m.graph[NewNodeID(node2)] if !ok { vertex2 = memNode{ pub: node2, } } } else { newPub, err := randKey() if err != nil { return nil, nil, err } vertex2 = memNode{ pub: newPub, } } channel := Channel{ ChanID: randChanID(), Capacity: capacity, } edge1 := ChannelEdge{ Channel: channel, Peer: vertex2, } vertex1.chans = append(vertex1.chans, edge1) edge2 := ChannelEdge{ Channel: channel, Peer: vertex1, } vertex2.chans = append(vertex2.chans, edge2) m.graph[NewNodeID(vertex1.pub)] = vertex1 m.graph[NewNodeID(vertex2.pub)] = vertex2 return &edge1, &edge2, nil } // memNode is a purely in-memory implementation of the autopilot.Node // interface. type memNode struct { pub *btcec.PublicKey chans []ChannelEdge addrs []net.Addr } // A compile time assertion to ensure memNode meets the autopilot.Node // interface. var _ Node = (*memNode)(nil) // PubKey is the identity public key of the node. This will be used to attempt // to target a node for channel opening by the main autopilot agent. // // NOTE: Part of the autopilot.Node interface. func (m memNode) PubKey() *btcec.PublicKey { return m.pub } // Addrs returns a slice of publicly reachable public TCP addresses that the // peer is known to be listening on. // // NOTE: Part of the autopilot.Node interface. func (m memNode) Addrs() []net.Addr { return m.addrs } // ForEachChannel is a higher-order function that will be used to iterate // through all edges emanating from/to the target node. For each active // channel, this function should be called with the populated ChannelEdge that // describes the active channel. // // NOTE: Part of the autopilot.Node interface. func (m memNode) ForEachChannel(cb func(ChannelEdge) error) error { for _, channel := range m.chans { if err := cb(channel); err != nil { return err } } return nil }