package discovery import ( "bytes" "encoding/hex" "fmt" "io/ioutil" "math/big" prand "math/rand" "net" "os" "reflect" "strings" "sync" "testing" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/davecgh/go-spew/spew" "github.com/go-errors/errors" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/lnpeer" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/routing" ) var ( testAddr = &net.TCPAddr{IP: (net.IP)([]byte{0xA, 0x0, 0x0, 0x1}), Port: 9000} testAddrs = []net.Addr{testAddr} testFeatures = lnwire.NewRawFeatureVector() testSig = &btcec.Signature{ R: new(big.Int), S: new(big.Int), } _, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10) _, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10) inputStr = "147caa76786596590baa4e98f5d9f48b86c7765e489f7a6ff3360fe5c674360b" sha, _ = chainhash.NewHashFromStr(inputStr) outpoint = wire.NewOutPoint(sha, 0) bitcoinKeyPriv1, _ = btcec.NewPrivateKey(btcec.S256()) bitcoinKeyPub1 = bitcoinKeyPriv1.PubKey() nodeKeyPriv1, _ = btcec.NewPrivateKey(btcec.S256()) nodeKeyPub1 = nodeKeyPriv1.PubKey() bitcoinKeyPriv2, _ = btcec.NewPrivateKey(btcec.S256()) bitcoinKeyPub2 = bitcoinKeyPriv2.PubKey() nodeKeyPriv2, _ = btcec.NewPrivateKey(btcec.S256()) nodeKeyPub2 = nodeKeyPriv2.PubKey() trickleDelay = time.Millisecond * 100 retransmitDelay = time.Hour * 1 proofMatureDelta uint32 maxBtcFundingAmount = btcutil.Amount(1<<62) - 1 ) // makeTestDB creates a new instance of the ChannelDB for testing purposes. A // callback which cleans up the created temporary directories is also returned // and intended to be executed after the test completes. func makeTestDB() (*channeldb.DB, func(), error) { // First, create a temporary directory to be used for the duration of // this test. tempDirName, err := ioutil.TempDir("", "channeldb") if err != nil { return nil, nil, err } // Next, create channeldb for the first time. cdb, err := channeldb.Open(tempDirName) if err != nil { return nil, nil, err } cleanUp := func() { cdb.Close() os.RemoveAll(tempDirName) } return cdb, cleanUp, nil } type mockSigner struct { privKey *btcec.PrivateKey } func (n *mockSigner) SignMessage(pubKey *btcec.PublicKey, msg []byte) (*btcec.Signature, error) { if !pubKey.IsEqual(n.privKey.PubKey()) { return nil, fmt.Errorf("unknown public key") } digest := chainhash.DoubleHashB(msg) sign, err := n.privKey.Sign(digest) if err != nil { return nil, fmt.Errorf("can't sign the message: %v", err) } return sign, nil } type mockGraphSource struct { bestHeight uint32 mu sync.Mutex nodes []channeldb.LightningNode infos map[uint64]channeldb.ChannelEdgeInfo edges map[uint64][]channeldb.ChannelEdgePolicy } func newMockRouter(height uint32) *mockGraphSource { return &mockGraphSource{ bestHeight: height, infos: make(map[uint64]channeldb.ChannelEdgeInfo), edges: make(map[uint64][]channeldb.ChannelEdgePolicy), } } var _ routing.ChannelGraphSource = (*mockGraphSource)(nil) func (r *mockGraphSource) AddNode(node *channeldb.LightningNode) error { r.mu.Lock() defer r.mu.Unlock() r.nodes = append(r.nodes, *node) return nil } func (r *mockGraphSource) AddEdge(info *channeldb.ChannelEdgeInfo) error { r.mu.Lock() defer r.mu.Unlock() if _, ok := r.infos[info.ChannelID]; ok { return errors.New("info already exist") } // Usually, the capacity is fetched in the router from the funding txout. // Since the mockGraphSource can't access the txout, assign a default value. info.Capacity = maxBtcFundingAmount r.infos[info.ChannelID] = *info return nil } func (r *mockGraphSource) UpdateEdge(edge *channeldb.ChannelEdgePolicy) error { r.mu.Lock() defer r.mu.Unlock() r.edges[edge.ChannelID] = append(r.edges[edge.ChannelID], *edge) return nil } func (r *mockGraphSource) SelfEdges() ([]*channeldb.ChannelEdgePolicy, error) { return nil, nil } func (r *mockGraphSource) CurrentBlockHeight() (uint32, error) { return r.bestHeight, nil } func (r *mockGraphSource) AddProof(chanID lnwire.ShortChannelID, proof *channeldb.ChannelAuthProof) error { r.mu.Lock() defer r.mu.Unlock() chanIDInt := chanID.ToUint64() info, ok := r.infos[chanIDInt] if !ok { return errors.New("channel does not exist") } info.AuthProof = proof r.infos[chanIDInt] = info return nil } func (r *mockGraphSource) ForEachNode(func(node *channeldb.LightningNode) error) error { return nil } func (r *mockGraphSource) ForAllOutgoingChannels(cb func(i *channeldb.ChannelEdgeInfo, c *channeldb.ChannelEdgePolicy) error) error { return nil } func (r *mockGraphSource) ForEachChannel(func(chanInfo *channeldb.ChannelEdgeInfo, e1, e2 *channeldb.ChannelEdgePolicy) error) error { return nil } func (r *mockGraphSource) GetChannelByID(chanID lnwire.ShortChannelID) ( *channeldb.ChannelEdgeInfo, *channeldb.ChannelEdgePolicy, *channeldb.ChannelEdgePolicy, error) { r.mu.Lock() defer r.mu.Unlock() chanInfo, ok := r.infos[chanID.ToUint64()] if !ok { return nil, nil, nil, channeldb.ErrEdgeNotFound } edges := r.edges[chanID.ToUint64()] if len(edges) == 0 { return &chanInfo, nil, nil, nil } if len(edges) == 1 { edge1 := edges[0] return &chanInfo, &edge1, nil, nil } edge1, edge2 := edges[0], edges[1] return &chanInfo, &edge1, &edge2, nil } func (r *mockGraphSource) FetchLightningNode( nodePub routing.Vertex) (*channeldb.LightningNode, error) { for _, node := range r.nodes { if bytes.Equal(nodePub[:], node.PubKeyBytes[:]) { return &node, nil } } return nil, channeldb.ErrGraphNodeNotFound } // IsStaleNode returns true if the graph source has a node announcement for the // target node with a more recent timestamp. func (r *mockGraphSource) IsStaleNode(nodePub routing.Vertex, timestamp time.Time) bool { r.mu.Lock() defer r.mu.Unlock() for _, node := range r.nodes { if node.PubKeyBytes == nodePub { return node.LastUpdate.After(timestamp) || node.LastUpdate.Equal(timestamp) } } // If we did not find the node among our existing graph nodes, we // require the node to already have a channel in the graph to not be // considered stale. for _, info := range r.infos { if info.NodeKey1Bytes == nodePub { return false } if info.NodeKey2Bytes == nodePub { return false } } return true } // IsPublicNode determines whether the given vertex is seen as a public node in // the graph from the graph's source node's point of view. func (r *mockGraphSource) IsPublicNode(node routing.Vertex) (bool, error) { for _, info := range r.infos { if !bytes.Equal(node[:], info.NodeKey1Bytes[:]) && !bytes.Equal(node[:], info.NodeKey2Bytes[:]) { continue } if info.AuthProof != nil { return true, nil } } return false, nil } // IsKnownEdge returns true if the graph source already knows of the passed // channel ID. func (r *mockGraphSource) IsKnownEdge(chanID lnwire.ShortChannelID) bool { r.mu.Lock() defer r.mu.Unlock() _, ok := r.infos[chanID.ToUint64()] return ok } // IsStaleEdgePolicy returns true if the graph source has a channel edge for // the passed channel ID (and flags) that have a more recent timestamp. func (r *mockGraphSource) IsStaleEdgePolicy(chanID lnwire.ShortChannelID, timestamp time.Time, flags lnwire.ChanUpdateChanFlags) bool { r.mu.Lock() defer r.mu.Unlock() edges, ok := r.edges[chanID.ToUint64()] if !ok { return false } switch { case len(edges) >= 1 && edges[0].ChannelFlags == flags: return !edges[0].LastUpdate.Before(timestamp) case len(edges) >= 2 && edges[1].ChannelFlags == flags: return !edges[1].LastUpdate.Before(timestamp) default: return false } } type mockNotifier struct { clientCounter uint32 epochClients map[uint32]chan *chainntnfs.BlockEpoch sync.RWMutex } func newMockNotifier() *mockNotifier { return &mockNotifier{ epochClients: make(map[uint32]chan *chainntnfs.BlockEpoch), } } func (m *mockNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash, _ []byte, numConfs, _ uint32) (*chainntnfs.ConfirmationEvent, error) { return nil, nil } func (m *mockNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint, _ []byte, _ uint32) (*chainntnfs.SpendEvent, error) { return nil, nil } func (m *mockNotifier) notifyBlock(hash chainhash.Hash, height uint32) { m.RLock() defer m.RUnlock() for _, client := range m.epochClients { client <- &chainntnfs.BlockEpoch{ Height: int32(height), Hash: &hash, } } } func (m *mockNotifier) RegisterBlockEpochNtfn( bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) { m.RLock() defer m.RUnlock() epochChan := make(chan *chainntnfs.BlockEpoch) clientID := m.clientCounter m.clientCounter++ m.epochClients[clientID] = epochChan return &chainntnfs.BlockEpochEvent{ Epochs: epochChan, Cancel: func() {}, }, nil } func (m *mockNotifier) Start() error { return nil } func (m *mockNotifier) Stop() error { return nil } type annBatch struct { nodeAnn1 *lnwire.NodeAnnouncement nodeAnn2 *lnwire.NodeAnnouncement localChanAnn *lnwire.ChannelAnnouncement remoteChanAnn *lnwire.ChannelAnnouncement chanUpdAnn1 *lnwire.ChannelUpdate chanUpdAnn2 *lnwire.ChannelUpdate localProofAnn *lnwire.AnnounceSignatures remoteProofAnn *lnwire.AnnounceSignatures } func createAnnouncements(blockHeight uint32) (*annBatch, error) { var err error var batch annBatch timestamp := uint32(123456) batch.nodeAnn1, err = createNodeAnnouncement(nodeKeyPriv1, timestamp) if err != nil { return nil, err } batch.nodeAnn2, err = createNodeAnnouncement(nodeKeyPriv2, timestamp) if err != nil { return nil, err } batch.remoteChanAnn, err = createRemoteChannelAnnouncement(blockHeight) if err != nil { return nil, err } batch.localProofAnn = &lnwire.AnnounceSignatures{ NodeSignature: batch.remoteChanAnn.NodeSig1, BitcoinSignature: batch.remoteChanAnn.BitcoinSig1, } batch.remoteProofAnn = &lnwire.AnnounceSignatures{ NodeSignature: batch.remoteChanAnn.NodeSig2, BitcoinSignature: batch.remoteChanAnn.BitcoinSig2, } batch.localChanAnn, err = createRemoteChannelAnnouncement(blockHeight) if err != nil { return nil, err } batch.chanUpdAnn1, err = createUpdateAnnouncement( blockHeight, 0, nodeKeyPriv1, timestamp, ) if err != nil { return nil, err } batch.chanUpdAnn2, err = createUpdateAnnouncement( blockHeight, 1, nodeKeyPriv2, timestamp, ) if err != nil { return nil, err } return &batch, nil } func createNodeAnnouncement(priv *btcec.PrivateKey, timestamp uint32, extraBytes ...[]byte) (*lnwire.NodeAnnouncement, error) { var err error k := hex.EncodeToString(priv.Serialize()) alias, err := lnwire.NewNodeAlias("kek" + k[:10]) if err != nil { return nil, err } a := &lnwire.NodeAnnouncement{ Timestamp: timestamp, Addresses: testAddrs, Alias: alias, Features: testFeatures, } copy(a.NodeID[:], priv.PubKey().SerializeCompressed()) if len(extraBytes) == 1 { a.ExtraOpaqueData = extraBytes[0] } signer := mockSigner{priv} sig, err := SignAnnouncement(&signer, priv.PubKey(), a) if err != nil { return nil, err } a.Signature, err = lnwire.NewSigFromSignature(sig) if err != nil { return nil, err } return a, nil } func createUpdateAnnouncement(blockHeight uint32, flags lnwire.ChanUpdateChanFlags, nodeKey *btcec.PrivateKey, timestamp uint32, extraBytes ...[]byte) (*lnwire.ChannelUpdate, error) { var err error htlcMinMsat := lnwire.MilliSatoshi(prand.Int63()) a := &lnwire.ChannelUpdate{ ShortChannelID: lnwire.ShortChannelID{ BlockHeight: blockHeight, }, Timestamp: timestamp, MessageFlags: lnwire.ChanUpdateOptionMaxHtlc, ChannelFlags: flags, TimeLockDelta: uint16(prand.Int63()), HtlcMinimumMsat: htlcMinMsat, // Since the max HTLC must be greater than the min HTLC to pass channel // update validation, set it to double the min htlc. HtlcMaximumMsat: 2 * htlcMinMsat, FeeRate: uint32(prand.Int31()), BaseFee: uint32(prand.Int31()), } if len(extraBytes) == 1 { a.ExtraOpaqueData = extraBytes[0] } err = signUpdate(nodeKey, a) if err != nil { return nil, err } return a, nil } func signUpdate(nodeKey *btcec.PrivateKey, a *lnwire.ChannelUpdate) error { pub := nodeKey.PubKey() signer := mockSigner{nodeKey} sig, err := SignAnnouncement(&signer, pub, a) if err != nil { return err } a.Signature, err = lnwire.NewSigFromSignature(sig) if err != nil { return err } return nil } func createAnnouncementWithoutProof(blockHeight uint32, extraBytes ...[]byte) *lnwire.ChannelAnnouncement { a := &lnwire.ChannelAnnouncement{ ShortChannelID: lnwire.ShortChannelID{ BlockHeight: blockHeight, TxIndex: 0, TxPosition: 0, }, Features: testFeatures, } copy(a.NodeID1[:], nodeKeyPub1.SerializeCompressed()) copy(a.NodeID2[:], nodeKeyPub2.SerializeCompressed()) copy(a.BitcoinKey1[:], bitcoinKeyPub1.SerializeCompressed()) copy(a.BitcoinKey2[:], bitcoinKeyPub2.SerializeCompressed()) if len(extraBytes) == 1 { a.ExtraOpaqueData = extraBytes[0] } return a } func createRemoteChannelAnnouncement(blockHeight uint32, extraBytes ...[]byte) (*lnwire.ChannelAnnouncement, error) { a := createAnnouncementWithoutProof(blockHeight, extraBytes...) pub := nodeKeyPriv1.PubKey() signer := mockSigner{nodeKeyPriv1} sig, err := SignAnnouncement(&signer, pub, a) if err != nil { return nil, err } a.NodeSig1, err = lnwire.NewSigFromSignature(sig) if err != nil { return nil, err } pub = nodeKeyPriv2.PubKey() signer = mockSigner{nodeKeyPriv2} sig, err = SignAnnouncement(&signer, pub, a) if err != nil { return nil, err } a.NodeSig2, err = lnwire.NewSigFromSignature(sig) if err != nil { return nil, err } pub = bitcoinKeyPriv1.PubKey() signer = mockSigner{bitcoinKeyPriv1} sig, err = SignAnnouncement(&signer, pub, a) if err != nil { return nil, err } a.BitcoinSig1, err = lnwire.NewSigFromSignature(sig) if err != nil { return nil, err } pub = bitcoinKeyPriv2.PubKey() signer = mockSigner{bitcoinKeyPriv2} sig, err = SignAnnouncement(&signer, pub, a) if err != nil { return nil, err } a.BitcoinSig2, err = lnwire.NewSigFromSignature(sig) if err != nil { return nil, err } return a, nil } type testCtx struct { gossiper *AuthenticatedGossiper router *mockGraphSource notifier *mockNotifier broadcastedMessage chan msgWithSenders } func createTestCtx(startHeight uint32) (*testCtx, func(), error) { // Next we'll initialize an instance of the channel router with mock // versions of the chain and channel notifier. As we don't need to test // any p2p functionality, the peer send and switch send, // broadcast functions won't be populated. notifier := newMockNotifier() router := newMockRouter(startHeight) db, cleanUpDb, err := makeTestDB() if err != nil { return nil, nil, err } waitingProofStore, err := channeldb.NewWaitingProofStore(db) if err != nil { cleanUpDb() return nil, nil, err } broadcastedMessage := make(chan msgWithSenders, 10) gossiper := New(Config{ Notifier: notifier, Broadcast: func(senders map[routing.Vertex]struct{}, msgs ...lnwire.Message) error { for _, msg := range msgs { broadcastedMessage <- msgWithSenders{ msg: msg, senders: senders, } } return nil }, SendToPeer: func(target *btcec.PublicKey, msg ...lnwire.Message) error { return nil }, FindPeer: func(target *btcec.PublicKey) (lnpeer.Peer, error) { return &mockPeer{target, nil, nil}, nil }, Router: router, TrickleDelay: trickleDelay, RetransmitDelay: retransmitDelay, ProofMatureDelta: proofMatureDelta, WaitingProofStore: waitingProofStore, MessageStore: newMockMessageStore(), }, nodeKeyPub1) if err := gossiper.Start(); err != nil { cleanUpDb() return nil, nil, fmt.Errorf("unable to start router: %v", err) } cleanUp := func() { gossiper.Stop() cleanUpDb() } return &testCtx{ router: router, notifier: notifier, gossiper: gossiper, broadcastedMessage: broadcastedMessage, }, cleanUp, nil } // TestProcessAnnouncement checks that mature announcements are propagated to // the router subsystem. func TestProcessAnnouncement(t *testing.T) { t.Parallel() timestamp := uint32(123456) ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() assertSenderExistence := func(sender *btcec.PublicKey, msg msgWithSenders) { if _, ok := msg.senders[routing.NewVertex(sender)]; !ok { t.Fatalf("sender=%x not present in %v", sender.SerializeCompressed(), spew.Sdump(msg)) } } nodePeer := &mockPeer{nodeKeyPriv1.PubKey(), nil, nil} // First, we'll craft a valid remote channel announcement and send it to // the gossiper so that it can be processed. ca, err := createRemoteChannelAnnouncement(0) if err != nil { t.Fatalf("can't create channel announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(ca, nodePeer): case <-time.After(2 * time.Second): t.Fatal("remote announcement not processed") } if err != nil { t.Fatalf("can't process remote announcement: %v", err) } // The announcement should be broadcast and included in our local view // of the graph. select { case msg := <-ctx.broadcastedMessage: assertSenderExistence(nodePeer.IdentityKey(), msg) case <-time.After(2 * trickleDelay): t.Fatal("announcement wasn't proceeded") } if len(ctx.router.infos) != 1 { t.Fatalf("edge wasn't added to router: %v", err) } // We'll then craft the channel policy of the remote party and also send // it to the gossiper. ua, err := createUpdateAnnouncement(0, 0, nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create update announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(ua, nodePeer): case <-time.After(2 * time.Second): t.Fatal("remote announcement not processed") } if err != nil { t.Fatalf("can't process remote announcement: %v", err) } // The channel policy should be broadcast to the rest of the network. select { case msg := <-ctx.broadcastedMessage: assertSenderExistence(nodePeer.IdentityKey(), msg) case <-time.After(2 * trickleDelay): t.Fatal("announcement wasn't proceeded") } if len(ctx.router.edges) != 1 { t.Fatalf("edge update wasn't added to router: %v", err) } // Finally, we'll craft the remote party's node announcement. na, err := createNodeAnnouncement(nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create node announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(na, nodePeer): case <-time.After(2 * time.Second): t.Fatal("remote announcement not processed") } if err != nil { t.Fatalf("can't process remote announcement: %v", err) } // It should also be broadcast to the network and included in our local // view of the graph. select { case msg := <-ctx.broadcastedMessage: assertSenderExistence(nodePeer.IdentityKey(), msg) case <-time.After(2 * trickleDelay): t.Fatal("announcement wasn't proceeded") } if len(ctx.router.nodes) != 1 { t.Fatalf("node wasn't added to router: %v", err) } } // TestPrematureAnnouncement checks that premature announcements are // not propagated to the router subsystem until block with according // block height received. func TestPrematureAnnouncement(t *testing.T) { t.Parallel() timestamp := uint32(123456) ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() _, err = createNodeAnnouncement(nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create node announcement: %v", err) } nodePeer := &mockPeer{nodeKeyPriv1.PubKey(), nil, nil} // Pretending that we receive the valid channel announcement from // remote side, but block height of this announcement is greater than // highest know to us, for that reason it should be added to the // repeat/premature batch. ca, err := createRemoteChannelAnnouncement(1) if err != nil { t.Fatalf("can't create channel announcement: %v", err) } select { case <-ctx.gossiper.ProcessRemoteAnnouncement(ca, nodePeer): t.Fatal("announcement was proceeded") case <-time.After(100 * time.Millisecond): } if len(ctx.router.infos) != 0 { t.Fatal("edge was added to router") } // Pretending that we receive the valid channel update announcement from // remote side, but block height of this announcement is greater than // highest know to us, for that reason it should be added to the // repeat/premature batch. ua, err := createUpdateAnnouncement(1, 0, nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create update announcement: %v", err) } select { case <-ctx.gossiper.ProcessRemoteAnnouncement(ua, nodePeer): t.Fatal("announcement was proceeded") case <-time.After(100 * time.Millisecond): } if len(ctx.router.edges) != 0 { t.Fatal("edge update was added to router") } // Generate new block and waiting the previously added announcements // to be proceeded. newBlock := &wire.MsgBlock{} ctx.notifier.notifyBlock(newBlock.Header.BlockHash(), 1) select { case <-ctx.broadcastedMessage: case <-time.After(2 * trickleDelay): t.Fatal("announcement wasn't broadcasted") } if len(ctx.router.infos) != 1 { t.Fatalf("edge wasn't added to router: %v", err) } select { case <-ctx.broadcastedMessage: case <-time.After(2 * trickleDelay): t.Fatal("announcement wasn't broadcasted") } if len(ctx.router.edges) != 1 { t.Fatalf("edge update wasn't added to router: %v", err) } } // TestSignatureAnnouncementLocalFirst ensures that the AuthenticatedGossiper // properly processes partial and fully announcement signatures message. func TestSignatureAnnouncementLocalFirst(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(uint32(proofMatureDelta)) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() // Set up a channel that we can use to inspect the messages // sent directly fromn the gossiper. sentMsgs := make(chan lnwire.Message, 10) ctx.gossiper.cfg.FindPeer = func(target *btcec.PublicKey) (lnpeer.Peer, error) { return &mockPeer{target, sentMsgs, ctx.gossiper.quit}, nil } ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { select { case sentMsgs <- msg[0]: case <-ctx.gossiper.quit: return fmt.Errorf("shutting down") } return nil } batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } localKey, err := btcec.ParsePubKey(batch.nodeAnn1.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, sentMsgs, ctx.gossiper.quit} // Recreate lightning network topology. Initialize router with channel // between two nodes. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localChanAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.chanUpdAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.nodeAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // The local ChannelUpdate should now be sent directly to the remote peer, // such that the edge can be used for routing, regardless if this channel // is announced or not (private channel). select { case msg := <-sentMsgs: if msg != batch.chanUpdAnn1 { t.Fatalf("expected local channel update, instead got %v", msg) } case <-time.After(1 * time.Second): t.Fatal("gossiper did not send channel update to peer") } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.chanUpdAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.nodeAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // Pretending that we receive local channel announcement from funding // manager, thereby kick off the announcement exchange process. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localProofAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process local proof: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("announcements were broadcast") case <-time.After(2 * trickleDelay): } number := 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 1 { t.Fatal("wrong number of objects in storage") } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.remoteProofAnn, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process remote proof: %v", err) } for i := 0; i < 5; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } number = 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil && err != channeldb.ErrWaitingProofNotFound { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 0 { t.Fatal("waiting proof should be removed from storage") } } // TestOrphanSignatureAnnouncement ensures that the gossiper properly // processes announcement with unknown channel ids. func TestOrphanSignatureAnnouncement(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(uint32(proofMatureDelta)) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() // Set up a channel that we can use to inspect the messages // sent directly from the gossiper. sentMsgs := make(chan lnwire.Message, 10) ctx.gossiper.cfg.FindPeer = func(target *btcec.PublicKey) (lnpeer.Peer, error) { return &mockPeer{target, sentMsgs, ctx.gossiper.quit}, nil } ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { select { case sentMsgs <- msg[0]: case <-ctx.gossiper.quit: return fmt.Errorf("shutting down") } return nil } batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } localKey, err := btcec.ParsePubKey(batch.nodeAnn1.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, sentMsgs, ctx.gossiper.quit} // Pretending that we receive local channel announcement from funding // manager, thereby kick off the announcement exchange process, in // this case the announcement should be added in the orphan batch // because we haven't announce the channel yet. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.remoteProofAnn, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to proceed announcement: %v", err) } number := 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 1 { t.Fatal("wrong number of objects in storage") } // Recreate lightning network topology. Initialize router with channel // between two nodes. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.localChanAnn, localKey): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.chanUpdAnn1, localKey): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.nodeAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // The local ChannelUpdate should now be sent directly to the remote peer, // such that the edge can be used for routing, regardless if this channel // is announced or not (private channel). select { case msg := <-sentMsgs: if msg != batch.chanUpdAnn1 { t.Fatalf("expected local channel update, instead got %v", msg) } case <-time.After(1 * time.Second): t.Fatal("gossiper did not send channel update to peer") } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.chanUpdAnn2, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.nodeAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement announcement was broadcast") case <-time.After(2 * trickleDelay): } // After that we process local announcement, and waiting to receive // the channel announcement. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.localProofAnn, localKey): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process: %v", err) } // The local proof should be sent to the remote peer. select { case msg := <-sentMsgs: if msg != batch.localProofAnn { t.Fatalf("expected local proof to be sent, got %v", msg) } case <-time.After(2 * time.Second): t.Fatalf("local proof was not sent to peer") } // And since both remote and local announcements are processed, we // should be broadcasting the final channel announcements. for i := 0; i < 5; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } number = 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(p *channeldb.WaitingProof) error { number++ return nil }, ); err != nil { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 0 { t.Fatalf("wrong number of objects in storage: %v", number) } } // Test that sending AnnounceSignatures to remote peer will continue // to be tried until the peer comes online. func TestSignatureAnnouncementRetry(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(uint32(proofMatureDelta)) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } localKey, err := btcec.ParsePubKey(batch.nodeAnn1.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, nil, nil} // Recreate lightning network topology. Initialize router with channel // between two nodes. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localChanAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.chanUpdAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.nodeAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.chanUpdAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.nodeAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // Make the SendToPeer fail, simulating the peer being offline. ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { return fmt.Errorf("intentional error in SendToPeer") } // We expect the gossiper to register for a notification when the peer // comes back online, so keep track of the channel it wants to get // notified on. notifyPeers := make(chan chan<- lnpeer.Peer, 1) ctx.gossiper.cfg.NotifyWhenOnline = func(peer *btcec.PublicKey, connectedChan chan<- lnpeer.Peer) { notifyPeers <- connectedChan } // Pretending that we receive local channel announcement from funding // manager, thereby kick off the announcement exchange process. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localProofAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process local proof: %v", err) } // Since sending this local announcement proof to the remote will fail, // the gossiper should register for a notification when the remote is // online again. var conChan chan<- lnpeer.Peer select { case conChan = <-notifyPeers: case <-time.After(2 * time.Second): t.Fatalf("gossiper did not ask to get notified when " + "peer is online") } // Since both proofs are not yet exchanged, no message should be // broadcasted yet. select { case <-ctx.broadcastedMessage: t.Fatal("announcements were broadcast") case <-time.After(2 * trickleDelay): } number := 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 1 { t.Fatal("wrong number of objects in storage") } // When the peer comes online, the gossiper gets notified, and should // retry sending the AnnounceSignatures. We make the SendToPeer // method work again. sentToPeer := make(chan lnwire.Message, 1) ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { sentToPeer <- msg[0] return nil } // Notify that peer is now online. This should trigger a new call // to SendToPeer. close(conChan) select { case <-sentToPeer: case <-time.After(2 * time.Second): t.Fatalf("gossiper did not send message when peer came online") } // Now give the gossiper the remote proof. This should trigger a // broadcast of 3 messages (ChannelAnnouncement + 2 ChannelUpdate). select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.remoteProofAnn, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process remote proof: %v", err) } for i := 0; i < 5; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } number = 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil && err != channeldb.ErrWaitingProofNotFound { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 0 { t.Fatal("waiting proof should be removed from storage") } } // Test that if we restart the gossiper, it will retry sending the // AnnounceSignatures to the peer if it did not succeed before // shutting down, and the full channel proof is not yet assembled. func TestSignatureAnnouncementRetryAtStartup(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(uint32(proofMatureDelta)) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } localKey, err := btcec.ParsePubKey(batch.nodeAnn1.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, nil, nil} // Recreate lightning network topology. Initialize router with channel // between two nodes. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localChanAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.chanUpdAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.nodeAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.chanUpdAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.nodeAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // Make the SendToPeerFail, simulating the peer being offline. ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { return fmt.Errorf("intentional error in SendToPeer") } notifyPeers := make(chan chan<- lnpeer.Peer, 1) ctx.gossiper.cfg.NotifyWhenOnline = func(peer *btcec.PublicKey, connectedChan chan<- lnpeer.Peer) { notifyPeers <- connectedChan } // Pretending that we receive local channel announcement from funding // manager, thereby kick off the announcement exchange process. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.localProofAnn, localKey): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process :%v", err) } // Since sending to the remote peer will fail, the gossiper should // register for a notification when it comes back online. var conChan chan<- lnpeer.Peer select { case conChan = <-notifyPeers: case <-time.After(2 * time.Second): t.Fatalf("gossiper did not ask to get notified when " + "peer is online") } select { case <-ctx.broadcastedMessage: t.Fatal("announcements were broadcast") case <-time.After(2 * trickleDelay): } number := 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 1 { t.Fatal("wrong number of objects in storage") } // Shut down gossiper, and restart. This should trigger a new attempt // to send the message to the peer. ctx.gossiper.Stop() gossiper := New(Config{ Notifier: ctx.gossiper.cfg.Notifier, Broadcast: ctx.gossiper.cfg.Broadcast, SendToPeer: func(target *btcec.PublicKey, msg ...lnwire.Message) error { return fmt.Errorf("intentional error in SendToPeer") }, NotifyWhenOnline: func(peer *btcec.PublicKey, connectedChan chan<- lnpeer.Peer) { notifyPeers <- connectedChan }, Router: ctx.gossiper.cfg.Router, TrickleDelay: trickleDelay, RetransmitDelay: retransmitDelay, ProofMatureDelta: proofMatureDelta, WaitingProofStore: ctx.gossiper.cfg.WaitingProofStore, MessageStore: ctx.gossiper.cfg.MessageStore, }, ctx.gossiper.selfKey) if err != nil { t.Fatalf("unable to recreate gossiper: %v", err) } if err := gossiper.Start(); err != nil { t.Fatalf("unable to start recreated gossiper: %v", err) } defer gossiper.Stop() ctx.gossiper = gossiper // After starting up, the gossiper will see that it has a waitingproof // in the database, and will retry sending its part to the remote. Since // SendToPeer will fail again, it should register for a notification // when the peer comes online. select { case conChan = <-notifyPeers: case <-time.After(2 * time.Second): t.Fatalf("gossiper did not ask to get notified when " + "peer is online") } // Fix the SendToPeer method. sentToPeer := make(chan lnwire.Message, 1) ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { select { case sentToPeer <- msg[0]: case <-ctx.gossiper.quit: return fmt.Errorf("shutting down") } return nil } // Notify that peer is now online. This should trigger a new call // to SendToPeer. close(conChan) select { case <-sentToPeer: case <-time.After(2 * time.Second): t.Fatalf("gossiper did not send message when peer came online") } // Now exchanging the remote channel proof, the channel announcement // broadcast should continue as normal. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.remoteProofAnn, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process :%v", err) } for i := 0; i < 5; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } number = 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil && err != channeldb.ErrWaitingProofNotFound { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 0 { t.Fatal("waiting proof should be removed from storage") } } // TestSignatureAnnouncementFullProofWhenRemoteProof tests that if a // remote proof is received when we already have the full proof, // the gossiper will send the full proof (ChannelAnnouncement) to // the remote peer. func TestSignatureAnnouncementFullProofWhenRemoteProof(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(uint32(proofMatureDelta)) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } localKey, err := btcec.ParsePubKey(batch.nodeAnn1.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, nil, nil} // Recreate lightning network topology. Initialize router with channel // between two nodes. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localChanAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.chanUpdAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.nodeAnn1, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process node ann:%v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.chanUpdAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process channel update: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.nodeAnn2, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // Set up a channel we can use to inspect messages sent by the // gossiper to the remote peer. sentToPeer := make(chan lnwire.Message, 1) remotePeer.sentMsgs = sentToPeer remotePeer.quit = ctx.gossiper.quit ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { select { case <-ctx.gossiper.quit: return fmt.Errorf("gossiper shutting down") case sentToPeer <- msg[0]: } return nil } notifyPeers := make(chan chan<- lnpeer.Peer, 1) ctx.gossiper.cfg.NotifyWhenOnline = func(peer *btcec.PublicKey, connectedChan chan<- lnpeer.Peer) { notifyPeers <- connectedChan } // Pretending that we receive local channel announcement from funding // manager, thereby kick off the announcement exchange process. select { case err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localProofAnn, localKey, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process local proof: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.remoteProofAnn, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process remote proof: %v", err) } // We expect the gossiper to send this message to the remote peer. select { case msg := <-sentToPeer: if msg != batch.localProofAnn { t.Fatalf("wrong message sent to peer: %v", msg) } case <-time.After(2 * time.Second): t.Fatal("did not send local proof to peer") } // All channel and node announcements should be broadcast. for i := 0; i < 5; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } number := 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil && err != channeldb.ErrWaitingProofNotFound { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 0 { t.Fatal("waiting proof should be removed from storage") } // Now give the gossiper the remote proof yet again. This should // trigger a send of the full ChannelAnnouncement. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.remoteProofAnn, remotePeer, ): case <-time.After(2 * time.Second): t.Fatal("did not process local announcement") } if err != nil { t.Fatalf("unable to process remote proof: %v", err) } // We expect the gossiper to send this message to the remote peer. select { case msg := <-sentToPeer: _, ok := msg.(*lnwire.ChannelAnnouncement) if !ok { t.Fatalf("expected ChannelAnnouncement, instead got %T", msg) } case <-time.After(2 * time.Second): t.Fatal("did not send local proof to peer") } } // TestDeDuplicatedAnnouncements ensures that the deDupedAnnouncements struct // properly stores and delivers the set of de-duplicated announcements. func TestDeDuplicatedAnnouncements(t *testing.T) { t.Parallel() timestamp := uint32(123456) announcements := deDupedAnnouncements{} announcements.Reset() // Ensure that after new deDupedAnnouncements struct is created and // reset that storage of each announcement type is empty. if len(announcements.channelAnnouncements) != 0 { t.Fatal("channel announcements map not empty after reset") } if len(announcements.channelUpdates) != 0 { t.Fatal("channel updates map not empty after reset") } if len(announcements.nodeAnnouncements) != 0 { t.Fatal("node announcements map not empty after reset") } // Ensure that remote channel announcements are properly stored // and de-duplicated. ca, err := createRemoteChannelAnnouncement(0) if err != nil { t.Fatalf("can't create remote channel announcement: %v", err) } nodePeer := &mockPeer{bitcoinKeyPub2, nil, nil} announcements.AddMsgs(networkMsg{ msg: ca, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.channelAnnouncements) != 1 { t.Fatal("new channel announcement not stored in batch") } // We'll create a second instance of the same announcement with the // same channel ID. Adding this shouldn't cause an increase in the // number of items as they should be de-duplicated. ca2, err := createRemoteChannelAnnouncement(0) if err != nil { t.Fatalf("can't create remote channel announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: ca2, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.channelAnnouncements) != 1 { t.Fatal("channel announcement not replaced in batch") } // Next, we'll ensure that channel update announcements are properly // stored and de-duplicated. We do this by creating two updates // announcements with the same short ID and flag. ua, err := createUpdateAnnouncement(0, 0, nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create update announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: ua, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.channelUpdates) != 1 { t.Fatal("new channel update not stored in batch") } // Adding the very same announcement shouldn't cause an increase in the // number of ChannelUpdate announcements stored. ua2, err := createUpdateAnnouncement(0, 0, nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create update announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: ua2, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.channelUpdates) != 1 { t.Fatal("channel update not replaced in batch") } // Adding an announcement with a later timestamp should replace the // stored one. ua3, err := createUpdateAnnouncement(0, 0, nodeKeyPriv1, timestamp+1) if err != nil { t.Fatalf("can't create update announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: ua3, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.channelUpdates) != 1 { t.Fatal("channel update not replaced in batch") } assertChannelUpdate := func(channelUpdate *lnwire.ChannelUpdate) { channelKey := channelUpdateID{ ua3.ShortChannelID, ua3.ChannelFlags, } mws, ok := announcements.channelUpdates[channelKey] if !ok { t.Fatal("channel update not in batch") } if mws.msg != channelUpdate { t.Fatalf("expected channel update %v, got %v)", channelUpdate, mws.msg) } } // Check that ua3 is the currently stored channel update. assertChannelUpdate(ua3) // Adding a channel update with an earlier timestamp should NOT // replace the one stored. ua4, err := createUpdateAnnouncement(0, 0, nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create update announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: ua4, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.channelUpdates) != 1 { t.Fatal("channel update not in batch") } assertChannelUpdate(ua3) // Next well ensure that node announcements are properly de-duplicated. // We'll first add a single instance with a node's private key. na, err := createNodeAnnouncement(nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("can't create node announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: na, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.nodeAnnouncements) != 1 { t.Fatal("new node announcement not stored in batch") } // We'll now add another node to the batch. na2, err := createNodeAnnouncement(nodeKeyPriv2, timestamp) if err != nil { t.Fatalf("can't create node announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: na2, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.nodeAnnouncements) != 2 { t.Fatal("second node announcement not stored in batch") } // Adding a new instance of the _same_ node shouldn't increase the size // of the node ann batch. na3, err := createNodeAnnouncement(nodeKeyPriv2, timestamp) if err != nil { t.Fatalf("can't create node announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: na3, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.nodeAnnouncements) != 2 { t.Fatal("second node announcement not replaced in batch") } // Ensure that node announcement with different pointer to same public // key is still de-duplicated. newNodeKeyPointer := nodeKeyPriv2 na4, err := createNodeAnnouncement(newNodeKeyPointer, timestamp) if err != nil { t.Fatalf("can't create node announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: na4, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.nodeAnnouncements) != 2 { t.Fatal("second node announcement not replaced again in batch") } // Ensure that node announcement with increased timestamp replaces // what is currently stored. na5, err := createNodeAnnouncement(nodeKeyPriv2, timestamp+1) if err != nil { t.Fatalf("can't create node announcement: %v", err) } announcements.AddMsgs(networkMsg{ msg: na5, peer: nodePeer, source: nodePeer.IdentityKey(), }) if len(announcements.nodeAnnouncements) != 2 { t.Fatal("node announcement not replaced in batch") } nodeID := routing.NewVertex(nodeKeyPriv2.PubKey()) stored, ok := announcements.nodeAnnouncements[nodeID] if !ok { t.Fatalf("node announcement not found in batch") } if stored.msg != na5 { t.Fatalf("expected de-duped node announcement to be %v, got %v", na5, stored.msg) } // Ensure that announcement batch delivers channel announcements, // channel updates, and node announcements in proper order. batch := announcements.Emit() if len(batch) != 4 { t.Fatal("announcement batch incorrect length") } if !reflect.DeepEqual(batch[0].msg, ca2) { t.Fatalf("channel announcement not first in batch: got %v, "+ "expected %v", spew.Sdump(batch[0].msg), spew.Sdump(ca2)) } if !reflect.DeepEqual(batch[1].msg, ua3) { t.Fatalf("channel update not next in batch: got %v, "+ "expected %v", spew.Sdump(batch[1].msg), spew.Sdump(ua2)) } // We'll ensure that both node announcements are present. We check both // indexes as due to the randomized order of map iteration they may be // in either place. if !reflect.DeepEqual(batch[2].msg, na) && !reflect.DeepEqual(batch[3].msg, na) { t.Fatal("first node announcement not in last part of batch: "+ "got %v, expected %v", batch[2].msg, na) } if !reflect.DeepEqual(batch[2].msg, na5) && !reflect.DeepEqual(batch[3].msg, na5) { t.Fatalf("second node announcement not in last part of batch: "+ "got %v, expected %v", batch[3].msg, na5) } // Ensure that after reset, storage of each announcement type // in deDupedAnnouncements struct is empty again. announcements.Reset() if len(announcements.channelAnnouncements) != 0 { t.Fatal("channel announcements map not empty after reset") } if len(announcements.channelUpdates) != 0 { t.Fatal("channel updates map not empty after reset") } if len(announcements.nodeAnnouncements) != 0 { t.Fatal("node announcements map not empty after reset") } } // TestForwardPrivateNodeAnnouncement ensures that we do not forward node // announcements for nodes who do not intend to publicly advertise themselves. func TestForwardPrivateNodeAnnouncement(t *testing.T) { t.Parallel() const ( startingHeight = 100 timestamp = 123456 ) ctx, cleanup, err := createTestCtx(startingHeight) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() // We'll start off by processing a channel announcement without a proof // (i.e., an unadvertised channel), followed by a node announcement for // this same channel announcement. chanAnn := createAnnouncementWithoutProof(startingHeight - 2) pubKey := nodeKeyPriv1.PubKey() select { case err := <-ctx.gossiper.ProcessLocalAnnouncement(chanAnn, pubKey): if err != nil { t.Fatalf("unable to process local announcement: %v", err) } case <-time.After(2 * time.Second): t.Fatalf("local announcement not processed") } // The gossiper should not broadcast the announcement due to it not // having its announcement signatures. select { case <-ctx.broadcastedMessage: t.Fatal("gossiper should not have broadcast channel announcement") case <-time.After(2 * trickleDelay): } nodeAnn, err := createNodeAnnouncement(nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("unable to create node announcement: %v", err) } select { case err := <-ctx.gossiper.ProcessLocalAnnouncement(nodeAnn, pubKey): if err != nil { t.Fatalf("unable to process remote announcement: %v", err) } case <-time.After(2 * time.Second): t.Fatal("remote announcement not processed") } // The gossiper should also not broadcast the node announcement due to // it not being part of any advertised channels. select { case <-ctx.broadcastedMessage: t.Fatal("gossiper should not have broadcast node announcement") case <-time.After(2 * trickleDelay): } // Now, we'll attempt to forward the NodeAnnouncement for the same node // by opening a public channel on the network. We'll create a // ChannelAnnouncement and hand it off to the gossiper in order to // process it. remoteChanAnn, err := createRemoteChannelAnnouncement(startingHeight - 1) if err != nil { t.Fatalf("unable to create remote channel announcement: %v", err) } peer := &mockPeer{pubKey, nil, nil} select { case err := <-ctx.gossiper.ProcessRemoteAnnouncement(remoteChanAnn, peer): if err != nil { t.Fatalf("unable to process remote announcement: %v", err) } case <-time.After(2 * time.Second): t.Fatal("remote announcement not processed") } select { case <-ctx.broadcastedMessage: case <-time.After(2 * trickleDelay): t.Fatal("gossiper should have broadcast the channel announcement") } // We'll recreate the NodeAnnouncement with an updated timestamp to // prevent a stale update. The NodeAnnouncement should now be forwarded. nodeAnn, err = createNodeAnnouncement(nodeKeyPriv1, timestamp+1) if err != nil { t.Fatalf("unable to create node announcement: %v", err) } select { case err := <-ctx.gossiper.ProcessRemoteAnnouncement(nodeAnn, peer): if err != nil { t.Fatalf("unable to process remote announcement: %v", err) } case <-time.After(2 * time.Second): t.Fatal("remote announcement not processed") } select { case <-ctx.broadcastedMessage: case <-time.After(2 * trickleDelay): t.Fatal("gossiper should have broadcast the node announcement") } } // TestReceiveRemoteChannelUpdateFirst tests that if we receive a // ChannelUpdate from the remote before we have processed our // own ChannelAnnouncement, it will be reprocessed later, after // our ChannelAnnouncement. func TestReceiveRemoteChannelUpdateFirst(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(uint32(proofMatureDelta)) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() // Set up a channel that we can use to inspect the messages // sent directly fromn the gossiper. sentMsgs := make(chan lnwire.Message, 10) ctx.gossiper.cfg.FindPeer = func(target *btcec.PublicKey) (lnpeer.Peer, error) { return &mockPeer{target, sentMsgs, ctx.gossiper.quit}, nil } ctx.gossiper.cfg.SendToPeer = func(target *btcec.PublicKey, msg ...lnwire.Message) error { select { case sentMsgs <- msg[0]: case <-ctx.gossiper.quit: return fmt.Errorf("shutting down") } return nil } batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } localKey, err := btcec.ParsePubKey(batch.nodeAnn1.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, nil, nil} // Recreate the case where the remote node is sending us its ChannelUpdate // before we have been able to process our own ChannelAnnouncement and // ChannelUpdate. errRemoteAnn := ctx.gossiper.ProcessRemoteAnnouncement( batch.chanUpdAnn2, remotePeer, ) select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.nodeAnn2, remotePeer) if err != nil { t.Fatalf("unable to process node ann: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // Since the remote ChannelUpdate was added for an edge that // we did not already know about, it should have been added // to the map of premature ChannelUpdates. Check that nothing // was added to the graph. chanInfo, e1, e2, err := ctx.router.GetChannelByID(batch.chanUpdAnn1.ShortChannelID) if err != channeldb.ErrEdgeNotFound { t.Fatalf("Expected ErrEdgeNotFound, got: %v", err) } if chanInfo != nil { t.Fatalf("chanInfo was not nil") } if e1 != nil { t.Fatalf("e1 was not nil") } if e2 != nil { t.Fatalf("e2 was not nil") } // Recreate lightning network topology. Initialize router with channel // between two nodes. err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.localChanAnn, localKey) if err != nil { t.Fatalf("unable to process :%v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel announcement was broadcast") case <-time.After(2 * trickleDelay): } err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.chanUpdAnn1, localKey) if err != nil { t.Fatalf("unable to process :%v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("channel update announcement was broadcast") case <-time.After(2 * trickleDelay): } err = <-ctx.gossiper.ProcessLocalAnnouncement(batch.nodeAnn1, localKey) if err != nil { t.Fatalf("unable to process :%v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // The local ChannelUpdate should now be sent directly to the remote peer, // such that the edge can be used for routing, regardless if this channel // is announced or not (private channel). select { case msg := <-sentMsgs: if msg != batch.chanUpdAnn1 { t.Fatalf("expected local channel update, instead got %v", msg) } case <-time.After(1 * time.Second): t.Fatal("gossiper did not send channel update to peer") } // At this point the remote ChannelUpdate we received earlier should // be reprocessed, as we now have the necessary edge entry in the graph. select { case err := <-errRemoteAnn: if err != nil { t.Fatalf("error re-processing remote update: %v", err) } case <-time.After(2 * trickleDelay): t.Fatalf("remote update was not processed") } // Check that the ChannelEdgePolicy was added to the graph. chanInfo, e1, e2, err = ctx.router.GetChannelByID( batch.chanUpdAnn1.ShortChannelID, ) if err != nil { t.Fatalf("unable to get channel from router: %v", err) } if chanInfo == nil { t.Fatalf("chanInfo was nil") } if e1 == nil { t.Fatalf("e1 was nil") } if e2 == nil { t.Fatalf("e2 was nil") } // Pretending that we receive local channel announcement from funding // manager, thereby kick off the announcement exchange process. err = <-ctx.gossiper.ProcessLocalAnnouncement( batch.localProofAnn, localKey, ) if err != nil { t.Fatalf("unable to process :%v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("announcements were broadcast") case <-time.After(2 * trickleDelay): } number := 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 1 { t.Fatal("wrong number of objects in storage") } err = <-ctx.gossiper.ProcessRemoteAnnouncement( batch.remoteProofAnn, remotePeer, ) if err != nil { t.Fatalf("unable to process :%v", err) } for i := 0; i < 4; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } number = 0 if err := ctx.gossiper.cfg.WaitingProofStore.ForAll( func(*channeldb.WaitingProof) error { number++ return nil }, ); err != nil && err != channeldb.ErrWaitingProofNotFound { t.Fatalf("unable to retrieve objects from store: %v", err) } if number != 0 { t.Fatal("waiting proof should be removed from storage") } } // TestExtraDataChannelAnnouncementValidation tests that we're able to properly // validate a ChannelAnnouncement that includes opaque bytes that we don't // currently know of. func TestExtraDataChannelAnnouncementValidation(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() remotePeer := &mockPeer{nodeKeyPriv1.PubKey(), nil, nil} // We'll now create an announcement that contains an extra set of bytes // that we don't know of ourselves, but should still include in the // final signature check. extraBytes := []byte("gotta validate this stil!") ca, err := createRemoteChannelAnnouncement(0, extraBytes) if err != nil { t.Fatalf("can't create channel announcement: %v", err) } // We'll now send the announcement to the main gossiper. We should be // able to validate this announcement to problem. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(ca, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process :%v", err) } } // TestExtraDataChannelUpdateValidation tests that we're able to properly // validate a ChannelUpdate that includes opaque bytes that we don't currently // know of. func TestExtraDataChannelUpdateValidation(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() remotePeer := &mockPeer{nodeKeyPriv1.PubKey(), nil, nil} timestamp := uint32(123456) // In this scenario, we'll create two announcements, one regular // channel announcement, and another channel update announcement, that // has additional data that we won't be interpreting. chanAnn, err := createRemoteChannelAnnouncement(0) if err != nil { t.Fatalf("unable to create chan ann: %v", err) } chanUpdAnn1, err := createUpdateAnnouncement( 0, 0, nodeKeyPriv1, timestamp, []byte("must also validate"), ) if err != nil { t.Fatalf("unable to create chan up: %v", err) } chanUpdAnn2, err := createUpdateAnnouncement( 0, 1, nodeKeyPriv2, timestamp, []byte("must also validate"), ) if err != nil { t.Fatalf("unable to create chan up: %v", err) } // We should be able to properly validate all three messages without // any issue. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanAnn, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanUpdAnn1, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanUpdAnn2, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } } // TestExtraDataNodeAnnouncementValidation tests that we're able to properly // validate a NodeAnnouncement that includes opaque bytes that we don't // currently know of. func TestExtraDataNodeAnnouncementValidation(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() remotePeer := &mockPeer{nodeKeyPriv1.PubKey(), nil, nil} timestamp := uint32(123456) // We'll create a node announcement that includes a set of opaque data // which we don't know of, but will store anyway in order to ensure // upgrades can flow smoothly in the future. nodeAnn, err := createNodeAnnouncement( nodeKeyPriv1, timestamp, []byte("gotta validate"), ) if err != nil { t.Fatalf("can't create node announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(nodeAnn, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } } // TestNodeAnnouncementNoChannels tests that NodeAnnouncements for nodes with // no existing channels in the graph do not get forwarded. func TestNodeAnnouncementNoChannels(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() batch, err := createAnnouncements(0) if err != nil { t.Fatalf("can't generate announcements: %v", err) } remoteKey, err := btcec.ParsePubKey(batch.nodeAnn2.NodeID[:], btcec.S256()) if err != nil { t.Fatalf("unable to parse pubkey: %v", err) } remotePeer := &mockPeer{remoteKey, nil, nil} // Process the remote node announcement. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.nodeAnn2, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } // Since no channels or node announcements were already in the graph, // the node announcement should be ignored, and not forwarded. select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } // Now add the node's channel to the graph by processing the channel // announement and channel update. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.remoteChanAnn, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.chanUpdAnn2, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } // Now process the node announcement again. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.nodeAnn2, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } // This time the node announcement should be forwarded. The same should // the channel announcement and update be. for i := 0; i < 3; i++ { select { case <-ctx.broadcastedMessage: case <-time.After(time.Second): t.Fatal("announcement wasn't broadcast") } } // Processing the same node announement again should be ignored, as it // is stale. select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(batch.nodeAnn2, remotePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } select { case <-ctx.broadcastedMessage: t.Fatal("node announcement was broadcast") case <-time.After(2 * trickleDelay): } } // TestOptionalFieldsChannelUpdateValidation tests that we're able to properly // validate the msg flags and optional max HTLC field of a ChannelUpdate. func TestOptionalFieldsChannelUpdateValidation(t *testing.T) { t.Parallel() ctx, cleanup, err := createTestCtx(0) if err != nil { t.Fatalf("can't create context: %v", err) } defer cleanup() chanUpdateHeight := uint32(0) timestamp := uint32(123456) nodePeer := &mockPeer{nodeKeyPriv1.PubKey(), nil, nil} // In this scenario, we'll test whether the message flags field in a channel // update is properly handled. chanAnn, err := createRemoteChannelAnnouncement(chanUpdateHeight) if err != nil { t.Fatalf("can't create channel announcement: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanAnn, nodePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } // The first update should fail from an invalid max HTLC field, which is // less than the min HTLC. chanUpdAnn, err := createUpdateAnnouncement(0, 0, nodeKeyPriv1, timestamp) if err != nil { t.Fatalf("unable to create channel update: %v", err) } chanUpdAnn.HtlcMinimumMsat = 5000 chanUpdAnn.HtlcMaximumMsat = 4000 if err := signUpdate(nodeKeyPriv1, chanUpdAnn); err != nil { t.Fatalf("unable to sign channel update: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanUpdAnn, nodePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err == nil || !strings.Contains(err.Error(), "invalid max htlc") { t.Fatalf("expected chan update to error, instead got %v", err) } // The second update should fail because the message flag is set but // the max HTLC field is 0. chanUpdAnn.HtlcMinimumMsat = 0 chanUpdAnn.HtlcMaximumMsat = 0 if err := signUpdate(nodeKeyPriv1, chanUpdAnn); err != nil { t.Fatalf("unable to sign channel update: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanUpdAnn, nodePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err == nil || !strings.Contains(err.Error(), "invalid max htlc") { t.Fatalf("expected chan update to error, instead got %v", err) } // The final update should succeed, since setting the flag 0 means the // nonsense max_htlc field will just be ignored. chanUpdAnn.MessageFlags = 0 if err := signUpdate(nodeKeyPriv1, chanUpdAnn); err != nil { t.Fatalf("unable to sign channel update: %v", err) } select { case err = <-ctx.gossiper.ProcessRemoteAnnouncement(chanUpdAnn, nodePeer): case <-time.After(2 * time.Second): t.Fatal("did not process remote announcement") } if err != nil { t.Fatalf("unable to process announcement: %v", err) } }