package channeldb import ( "bytes" "crypto/sha256" "fmt" "image/color" "math" "math/big" prand "math/rand" "net" "reflect" "runtime" "testing" "time" "github.com/btcsuite/btcd/btcec" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/davecgh/go-spew/spew" "github.com/lightningnetwork/lnd/channeldb/kvdb" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/routing/route" ) var ( testAddr = &net.TCPAddr{IP: (net.IP)([]byte{0xA, 0x0, 0x0, 0x1}), Port: 9000} anotherAddr, _ = net.ResolveTCPAddr("tcp", "[2001:db8:85a3:0:0:8a2e:370:7334]:80") testAddrs = []net.Addr{testAddr, anotherAddr} testSig = &btcec.Signature{ R: new(big.Int), S: new(big.Int), } _, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10) _, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10) testFeatures = lnwire.NewFeatureVector(nil, lnwire.Features) testPub = route.Vertex{2, 202, 4} ) func createLightningNode(db *DB, priv *btcec.PrivateKey) (*LightningNode, error) { updateTime := prand.Int63() pub := priv.PubKey().SerializeCompressed() n := &LightningNode{ HaveNodeAnnouncement: true, AuthSigBytes: testSig.Serialize(), LastUpdate: time.Unix(updateTime, 0), Color: color.RGBA{1, 2, 3, 0}, Alias: "kek" + string(pub[:]), Features: testFeatures, Addresses: testAddrs, db: db, } copy(n.PubKeyBytes[:], priv.PubKey().SerializeCompressed()) return n, nil } func createTestVertex(db *DB) (*LightningNode, error) { priv, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { return nil, err } return createLightningNode(db, priv) } func TestNodeInsertionAndDeletion(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test basic insertion/deletion for vertexes from the // graph, so we'll create a test vertex to start with. node := &LightningNode{ HaveNodeAnnouncement: true, AuthSigBytes: testSig.Serialize(), LastUpdate: time.Unix(1232342, 0), Color: color.RGBA{1, 2, 3, 0}, Alias: "kek", Features: testFeatures, Addresses: testAddrs, ExtraOpaqueData: []byte("extra new data"), PubKeyBytes: testPub, db: db, } // First, insert the node into the graph DB. This should succeed // without any errors. if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } // Next, fetch the node from the database to ensure everything was // serialized properly. dbNode, err := graph.FetchLightningNode(nil, testPub) if err != nil { t.Fatalf("unable to locate node: %v", err) } if _, exists, err := graph.HasLightningNode(dbNode.PubKeyBytes); err != nil { t.Fatalf("unable to query for node: %v", err) } else if !exists { t.Fatalf("node should be found but wasn't") } // The two nodes should match exactly! if err := compareNodes(node, dbNode); err != nil { t.Fatalf("nodes don't match: %v", err) } // Next, delete the node from the graph, this should purge all data // related to the node. if err := graph.DeleteLightningNode(testPub); err != nil { t.Fatalf("unable to delete node; %v", err) } // Finally, attempt to fetch the node again. This should fail as the // node should have been deleted from the database. _, err = graph.FetchLightningNode(nil, testPub) if err != ErrGraphNodeNotFound { t.Fatalf("fetch after delete should fail!") } } // TestPartialNode checks that we can add and retrieve a LightningNode where // where only the pubkey is known to the database. func TestPartialNode(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We want to be able to insert nodes into the graph that only has the // PubKey set. node := &LightningNode{ HaveNodeAnnouncement: false, PubKeyBytes: testPub, } if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } // Next, fetch the node from the database to ensure everything was // serialized properly. dbNode, err := graph.FetchLightningNode(nil, testPub) if err != nil { t.Fatalf("unable to locate node: %v", err) } if _, exists, err := graph.HasLightningNode(dbNode.PubKeyBytes); err != nil { t.Fatalf("unable to query for node: %v", err) } else if !exists { t.Fatalf("node should be found but wasn't") } // The two nodes should match exactly! (with default values for // LastUpdate and db set to satisfy compareNodes()) node = &LightningNode{ HaveNodeAnnouncement: false, LastUpdate: time.Unix(0, 0), PubKeyBytes: testPub, db: db, } if err := compareNodes(node, dbNode); err != nil { t.Fatalf("nodes don't match: %v", err) } // Next, delete the node from the graph, this should purge all data // related to the node. if err := graph.DeleteLightningNode(testPub); err != nil { t.Fatalf("unable to delete node: %v", err) } // Finally, attempt to fetch the node again. This should fail as the // node should have been deleted from the database. _, err = graph.FetchLightningNode(nil, testPub) if err != ErrGraphNodeNotFound { t.Fatalf("fetch after delete should fail!") } } func TestAliasLookup(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the alias index within the database, so first // create a new test node. testNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // Add the node to the graph's database, this should also insert an // entry into the alias index for this node. if err := graph.AddLightningNode(testNode); err != nil { t.Fatalf("unable to add node: %v", err) } // Next, attempt to lookup the alias. The alias should exactly match // the one which the test node was assigned. nodePub, err := testNode.PubKey() if err != nil { t.Fatalf("unable to generate pubkey: %v", err) } dbAlias, err := graph.LookupAlias(nodePub) if err != nil { t.Fatalf("unable to find alias: %v", err) } if dbAlias != testNode.Alias { t.Fatalf("aliases don't match, expected %v got %v", testNode.Alias, dbAlias) } // Ensure that looking up a non-existent alias results in an error. node, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } nodePub, err = node.PubKey() if err != nil { t.Fatalf("unable to generate pubkey: %v", err) } _, err = graph.LookupAlias(nodePub) if err != ErrNodeAliasNotFound { t.Fatalf("alias lookup should fail for non-existent pubkey") } } func TestSourceNode(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the setting/getting of the source node, so we // first create a fake node to use within the test. testNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // Attempt to fetch the source node, this should return an error as the // source node hasn't yet been set. if _, err := graph.SourceNode(); err != ErrSourceNodeNotSet { t.Fatalf("source node shouldn't be set in new graph") } // Set the source the source node, this should insert the node into the // database in a special way indicating it's the source node. if err := graph.SetSourceNode(testNode); err != nil { t.Fatalf("unable to set source node: %v", err) } // Retrieve the source node from the database, it should exactly match // the one we set above. sourceNode, err := graph.SourceNode() if err != nil { t.Fatalf("unable to fetch source node: %v", err) } if err := compareNodes(testNode, sourceNode); err != nil { t.Fatalf("nodes don't match: %v", err) } } func TestEdgeInsertionDeletion(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the insertion/deletion of edges, so we create two // vertexes to connect. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // In addition to the fake vertexes we create some fake channel // identifiers. chanID := uint64(prand.Int63()) outpoint := wire.OutPoint{ Hash: rev, Index: 9, } // Add the new edge to the database, this should proceed without any // errors. node1Pub, err := node1.PubKey() if err != nil { t.Fatalf("unable to generate node key: %v", err) } node2Pub, err := node2.PubKey() if err != nil { t.Fatalf("unable to generate node key: %v", err) } edgeInfo := ChannelEdgeInfo{ ChannelID: chanID, ChainHash: key, AuthProof: &ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, ChannelPoint: outpoint, Capacity: 9000, } copy(edgeInfo.NodeKey1Bytes[:], node1Pub.SerializeCompressed()) copy(edgeInfo.NodeKey2Bytes[:], node2Pub.SerializeCompressed()) copy(edgeInfo.BitcoinKey1Bytes[:], node1Pub.SerializeCompressed()) copy(edgeInfo.BitcoinKey2Bytes[:], node2Pub.SerializeCompressed()) if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Ensure that both policies are returned as unknown (nil). _, e1, e2, err := graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch channel edge") } if e1 != nil || e2 != nil { t.Fatalf("channel edges not unknown") } // Next, attempt to delete the edge from the database, again this // should proceed without any issues. if err := graph.DeleteChannelEdges(chanID); err != nil { t.Fatalf("unable to delete edge: %v", err) } // Ensure that any query attempts to lookup the delete channel edge are // properly deleted. if _, _, _, err := graph.FetchChannelEdgesByOutpoint(&outpoint); err == nil { t.Fatalf("channel edge not deleted") } if _, _, _, err := graph.FetchChannelEdgesByID(chanID); err == nil { t.Fatalf("channel edge not deleted") } isZombie, _, _ := graph.IsZombieEdge(chanID) if !isZombie { t.Fatal("channel edge not marked as zombie") } // Finally, attempt to delete a (now) non-existent edge within the // database, this should result in an error. err = graph.DeleteChannelEdges(chanID) if err != ErrEdgeNotFound { t.Fatalf("deleting a non-existent edge should fail!") } } func createEdge(height, txIndex uint32, txPosition uint16, outPointIndex uint32, node1, node2 *LightningNode) (ChannelEdgeInfo, lnwire.ShortChannelID) { shortChanID := lnwire.ShortChannelID{ BlockHeight: height, TxIndex: txIndex, TxPosition: txPosition, } outpoint := wire.OutPoint{ Hash: rev, Index: outPointIndex, } node1Pub, _ := node1.PubKey() node2Pub, _ := node2.PubKey() edgeInfo := ChannelEdgeInfo{ ChannelID: shortChanID.ToUint64(), ChainHash: key, AuthProof: &ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, ChannelPoint: outpoint, Capacity: 9000, } copy(edgeInfo.NodeKey1Bytes[:], node1Pub.SerializeCompressed()) copy(edgeInfo.NodeKey2Bytes[:], node2Pub.SerializeCompressed()) copy(edgeInfo.BitcoinKey1Bytes[:], node1Pub.SerializeCompressed()) copy(edgeInfo.BitcoinKey2Bytes[:], node2Pub.SerializeCompressed()) return edgeInfo, shortChanID } // TestDisconnectBlockAtHeight checks that the pruned state of the channel // database is what we expect after calling DisconnectBlockAtHeight. func TestDisconnectBlockAtHeight(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() sourceNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create source node: %v", err) } if err := graph.SetSourceNode(sourceNode); err != nil { t.Fatalf("unable to set source node: %v", err) } // We'd like to test the insertion/deletion of edges, so we create two // vertexes to connect. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // In addition to the fake vertexes we create some fake channel // identifiers. var spendOutputs []*wire.OutPoint var blockHash chainhash.Hash copy(blockHash[:], bytes.Repeat([]byte{1}, 32)) // Prune the graph a few times to make sure we have entries in the // prune log. _, err = graph.PruneGraph(spendOutputs, &blockHash, 155) if err != nil { t.Fatalf("unable to prune graph: %v", err) } var blockHash2 chainhash.Hash copy(blockHash2[:], bytes.Repeat([]byte{2}, 32)) _, err = graph.PruneGraph(spendOutputs, &blockHash2, 156) if err != nil { t.Fatalf("unable to prune graph: %v", err) } // We'll create 3 almost identical edges, so first create a helper // method containing all logic for doing so. // Create an edge which has its block height at 156. height := uint32(156) edgeInfo, _ := createEdge(height, 0, 0, 0, node1, node2) // Create an edge with block height 157. We give it // maximum values for tx index and position, to make // sure our database range scan get edges from the // entire range. edgeInfo2, _ := createEdge( height+1, math.MaxUint32&0x00ffffff, math.MaxUint16, 1, node1, node2, ) // Create a third edge, this with a block height of 155. edgeInfo3, _ := createEdge(height-1, 0, 0, 2, node1, node2) // Now add all these new edges to the database. if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } if err := graph.AddChannelEdge(&edgeInfo2); err != nil { t.Fatalf("unable to create channel edge: %v", err) } if err := graph.AddChannelEdge(&edgeInfo3); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Call DisconnectBlockAtHeight, which should prune every channel // that has a funding height of 'height' or greater. removed, err := graph.DisconnectBlockAtHeight(uint32(height)) if err != nil { t.Fatalf("unable to prune %v", err) } // The two edges should have been removed. if len(removed) != 2 { t.Fatalf("expected two edges to be removed from graph, "+ "only %d were", len(removed)) } if removed[0].ChannelID != edgeInfo.ChannelID { t.Fatalf("expected edge to be removed from graph") } if removed[1].ChannelID != edgeInfo2.ChannelID { t.Fatalf("expected edge to be removed from graph") } // The two first edges should be removed from the db. _, _, has, isZombie, err := graph.HasChannelEdge(edgeInfo.ChannelID) if err != nil { t.Fatalf("unable to query for edge: %v", err) } if has { t.Fatalf("edge1 was not pruned from the graph") } if isZombie { t.Fatal("reorged edge1 should not be marked as zombie") } _, _, has, isZombie, err = graph.HasChannelEdge(edgeInfo2.ChannelID) if err != nil { t.Fatalf("unable to query for edge: %v", err) } if has { t.Fatalf("edge2 was not pruned from the graph") } if isZombie { t.Fatal("reorged edge2 should not be marked as zombie") } // Edge 3 should not be removed. _, _, has, isZombie, err = graph.HasChannelEdge(edgeInfo3.ChannelID) if err != nil { t.Fatalf("unable to query for edge: %v", err) } if !has { t.Fatalf("edge3 was pruned from the graph") } if isZombie { t.Fatal("edge3 was marked as zombie") } // PruneTip should be set to the blockHash we specified for the block // at height 155. hash, h, err := graph.PruneTip() if err != nil { t.Fatalf("unable to get prune tip: %v", err) } if !blockHash.IsEqual(hash) { t.Fatalf("expected best block to be %x, was %x", blockHash, hash) } if h != height-1 { t.Fatalf("expected best block height to be %d, was %d", height-1, h) } } func assertEdgeInfoEqual(t *testing.T, e1 *ChannelEdgeInfo, e2 *ChannelEdgeInfo) { if e1.ChannelID != e2.ChannelID { t.Fatalf("chan id's don't match: %v vs %v", e1.ChannelID, e2.ChannelID) } if e1.ChainHash != e2.ChainHash { t.Fatalf("chain hashes don't match: %v vs %v", e1.ChainHash, e2.ChainHash) } if !bytes.Equal(e1.NodeKey1Bytes[:], e2.NodeKey1Bytes[:]) { t.Fatalf("nodekey1 doesn't match") } if !bytes.Equal(e1.NodeKey2Bytes[:], e2.NodeKey2Bytes[:]) { t.Fatalf("nodekey2 doesn't match") } if !bytes.Equal(e1.BitcoinKey1Bytes[:], e2.BitcoinKey1Bytes[:]) { t.Fatalf("bitcoinkey1 doesn't match") } if !bytes.Equal(e1.BitcoinKey2Bytes[:], e2.BitcoinKey2Bytes[:]) { t.Fatalf("bitcoinkey2 doesn't match") } if !bytes.Equal(e1.Features, e2.Features) { t.Fatalf("features doesn't match: %x vs %x", e1.Features, e2.Features) } if !bytes.Equal(e1.AuthProof.NodeSig1Bytes, e2.AuthProof.NodeSig1Bytes) { t.Fatalf("nodesig1 doesn't match: %v vs %v", spew.Sdump(e1.AuthProof.NodeSig1Bytes), spew.Sdump(e2.AuthProof.NodeSig1Bytes)) } if !bytes.Equal(e1.AuthProof.NodeSig2Bytes, e2.AuthProof.NodeSig2Bytes) { t.Fatalf("nodesig2 doesn't match") } if !bytes.Equal(e1.AuthProof.BitcoinSig1Bytes, e2.AuthProof.BitcoinSig1Bytes) { t.Fatalf("bitcoinsig1 doesn't match") } if !bytes.Equal(e1.AuthProof.BitcoinSig2Bytes, e2.AuthProof.BitcoinSig2Bytes) { t.Fatalf("bitcoinsig2 doesn't match") } if e1.ChannelPoint != e2.ChannelPoint { t.Fatalf("channel point match: %v vs %v", e1.ChannelPoint, e2.ChannelPoint) } if e1.Capacity != e2.Capacity { t.Fatalf("capacity doesn't match: %v vs %v", e1.Capacity, e2.Capacity) } if !bytes.Equal(e1.ExtraOpaqueData, e2.ExtraOpaqueData) { t.Fatalf("extra data doesn't match: %v vs %v", e2.ExtraOpaqueData, e2.ExtraOpaqueData) } } func createChannelEdge(db *DB, node1, node2 *LightningNode) (*ChannelEdgeInfo, *ChannelEdgePolicy, *ChannelEdgePolicy) { var ( firstNode *LightningNode secondNode *LightningNode ) if bytes.Compare(node1.PubKeyBytes[:], node2.PubKeyBytes[:]) == -1 { firstNode = node1 secondNode = node2 } else { firstNode = node2 secondNode = node1 } // In addition to the fake vertexes we create some fake channel // identifiers. chanID := uint64(prand.Int63()) outpoint := wire.OutPoint{ Hash: rev, Index: 9, } // Add the new edge to the database, this should proceed without any // errors. edgeInfo := &ChannelEdgeInfo{ ChannelID: chanID, ChainHash: key, AuthProof: &ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, ChannelPoint: outpoint, Capacity: 1000, ExtraOpaqueData: []byte("new unknown feature"), } copy(edgeInfo.NodeKey1Bytes[:], firstNode.PubKeyBytes[:]) copy(edgeInfo.NodeKey2Bytes[:], secondNode.PubKeyBytes[:]) copy(edgeInfo.BitcoinKey1Bytes[:], firstNode.PubKeyBytes[:]) copy(edgeInfo.BitcoinKey2Bytes[:], secondNode.PubKeyBytes[:]) edge1 := &ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: chanID, LastUpdate: time.Unix(433453, 0), MessageFlags: 1, ChannelFlags: 0, TimeLockDelta: 99, MinHTLC: 2342135, MaxHTLC: 13928598, FeeBaseMSat: 4352345, FeeProportionalMillionths: 3452352, Node: secondNode, ExtraOpaqueData: []byte("new unknown feature2"), db: db, } edge2 := &ChannelEdgePolicy{ SigBytes: testSig.Serialize(), ChannelID: chanID, LastUpdate: time.Unix(124234, 0), MessageFlags: 1, ChannelFlags: 1, TimeLockDelta: 99, MinHTLC: 2342135, MaxHTLC: 13928598, FeeBaseMSat: 4352345, FeeProportionalMillionths: 90392423, Node: firstNode, ExtraOpaqueData: []byte("new unknown feature1"), db: db, } return edgeInfo, edge1, edge2 } func TestEdgeInfoUpdates(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the update of edges inserted into the database, so // we create two vertexes to connect. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // Create an edge and add it to the db. edgeInfo, edge1, edge2 := createChannelEdge(db, node1, node2) // Make sure inserting the policy at this point, before the edge info // is added, will fail. if err := graph.UpdateEdgePolicy(edge1); err != ErrEdgeNotFound { t.Fatalf("expected ErrEdgeNotFound, got: %v", err) } // Add the edge info. if err := graph.AddChannelEdge(edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } chanID := edgeInfo.ChannelID outpoint := edgeInfo.ChannelPoint // Next, insert both edge policies into the database, they should both // be inserted without any issues. if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } // Check for existence of the edge within the database, it should be // found. _, _, found, isZombie, err := graph.HasChannelEdge(chanID) if err != nil { t.Fatalf("unable to query for edge: %v", err) } if !found { t.Fatalf("graph should have of inserted edge") } if isZombie { t.Fatal("live edge should not be marked as zombie") } // We should also be able to retrieve the channelID only knowing the // channel point of the channel. dbChanID, err := graph.ChannelID(&outpoint) if err != nil { t.Fatalf("unable to retrieve channel ID: %v", err) } if dbChanID != chanID { t.Fatalf("chan ID's mismatch, expected %v got %v", dbChanID, chanID) } // With the edges inserted, perform some queries to ensure that they've // been inserted properly. dbEdgeInfo, dbEdge1, dbEdge2, err := graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch channel by ID: %v", err) } if err := compareEdgePolicies(dbEdge1, edge1); err != nil { t.Fatalf("edge doesn't match: %v", err) } if err := compareEdgePolicies(dbEdge2, edge2); err != nil { t.Fatalf("edge doesn't match: %v", err) } assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo) // Next, attempt to query the channel edges according to the outpoint // of the channel. dbEdgeInfo, dbEdge1, dbEdge2, err = graph.FetchChannelEdgesByOutpoint(&outpoint) if err != nil { t.Fatalf("unable to fetch channel by ID: %v", err) } if err := compareEdgePolicies(dbEdge1, edge1); err != nil { t.Fatalf("edge doesn't match: %v", err) } if err := compareEdgePolicies(dbEdge2, edge2); err != nil { t.Fatalf("edge doesn't match: %v", err) } assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo) } func randEdgePolicy(chanID uint64, op wire.OutPoint, db *DB) *ChannelEdgePolicy { update := prand.Int63() return newEdgePolicy(chanID, op, db, update) } func newEdgePolicy(chanID uint64, op wire.OutPoint, db *DB, updateTime int64) *ChannelEdgePolicy { return &ChannelEdgePolicy{ ChannelID: chanID, LastUpdate: time.Unix(updateTime, 0), MessageFlags: 1, ChannelFlags: 0, TimeLockDelta: uint16(prand.Int63()), MinHTLC: lnwire.MilliSatoshi(prand.Int63()), MaxHTLC: lnwire.MilliSatoshi(prand.Int63()), FeeBaseMSat: lnwire.MilliSatoshi(prand.Int63()), FeeProportionalMillionths: lnwire.MilliSatoshi(prand.Int63()), db: db, } } func TestGraphTraversal(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test some of the graph traversal capabilities within // the DB, so we'll create a series of fake nodes to insert into the // graph. const numNodes = 20 nodes := make([]*LightningNode, numNodes) nodeIndex := map[string]struct{}{} for i := 0; i < numNodes; i++ { node, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create node: %v", err) } nodes[i] = node nodeIndex[node.Alias] = struct{}{} } // Add each of the nodes into the graph, they should be inserted // without error. for _, node := range nodes { if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } } // Iterate over each node as returned by the graph, if all nodes are // reached, then the map created above should be empty. err = graph.ForEachNode(func(_ kvdb.RTx, node *LightningNode) error { delete(nodeIndex, node.Alias) return nil }) if err != nil { t.Fatalf("for each failure: %v", err) } if len(nodeIndex) != 0 { t.Fatalf("all nodes not reached within ForEach") } // Determine which node is "smaller", we'll need this in order to // properly create the edges for the graph. var firstNode, secondNode *LightningNode if bytes.Compare(nodes[0].PubKeyBytes[:], nodes[1].PubKeyBytes[:]) == -1 { firstNode = nodes[0] secondNode = nodes[1] } else { firstNode = nodes[0] secondNode = nodes[1] } // Create 5 channels between the first two nodes we generated above. const numChannels = 5 chanIndex := map[uint64]struct{}{} for i := 0; i < numChannels; i++ { txHash := sha256.Sum256([]byte{byte(i)}) chanID := uint64(i + 1) op := wire.OutPoint{ Hash: txHash, Index: 0, } edgeInfo := ChannelEdgeInfo{ ChannelID: chanID, ChainHash: key, AuthProof: &ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, ChannelPoint: op, Capacity: 1000, } copy(edgeInfo.NodeKey1Bytes[:], nodes[0].PubKeyBytes[:]) copy(edgeInfo.NodeKey2Bytes[:], nodes[1].PubKeyBytes[:]) copy(edgeInfo.BitcoinKey1Bytes[:], nodes[0].PubKeyBytes[:]) copy(edgeInfo.BitcoinKey2Bytes[:], nodes[1].PubKeyBytes[:]) err := graph.AddChannelEdge(&edgeInfo) if err != nil { t.Fatalf("unable to add node: %v", err) } // Create and add an edge with random data that points from // node1 -> node2. edge := randEdgePolicy(chanID, op, db) edge.ChannelFlags = 0 edge.Node = secondNode edge.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } // Create another random edge that points from node2 -> node1 // this time. edge = randEdgePolicy(chanID, op, db) edge.ChannelFlags = 1 edge.Node = firstNode edge.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } chanIndex[chanID] = struct{}{} } // Iterate through all the known channels within the graph DB, once // again if the map is empty that indicates that all edges have // properly been reached. err = graph.ForEachChannel(func(ei *ChannelEdgeInfo, _ *ChannelEdgePolicy, _ *ChannelEdgePolicy) error { delete(chanIndex, ei.ChannelID) return nil }) if err != nil { t.Fatalf("for each failure: %v", err) } if len(chanIndex) != 0 { t.Fatalf("all edges not reached within ForEach") } // Finally, we want to test the ability to iterate over all the // outgoing channels for a particular node. numNodeChans := 0 err = firstNode.ForEachChannel(nil, func(_ kvdb.RTx, _ *ChannelEdgeInfo, outEdge, inEdge *ChannelEdgePolicy) error { // All channels between first and second node should have fully // (both sides) specified policies. if inEdge == nil || outEdge == nil { return fmt.Errorf("channel policy not present") } // Each should indicate that it's outgoing (pointed // towards the second node). if !bytes.Equal(outEdge.Node.PubKeyBytes[:], secondNode.PubKeyBytes[:]) { return fmt.Errorf("wrong outgoing edge") } // The incoming edge should also indicate that it's pointing to // the origin node. if !bytes.Equal(inEdge.Node.PubKeyBytes[:], firstNode.PubKeyBytes[:]) { return fmt.Errorf("wrong outgoing edge") } numNodeChans++ return nil }) if err != nil { t.Fatalf("for each failure: %v", err) } if numNodeChans != numChannels { t.Fatalf("all edges for node not reached within ForEach: "+ "expected %v, got %v", numChannels, numNodeChans) } } func assertPruneTip(t *testing.T, graph *ChannelGraph, blockHash *chainhash.Hash, blockHeight uint32) { pruneHash, pruneHeight, err := graph.PruneTip() if err != nil { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: unable to fetch prune tip: %v", line, err) } if !bytes.Equal(blockHash[:], pruneHash[:]) { _, _, line, _ := runtime.Caller(1) t.Fatalf("line: %v, prune tips don't match, expected %x got %x", line, blockHash, pruneHash) } if pruneHeight != blockHeight { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: prune heights don't match, expected %v "+ "got %v", line, blockHeight, pruneHeight) } } func assertNumChans(t *testing.T, graph *ChannelGraph, n int) { numChans := 0 if err := graph.ForEachChannel(func(*ChannelEdgeInfo, *ChannelEdgePolicy, *ChannelEdgePolicy) error { numChans++ return nil }); err != nil { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: unable to scan channels: %v", line, err) } if numChans != n { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: expected %v chans instead have %v", line, n, numChans) } } func assertNumNodes(t *testing.T, graph *ChannelGraph, n int) { numNodes := 0 err := graph.ForEachNode(func(_ kvdb.RTx, _ *LightningNode) error { numNodes++ return nil }) if err != nil { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: unable to scan nodes: %v", line, err) } if numNodes != n { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: expected %v nodes, got %v", line, n, numNodes) } } func assertChanViewEqual(t *testing.T, a []EdgePoint, b []EdgePoint) { if len(a) != len(b) { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: chan views don't match", line) } chanViewSet := make(map[wire.OutPoint]struct{}) for _, op := range a { chanViewSet[op.OutPoint] = struct{}{} } for _, op := range b { if _, ok := chanViewSet[op.OutPoint]; !ok { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: chanPoint(%v) not found in first "+ "view", line, op) } } } func assertChanViewEqualChanPoints(t *testing.T, a []EdgePoint, b []*wire.OutPoint) { if len(a) != len(b) { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: chan views don't match", line) } chanViewSet := make(map[wire.OutPoint]struct{}) for _, op := range a { chanViewSet[op.OutPoint] = struct{}{} } for _, op := range b { if _, ok := chanViewSet[*op]; !ok { _, _, line, _ := runtime.Caller(1) t.Fatalf("line %v: chanPoint(%v) not found in first "+ "view", line, op) } } } func TestGraphPruning(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() sourceNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create source node: %v", err) } if err := graph.SetSourceNode(sourceNode); err != nil { t.Fatalf("unable to set source node: %v", err) } // As initial set up for the test, we'll create a graph with 5 vertexes // and enough edges to create a fully connected graph. The graph will // be rather simple, representing a straight line. const numNodes = 5 graphNodes := make([]*LightningNode, numNodes) for i := 0; i < numNodes; i++ { node, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create node: %v", err) } if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } graphNodes[i] = node } // With the vertexes created, we'll next create a series of channels // between them. channelPoints := make([]*wire.OutPoint, 0, numNodes-1) edgePoints := make([]EdgePoint, 0, numNodes-1) for i := 0; i < numNodes-1; i++ { txHash := sha256.Sum256([]byte{byte(i)}) chanID := uint64(i + 1) op := wire.OutPoint{ Hash: txHash, Index: 0, } channelPoints = append(channelPoints, &op) edgeInfo := ChannelEdgeInfo{ ChannelID: chanID, ChainHash: key, AuthProof: &ChannelAuthProof{ NodeSig1Bytes: testSig.Serialize(), NodeSig2Bytes: testSig.Serialize(), BitcoinSig1Bytes: testSig.Serialize(), BitcoinSig2Bytes: testSig.Serialize(), }, ChannelPoint: op, Capacity: 1000, } copy(edgeInfo.NodeKey1Bytes[:], graphNodes[i].PubKeyBytes[:]) copy(edgeInfo.NodeKey2Bytes[:], graphNodes[i+1].PubKeyBytes[:]) copy(edgeInfo.BitcoinKey1Bytes[:], graphNodes[i].PubKeyBytes[:]) copy(edgeInfo.BitcoinKey2Bytes[:], graphNodes[i+1].PubKeyBytes[:]) if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to add node: %v", err) } pkScript, err := genMultiSigP2WSH( edgeInfo.BitcoinKey1Bytes[:], edgeInfo.BitcoinKey2Bytes[:], ) if err != nil { t.Fatalf("unable to gen multi-sig p2wsh: %v", err) } edgePoints = append(edgePoints, EdgePoint{ FundingPkScript: pkScript, OutPoint: op, }) // Create and add an edge with random data that points from // node_i -> node_i+1 edge := randEdgePolicy(chanID, op, db) edge.ChannelFlags = 0 edge.Node = graphNodes[i] edge.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } // Create another random edge that points from node_i+1 -> // node_i this time. edge = randEdgePolicy(chanID, op, db) edge.ChannelFlags = 1 edge.Node = graphNodes[i] edge.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge); err != nil { t.Fatalf("unable to update edge: %v", err) } } // With all the channel points added, we'll consult the graph to ensure // it has the same channel view as the one we just constructed. channelView, err := graph.ChannelView() if err != nil { t.Fatalf("unable to get graph channel view: %v", err) } assertChanViewEqual(t, channelView, edgePoints) // Now with our test graph created, we can test the pruning // capabilities of the channel graph. // First we create a mock block that ends up closing the first two // channels. var blockHash chainhash.Hash copy(blockHash[:], bytes.Repeat([]byte{1}, 32)) blockHeight := uint32(1) block := channelPoints[:2] prunedChans, err := graph.PruneGraph(block, &blockHash, blockHeight) if err != nil { t.Fatalf("unable to prune graph: %v", err) } if len(prunedChans) != 2 { t.Fatalf("incorrect number of channels pruned: "+ "expected %v, got %v", 2, prunedChans) } // Now ensure that the prune tip has been updated. assertPruneTip(t, graph, &blockHash, blockHeight) // Count up the number of channels known within the graph, only 2 // should be remaining. assertNumChans(t, graph, 2) // Those channels should also be missing from the channel view. channelView, err = graph.ChannelView() if err != nil { t.Fatalf("unable to get graph channel view: %v", err) } assertChanViewEqualChanPoints(t, channelView, channelPoints[2:]) // Next we'll create a block that doesn't close any channels within the // graph to test the negative error case. fakeHash := sha256.Sum256([]byte("test prune")) nonChannel := &wire.OutPoint{ Hash: fakeHash, Index: 9, } blockHash = sha256.Sum256(blockHash[:]) blockHeight = 2 prunedChans, err = graph.PruneGraph( []*wire.OutPoint{nonChannel}, &blockHash, blockHeight, ) if err != nil { t.Fatalf("unable to prune graph: %v", err) } // No channels should have been detected as pruned. if len(prunedChans) != 0 { t.Fatalf("channels were pruned but shouldn't have been") } // Once again, the prune tip should have been updated. We should still // see both channels and their participants, along with the source node. assertPruneTip(t, graph, &blockHash, blockHeight) assertNumChans(t, graph, 2) assertNumNodes(t, graph, 4) // Finally, create a block that prunes the remainder of the channels // from the graph. blockHash = sha256.Sum256(blockHash[:]) blockHeight = 3 prunedChans, err = graph.PruneGraph( channelPoints[2:], &blockHash, blockHeight, ) if err != nil { t.Fatalf("unable to prune graph: %v", err) } // The remainder of the channels should have been pruned from the // graph. if len(prunedChans) != 2 { t.Fatalf("incorrect number of channels pruned: "+ "expected %v, got %v", 2, len(prunedChans)) } // The prune tip should be updated, no channels should be found, and // only the source node should remain within the current graph. assertPruneTip(t, graph, &blockHash, blockHeight) assertNumChans(t, graph, 0) assertNumNodes(t, graph, 1) // Finally, the channel view at this point in the graph should now be // completely empty. Those channels should also be missing from the // channel view. channelView, err = graph.ChannelView() if err != nil { t.Fatalf("unable to get graph channel view: %v", err) } if len(channelView) != 0 { t.Fatalf("channel view should be empty, instead have: %v", channelView) } } // TestHighestChanID tests that we're able to properly retrieve the highest // known channel ID in the database. func TestHighestChanID(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // If we don't yet have any channels in the database, then we should // get a channel ID of zero if we ask for the highest channel ID. bestID, err := graph.HighestChanID() if err != nil { t.Fatalf("unable to get highest ID: %v", err) } if bestID != 0 { t.Fatalf("best ID w/ no chan should be zero, is instead: %v", bestID) } // Next, we'll insert two channels into the database, with each channel // connecting the same two nodes. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // The first channel with be at height 10, while the other will be at // height 100. edge1, _ := createEdge(10, 0, 0, 0, node1, node2) edge2, chanID2 := createEdge(100, 0, 0, 0, node1, node2) if err := graph.AddChannelEdge(&edge1); err != nil { t.Fatalf("unable to create channel edge: %v", err) } if err := graph.AddChannelEdge(&edge2); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Now that the edges has been inserted, we'll query for the highest // known channel ID in the database. bestID, err = graph.HighestChanID() if err != nil { t.Fatalf("unable to get highest ID: %v", err) } if bestID != chanID2.ToUint64() { t.Fatalf("expected %v got %v for best chan ID: ", chanID2.ToUint64(), bestID) } // If we add another edge, then the current best chan ID should be // updated as well. edge3, chanID3 := createEdge(1000, 0, 0, 0, node1, node2) if err := graph.AddChannelEdge(&edge3); err != nil { t.Fatalf("unable to create channel edge: %v", err) } bestID, err = graph.HighestChanID() if err != nil { t.Fatalf("unable to get highest ID: %v", err) } if bestID != chanID3.ToUint64() { t.Fatalf("expected %v got %v for best chan ID: ", chanID3.ToUint64(), bestID) } } // TestChanUpdatesInHorizon tests the we're able to properly retrieve all known // channel updates within a specific time horizon. It also tests that upon // insertion of a new edge, the edge update index is updated properly. func TestChanUpdatesInHorizon(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // If we issue an arbitrary query before any channel updates are // inserted in the database, we should get zero results. chanUpdates, err := graph.ChanUpdatesInHorizon( time.Unix(999, 0), time.Unix(9999, 0), ) if err != nil { t.Fatalf("unable to updates for updates: %v", err) } if len(chanUpdates) != 0 { t.Fatalf("expected 0 chan updates, instead got %v", len(chanUpdates)) } // We'll start by creating two nodes which will seed our test graph. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // We'll now create 10 channels between the two nodes, with update // times 10 seconds after each other. const numChans = 10 startTime := time.Unix(1234, 0) endTime := startTime edges := make([]ChannelEdge, 0, numChans) for i := 0; i < numChans; i++ { txHash := sha256.Sum256([]byte{byte(i)}) op := wire.OutPoint{ Hash: txHash, Index: 0, } channel, chanID := createEdge( uint32(i*10), 0, 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&channel); err != nil { t.Fatalf("unable to create channel edge: %v", err) } edge1UpdateTime := endTime edge2UpdateTime := edge1UpdateTime.Add(time.Second) endTime = endTime.Add(time.Second * 10) edge1 := newEdgePolicy( chanID.ToUint64(), op, db, edge1UpdateTime.Unix(), ) edge1.ChannelFlags = 0 edge1.Node = node2 edge1.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } edge2 := newEdgePolicy( chanID.ToUint64(), op, db, edge2UpdateTime.Unix(), ) edge2.ChannelFlags = 1 edge2.Node = node1 edge2.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } edges = append(edges, ChannelEdge{ Info: &channel, Policy1: edge1, Policy2: edge2, }) } // With our channels loaded, we'll now start our series of queries. queryCases := []struct { start time.Time end time.Time resp []ChannelEdge }{ // If we query for a time range that's strictly below our set // of updates, then we'll get an empty result back. { start: time.Unix(100, 0), end: time.Unix(200, 0), }, // If we query for a time range that's well beyond our set of // updates, we should get an empty set of results back. { start: time.Unix(99999, 0), end: time.Unix(999999, 0), }, // If we query for the start time, and 10 seconds directly // after it, we should only get a single update, that first // one. { start: time.Unix(1234, 0), end: startTime.Add(time.Second * 10), resp: []ChannelEdge{edges[0]}, }, // If we add 10 seconds past the first update, and then // subtract 10 from the last update, then we should only get // the 8 edges in the middle. { start: startTime.Add(time.Second * 10), end: endTime.Add(-time.Second * 10), resp: edges[1:9], }, // If we use the start and end time as is, we should get the // entire range. { start: startTime, end: endTime, resp: edges, }, } for _, queryCase := range queryCases { resp, err := graph.ChanUpdatesInHorizon( queryCase.start, queryCase.end, ) if err != nil { t.Fatalf("unable to query for updates: %v", err) } if len(resp) != len(queryCase.resp) { t.Fatalf("expected %v chans, got %v chans", len(queryCase.resp), len(resp)) } for i := 0; i < len(resp); i++ { chanExp := queryCase.resp[i] chanRet := resp[i] assertEdgeInfoEqual(t, chanExp.Info, chanRet.Info) err := compareEdgePolicies(chanExp.Policy1, chanRet.Policy1) if err != nil { t.Fatal(err) } compareEdgePolicies(chanExp.Policy2, chanRet.Policy2) if err != nil { t.Fatal(err) } } } } // TestNodeUpdatesInHorizon tests that we're able to properly scan and retrieve // the most recent node updates within a particular time horizon. func TestNodeUpdatesInHorizon(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() startTime := time.Unix(1234, 0) endTime := startTime // If we issue an arbitrary query before we insert any nodes into the // database, then we shouldn't get any results back. nodeUpdates, err := graph.NodeUpdatesInHorizon( time.Unix(999, 0), time.Unix(9999, 0), ) if err != nil { t.Fatalf("unable to query for node updates: %v", err) } if len(nodeUpdates) != 0 { t.Fatalf("expected 0 node updates, instead got %v", len(nodeUpdates)) } // We'll create 10 node announcements, each with an update timestamp 10 // seconds after the other. const numNodes = 10 nodeAnns := make([]LightningNode, 0, numNodes) for i := 0; i < numNodes; i++ { nodeAnn, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test vertex: %v", err) } // The node ann will use the current end time as its last // update them, then we'll add 10 seconds in order to create // the proper update time for the next node announcement. updateTime := endTime endTime = updateTime.Add(time.Second * 10) nodeAnn.LastUpdate = updateTime nodeAnns = append(nodeAnns, *nodeAnn) if err := graph.AddLightningNode(nodeAnn); err != nil { t.Fatalf("unable to add lightning node: %v", err) } } queryCases := []struct { start time.Time end time.Time resp []LightningNode }{ // If we query for a time range that's strictly below our set // of updates, then we'll get an empty result back. { start: time.Unix(100, 0), end: time.Unix(200, 0), }, // If we query for a time range that's well beyond our set of // updates, we should get an empty set of results back. { start: time.Unix(99999, 0), end: time.Unix(999999, 0), }, // If we skip he first time epoch with out start time, then we // should get back every now but the first. { start: startTime.Add(time.Second * 10), end: endTime, resp: nodeAnns[1:], }, // If we query for the range as is, we should get all 10 // announcements back. { start: startTime, end: endTime, resp: nodeAnns, }, // If we reduce the ending time by 10 seconds, then we should // get all but the last node we inserted. { start: startTime, end: endTime.Add(-time.Second * 10), resp: nodeAnns[:9], }, } for _, queryCase := range queryCases { resp, err := graph.NodeUpdatesInHorizon(queryCase.start, queryCase.end) if err != nil { t.Fatalf("unable to query for nodes: %v", err) } if len(resp) != len(queryCase.resp) { t.Fatalf("expected %v nodes, got %v nodes", len(queryCase.resp), len(resp)) } for i := 0; i < len(resp); i++ { err := compareNodes(&queryCase.resp[i], &resp[i]) if err != nil { t.Fatal(err) } } } } // TestFilterKnownChanIDs tests that we're able to properly perform the set // differences of an incoming set of channel ID's, and those that we already // know of on disk. func TestFilterKnownChanIDs(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // If we try to filter out a set of channel ID's before we even know of // any channels, then we should get the entire set back. preChanIDs := []uint64{1, 2, 3, 4} filteredIDs, err := graph.FilterKnownChanIDs(preChanIDs) if err != nil { t.Fatalf("unable to filter chan IDs: %v", err) } if !reflect.DeepEqual(preChanIDs, filteredIDs) { t.Fatalf("chan IDs shouldn't have been filtered!") } // We'll start by creating two nodes which will seed our test graph. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // Next, we'll add 5 channel ID's to the graph, each of them having a // block height 10 blocks after the previous. const numChans = 5 chanIDs := make([]uint64, 0, numChans) for i := 0; i < numChans; i++ { channel, chanID := createEdge( uint32(i*10), 0, 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&channel); err != nil { t.Fatalf("unable to create channel edge: %v", err) } chanIDs = append(chanIDs, chanID.ToUint64()) } const numZombies = 5 zombieIDs := make([]uint64, 0, numZombies) for i := 0; i < numZombies; i++ { channel, chanID := createEdge( uint32(i*10+1), 0, 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&channel); err != nil { t.Fatalf("unable to create channel edge: %v", err) } err := graph.DeleteChannelEdges(channel.ChannelID) if err != nil { t.Fatalf("unable to mark edge zombie: %v", err) } zombieIDs = append(zombieIDs, chanID.ToUint64()) } queryCases := []struct { queryIDs []uint64 resp []uint64 }{ // If we attempt to filter out all chanIDs we know of, the // response should be the empty set. { queryIDs: chanIDs, }, // If we attempt to filter out all zombies that we know of, the // response should be the empty set. { queryIDs: zombieIDs, }, // If we query for a set of ID's that we didn't insert, we // should get the same set back. { queryIDs: []uint64{99, 100}, resp: []uint64{99, 100}, }, // If we query for a super-set of our the chan ID's inserted, // we should only get those new chanIDs back. { queryIDs: append(chanIDs, []uint64{99, 101}...), resp: []uint64{99, 101}, }, } for _, queryCase := range queryCases { resp, err := graph.FilterKnownChanIDs(queryCase.queryIDs) if err != nil { t.Fatalf("unable to filter chan IDs: %v", err) } if !reflect.DeepEqual(resp, queryCase.resp) { t.Fatalf("expected %v, got %v", spew.Sdump(queryCase.resp), spew.Sdump(resp)) } } } // TestFilterChannelRange tests that we're able to properly retrieve the full // set of short channel ID's for a given block range. func TestFilterChannelRange(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'll first populate our graph with two nodes. All channels created // below will be made between these two nodes. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // If we try to filter a channel range before we have any channels // inserted, we should get an empty slice of results. resp, err := graph.FilterChannelRange(10, 100) if err != nil { t.Fatalf("unable to filter channels: %v", err) } if len(resp) != 0 { t.Fatalf("expected zero chans, instead got %v", len(resp)) } // To start, we'll create a set of channels, each mined in a block 10 // blocks after the prior one. startHeight := uint32(100) endHeight := startHeight const numChans = 10 chanIDs := make([]uint64, 0, numChans) for i := 0; i < numChans; i++ { chanHeight := endHeight channel, chanID := createEdge( uint32(chanHeight), uint32(i+1), 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&channel); err != nil { t.Fatalf("unable to create channel edge: %v", err) } chanIDs = append(chanIDs, chanID.ToUint64()) endHeight += 10 } // With our channels inserted, we'll construct a series of queries that // we'll execute below in order to exercise the features of the // FilterKnownChanIDs method. queryCases := []struct { startHeight uint32 endHeight uint32 resp []uint64 }{ // If we query for the entire range, then we should get the same // set of short channel IDs back. { startHeight: startHeight, endHeight: endHeight, resp: chanIDs, }, // If we query for a range of channels right before our range, we // shouldn't get any results back. { startHeight: 0, endHeight: 10, }, // If we only query for the last height (range wise), we should // only get that last channel. { startHeight: endHeight - 10, endHeight: endHeight - 10, resp: chanIDs[9:], }, // If we query for just the first height, we should only get a // single channel back (the first one). { startHeight: startHeight, endHeight: startHeight, resp: chanIDs[:1], }, } for i, queryCase := range queryCases { resp, err := graph.FilterChannelRange( queryCase.startHeight, queryCase.endHeight, ) if err != nil { t.Fatalf("unable to issue range query: %v", err) } if !reflect.DeepEqual(resp, queryCase.resp) { t.Fatalf("case #%v: expected %v, got %v", i, queryCase.resp, resp) } } } // TestFetchChanInfos tests that we're able to properly retrieve the full set // of ChannelEdge structs for a given set of short channel ID's. func TestFetchChanInfos(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'll first populate our graph with two nodes. All channels created // below will be made between these two nodes. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // We'll make 5 test channels, ensuring we keep track of which channel // ID corresponds to a particular ChannelEdge. const numChans = 5 startTime := time.Unix(1234, 0) endTime := startTime edges := make([]ChannelEdge, 0, numChans) edgeQuery := make([]uint64, 0, numChans) for i := 0; i < numChans; i++ { txHash := sha256.Sum256([]byte{byte(i)}) op := wire.OutPoint{ Hash: txHash, Index: 0, } channel, chanID := createEdge( uint32(i*10), 0, 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&channel); err != nil { t.Fatalf("unable to create channel edge: %v", err) } updateTime := endTime endTime = updateTime.Add(time.Second * 10) edge1 := newEdgePolicy( chanID.ToUint64(), op, db, updateTime.Unix(), ) edge1.ChannelFlags = 0 edge1.Node = node2 edge1.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } edge2 := newEdgePolicy( chanID.ToUint64(), op, db, updateTime.Unix(), ) edge2.ChannelFlags = 1 edge2.Node = node1 edge2.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } edges = append(edges, ChannelEdge{ Info: &channel, Policy1: edge1, Policy2: edge2, }) edgeQuery = append(edgeQuery, chanID.ToUint64()) } // Add an additional edge that does not exist. The query should skip // this channel and return only infos for the edges that exist. edgeQuery = append(edgeQuery, 500) // Add an another edge to the query that has been marked as a zombie // edge. The query should also skip this channel. zombieChan, zombieChanID := createEdge( 666, 0, 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&zombieChan); err != nil { t.Fatalf("unable to create channel edge: %v", err) } err = graph.DeleteChannelEdges(zombieChan.ChannelID) if err != nil { t.Fatalf("unable to delete and mark edge zombie: %v", err) } edgeQuery = append(edgeQuery, zombieChanID.ToUint64()) // We'll now attempt to query for the range of channel ID's we just // inserted into the database. We should get the exact same set of // edges back. resp, err := graph.FetchChanInfos(edgeQuery) if err != nil { t.Fatalf("unable to fetch chan edges: %v", err) } if len(resp) != len(edges) { t.Fatalf("expected %v edges, instead got %v", len(edges), len(resp)) } for i := 0; i < len(resp); i++ { err := compareEdgePolicies(resp[i].Policy1, edges[i].Policy1) if err != nil { t.Fatalf("edge doesn't match: %v", err) } err = compareEdgePolicies(resp[i].Policy2, edges[i].Policy2) if err != nil { t.Fatalf("edge doesn't match: %v", err) } assertEdgeInfoEqual(t, resp[i].Info, edges[i].Info) } } // TestIncompleteChannelPolicies tests that a channel that only has a policy // specified on one end is properly returned in ForEachChannel calls from // both sides. func TestIncompleteChannelPolicies(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // Create two nodes. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // Create channel between nodes. txHash := sha256.Sum256([]byte{0}) op := wire.OutPoint{ Hash: txHash, Index: 0, } channel, chanID := createEdge( uint32(0), 0, 0, 0, node1, node2, ) if err := graph.AddChannelEdge(&channel); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Ensure that channel is reported with unknown policies. checkPolicies := func(node *LightningNode, expectedIn, expectedOut bool) { calls := 0 err := node.ForEachChannel(nil, func(_ kvdb.RTx, _ *ChannelEdgeInfo, outEdge, inEdge *ChannelEdgePolicy) error { if !expectedOut && outEdge != nil { t.Fatalf("Expected no outgoing policy") } if expectedOut && outEdge == nil { t.Fatalf("Expected an outgoing policy") } if !expectedIn && inEdge != nil { t.Fatalf("Expected no incoming policy") } if expectedIn && inEdge == nil { t.Fatalf("Expected an incoming policy") } calls++ return nil }) if err != nil { t.Fatalf("unable to scan channels: %v", err) } if calls != 1 { t.Fatalf("Expected only one callback call") } } checkPolicies(node2, false, false) // Only create an edge policy for node1 and leave the policy for node2 // unknown. updateTime := time.Unix(1234, 0) edgePolicy := newEdgePolicy( chanID.ToUint64(), op, db, updateTime.Unix(), ) edgePolicy.ChannelFlags = 0 edgePolicy.Node = node2 edgePolicy.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edgePolicy); err != nil { t.Fatalf("unable to update edge: %v", err) } checkPolicies(node1, false, true) checkPolicies(node2, true, false) // Create second policy and assert that both policies are reported // as present. edgePolicy = newEdgePolicy( chanID.ToUint64(), op, db, updateTime.Unix(), ) edgePolicy.ChannelFlags = 1 edgePolicy.Node = node1 edgePolicy.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edgePolicy); err != nil { t.Fatalf("unable to update edge: %v", err) } checkPolicies(node1, true, true) checkPolicies(node2, true, true) } // TestChannelEdgePruningUpdateIndexDeletion tests that once edges are deleted // from the graph, then their entries within the update index are also cleaned // up. func TestChannelEdgePruningUpdateIndexDeletion(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() sourceNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create source node: %v", err) } if err := graph.SetSourceNode(sourceNode); err != nil { t.Fatalf("unable to set source node: %v", err) } // We'll first populate our graph with two nodes. All channels created // below will be made between these two nodes. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // With the two nodes created, we'll now create a random channel, as // well as two edges in the database with distinct update times. edgeInfo, chanID := createEdge(100, 0, 0, 0, node1, node2) if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to add edge: %v", err) } edge1 := randEdgePolicy(chanID.ToUint64(), edgeInfo.ChannelPoint, db) edge1.ChannelFlags = 0 edge1.Node = node1 edge1.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } edge2 := randEdgePolicy(chanID.ToUint64(), edgeInfo.ChannelPoint, db) edge2.ChannelFlags = 1 edge2.Node = node2 edge2.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } // checkIndexTimestamps is a helper function that checks the edge update // index only includes the given timestamps. checkIndexTimestamps := func(timestamps ...uint64) { timestampSet := make(map[uint64]struct{}) for _, t := range timestamps { timestampSet[t] = struct{}{} } err := kvdb.View(db, func(tx kvdb.RTx) error { edges := tx.ReadBucket(edgeBucket) if edges == nil { return ErrGraphNoEdgesFound } edgeUpdateIndex := edges.NestedReadBucket( edgeUpdateIndexBucket, ) if edgeUpdateIndex == nil { return ErrGraphNoEdgesFound } var numEntries int err := edgeUpdateIndex.ForEach(func(k, v []byte) error { numEntries++ return nil }) if err != nil { return err } expectedEntries := len(timestampSet) if numEntries != expectedEntries { return fmt.Errorf("expected %v entries in the "+ "update index, got %v", expectedEntries, numEntries) } return edgeUpdateIndex.ForEach(func(k, _ []byte) error { t := byteOrder.Uint64(k[:8]) if _, ok := timestampSet[t]; !ok { return fmt.Errorf("found unexpected "+ "timestamp "+"%d", t) } return nil }) }, func() {}) if err != nil { t.Fatal(err) } } // With both edges policies added, we'll make sure to check they exist // within the edge update index. checkIndexTimestamps( uint64(edge1.LastUpdate.Unix()), uint64(edge2.LastUpdate.Unix()), ) // Now, we'll update the edge policies to ensure the old timestamps are // removed from the update index. edge1.ChannelFlags = 2 edge1.LastUpdate = time.Now() if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } edge2.ChannelFlags = 3 edge2.LastUpdate = edge1.LastUpdate.Add(time.Hour) if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } // With the policies updated, we should now be able to find their // updated entries within the update index. checkIndexTimestamps( uint64(edge1.LastUpdate.Unix()), uint64(edge2.LastUpdate.Unix()), ) // Now we'll prune the graph, removing the edges, and also the update // index entries from the database all together. var blockHash chainhash.Hash copy(blockHash[:], bytes.Repeat([]byte{2}, 32)) _, err = graph.PruneGraph( []*wire.OutPoint{&edgeInfo.ChannelPoint}, &blockHash, 101, ) if err != nil { t.Fatalf("unable to prune graph: %v", err) } // Finally, we'll check the database state one last time to conclude // that we should no longer be able to locate _any_ entries within the // edge update index. checkIndexTimestamps() } // TestPruneGraphNodes tests that unconnected vertexes are pruned via the // PruneSyncState method. func TestPruneGraphNodes(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } // We'll start off by inserting our source node, to ensure that it's // the only node left after we prune the graph. graph := db.ChannelGraph() sourceNode, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create source node: %v", err) } if err := graph.SetSourceNode(sourceNode); err != nil { t.Fatalf("unable to set source node: %v", err) } // With the source node inserted, we'll now add three nodes to the // channel graph, at the end of the scenario, only two of these nodes // should still be in the graph. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } node3, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node3); err != nil { t.Fatalf("unable to add node: %v", err) } // We'll now add a new edge to the graph, but only actually advertise // the edge of *one* of the nodes. edgeInfo, chanID := createEdge(100, 0, 0, 0, node1, node2) if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to add edge: %v", err) } // We'll now insert an advertised edge, but it'll only be the edge that // points from the first to the second node. edge1 := randEdgePolicy(chanID.ToUint64(), edgeInfo.ChannelPoint, db) edge1.ChannelFlags = 0 edge1.Node = node1 edge1.SigBytes = testSig.Serialize() if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } // We'll now initiate a around of graph pruning. if err := graph.PruneGraphNodes(); err != nil { t.Fatalf("unable to prune graph nodes: %v", err) } // At this point, there should be 3 nodes left in the graph still: the // source node (which can't be pruned), and node 1+2. Nodes 1 and two // should still be left in the graph as there's half of an advertised // edge between them. assertNumNodes(t, graph, 3) // Finally, we'll ensure that node3, the only fully unconnected node as // properly deleted from the graph and not another node in its place. _, err = graph.FetchLightningNode(nil, node3.PubKeyBytes) if err == nil { t.Fatalf("node 3 should have been deleted!") } } // TestAddChannelEdgeShellNodes tests that when we attempt to add a ChannelEdge // to the graph, one or both of the nodes the edge involves aren't found in the // database, then shell edges are created for each node if needed. func TestAddChannelEdgeShellNodes(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // To start, we'll create two nodes, and only add one of them to the // channel graph. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } // We'll now create an edge between the two nodes, as a result, node2 // should be inserted into the database as a shell node. edgeInfo, _ := createEdge(100, 0, 0, 0, node1, node2) if err := graph.AddChannelEdge(&edgeInfo); err != nil { t.Fatalf("unable to add edge: %v", err) } // Ensure that node1 was inserted as a full node, while node2 only has // a shell node present. node1, err = graph.FetchLightningNode(nil, node1.PubKeyBytes) if err != nil { t.Fatalf("unable to fetch node1: %v", err) } if !node1.HaveNodeAnnouncement { t.Fatalf("have shell announcement for node1, shouldn't") } node2, err = graph.FetchLightningNode(nil, node2.PubKeyBytes) if err != nil { t.Fatalf("unable to fetch node2: %v", err) } if node2.HaveNodeAnnouncement { t.Fatalf("should have shell announcement for node2, but is full") } } // TestNodePruningUpdateIndexDeletion tests that once a node has been removed // from the channel graph, we also remove the entry from the update index as // well. func TestNodePruningUpdateIndexDeletion(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'll first populate our graph with a single node that will be // removed shortly. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } // We'll confirm that we can retrieve the node using // NodeUpdatesInHorizon, using a time that's slightly beyond the last // update time of our test node. startTime := time.Unix(9, 0) endTime := node1.LastUpdate.Add(time.Minute) nodesInHorizon, err := graph.NodeUpdatesInHorizon(startTime, endTime) if err != nil { t.Fatalf("unable to fetch nodes in horizon: %v", err) } // We should only have a single node, and that node should exactly // match the node we just inserted. if len(nodesInHorizon) != 1 { t.Fatalf("should have 1 nodes instead have: %v", len(nodesInHorizon)) } if err := compareNodes(node1, &nodesInHorizon[0]); err != nil { t.Fatalf("nodes don't match: %v", err) } // We'll now delete the node from the graph, this should result in it // being removed from the update index as well. if err := graph.DeleteLightningNode(node1.PubKeyBytes); err != nil { t.Fatalf("unable to delete node: %v", err) } // Now that the node has been deleted, we'll again query the nodes in // the horizon. This time we should have no nodes at all. nodesInHorizon, err = graph.NodeUpdatesInHorizon(startTime, endTime) if err != nil { t.Fatalf("unable to fetch nodes in horizon: %v", err) } if len(nodesInHorizon) != 0 { t.Fatalf("should have zero nodes instead have: %v", len(nodesInHorizon)) } } // TestNodeIsPublic ensures that we properly detect nodes that are seen as // public within the network graph. func TestNodeIsPublic(t *testing.T) { t.Parallel() // We'll start off the test by creating a small network of 3 // participants with the following graph: // // Alice <-> Bob <-> Carol // // We'll need to create a separate database and channel graph for each // participant to replicate real-world scenarios (private edges being in // some graphs but not others, etc.). aliceDB, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } aliceNode, err := createTestVertex(aliceDB) if err != nil { t.Fatalf("unable to create test node: %v", err) } aliceGraph := aliceDB.ChannelGraph() if err := aliceGraph.SetSourceNode(aliceNode); err != nil { t.Fatalf("unable to set source node: %v", err) } bobDB, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } bobNode, err := createTestVertex(bobDB) if err != nil { t.Fatalf("unable to create test node: %v", err) } bobGraph := bobDB.ChannelGraph() if err := bobGraph.SetSourceNode(bobNode); err != nil { t.Fatalf("unable to set source node: %v", err) } carolDB, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } carolNode, err := createTestVertex(carolDB) if err != nil { t.Fatalf("unable to create test node: %v", err) } carolGraph := carolDB.ChannelGraph() if err := carolGraph.SetSourceNode(carolNode); err != nil { t.Fatalf("unable to set source node: %v", err) } aliceBobEdge, _ := createEdge(10, 0, 0, 0, aliceNode, bobNode) bobCarolEdge, _ := createEdge(10, 1, 0, 1, bobNode, carolNode) // After creating all of our nodes and edges, we'll add them to each // participant's graph. nodes := []*LightningNode{aliceNode, bobNode, carolNode} edges := []*ChannelEdgeInfo{&aliceBobEdge, &bobCarolEdge} dbs := []*DB{aliceDB, bobDB, carolDB} graphs := []*ChannelGraph{aliceGraph, bobGraph, carolGraph} for i, graph := range graphs { for _, node := range nodes { node.db = dbs[i] if err := graph.AddLightningNode(node); err != nil { t.Fatalf("unable to add node: %v", err) } } for _, edge := range edges { edge.db = dbs[i] if err := graph.AddChannelEdge(edge); err != nil { t.Fatalf("unable to add edge: %v", err) } } } // checkNodes is a helper closure that will be used to assert that the // given nodes are seen as public/private within the given graphs. checkNodes := func(nodes []*LightningNode, graphs []*ChannelGraph, public bool) { t.Helper() for _, node := range nodes { for _, graph := range graphs { isPublic, err := graph.IsPublicNode(node.PubKeyBytes) if err != nil { t.Fatalf("unable to determine if pivot "+ "is public: %v", err) } switch { case isPublic && !public: t.Fatalf("expected %x to be private", node.PubKeyBytes) case !isPublic && public: t.Fatalf("expected %x to be public", node.PubKeyBytes) } } } } // Due to the way the edges were set up above, we'll make sure each node // can correctly determine that every other node is public. checkNodes(nodes, graphs, true) // Now, we'll remove the edge between Alice and Bob from everyone's // graph. This will make Alice be seen as a private node as it no longer // has any advertised edges. for _, graph := range graphs { err := graph.DeleteChannelEdges(aliceBobEdge.ChannelID) if err != nil { t.Fatalf("unable to remove edge: %v", err) } } checkNodes( []*LightningNode{aliceNode}, []*ChannelGraph{bobGraph, carolGraph}, false, ) // We'll also make the edge between Bob and Carol private. Within Bob's // and Carol's graph, the edge will exist, but it will not have a proof // that allows it to be advertised. Within Alice's graph, we'll // completely remove the edge as it is not possible for her to know of // it without it being advertised. for i, graph := range graphs { err := graph.DeleteChannelEdges(bobCarolEdge.ChannelID) if err != nil { t.Fatalf("unable to remove edge: %v", err) } if graph == aliceGraph { continue } bobCarolEdge.AuthProof = nil bobCarolEdge.db = dbs[i] if err := graph.AddChannelEdge(&bobCarolEdge); err != nil { t.Fatalf("unable to add edge: %v", err) } } // With the modifications above, Bob should now be seen as a private // node from both Alice's and Carol's perspective. checkNodes( []*LightningNode{bobNode}, []*ChannelGraph{aliceGraph, carolGraph}, false, ) } // TestDisabledChannelIDs ensures that the disabled channels within the // disabledEdgePolicyBucket are managed properly and the list returned from // DisabledChannelIDs is correct. func TestDisabledChannelIDs(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() if err != nil { t.Fatalf("unable to make test database: %v", err) } defer cleanUp() graph := db.ChannelGraph() // Create first node and add it to the graph. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } // Create second node and add it to the graph. node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } // Adding a new channel edge to the graph. edgeInfo, edge1, edge2 := createChannelEdge(db, node1, node2) if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } if err := graph.AddChannelEdge(edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Ensure no disabled channels exist in the bucket on start. disabledChanIds, err := graph.DisabledChannelIDs() if err != nil { t.Fatalf("unable to get disabled channel ids: %v", err) } if len(disabledChanIds) > 0 { t.Fatalf("expected empty disabled channels, got %v disabled channels", len(disabledChanIds)) } // Add one disabled policy and ensure the channel is still not in the // disabled list. edge1.ChannelFlags |= lnwire.ChanUpdateDisabled if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } disabledChanIds, err = graph.DisabledChannelIDs() if err != nil { t.Fatalf("unable to get disabled channel ids: %v", err) } if len(disabledChanIds) > 0 { t.Fatalf("expected empty disabled channels, got %v disabled channels", len(disabledChanIds)) } // Add second disabled policy and ensure the channel is now in the // disabled list. edge2.ChannelFlags |= lnwire.ChanUpdateDisabled if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } disabledChanIds, err = graph.DisabledChannelIDs() if err != nil { t.Fatalf("unable to get disabled channel ids: %v", err) } if len(disabledChanIds) != 1 || disabledChanIds[0] != edgeInfo.ChannelID { t.Fatalf("expected disabled channel with id %v, "+ "got %v", edgeInfo.ChannelID, disabledChanIds) } // Delete the channel edge and ensure it is removed from the disabled list. if err = graph.DeleteChannelEdges(edgeInfo.ChannelID); err != nil { t.Fatalf("unable to delete channel edge: %v", err) } disabledChanIds, err = graph.DisabledChannelIDs() if err != nil { t.Fatalf("unable to get disabled channel ids: %v", err) } if len(disabledChanIds) > 0 { t.Fatalf("expected empty disabled channels, got %v disabled channels", len(disabledChanIds)) } } // TestEdgePolicyMissingMaxHtcl tests that if we find a ChannelEdgePolicy in // the DB that indicates that it should support the htlc_maximum_value_msat // field, but it is not part of the opaque data, then we'll handle it as it is // unknown. It also checks that we are correctly able to overwrite it when we // receive the proper update. func TestEdgePolicyMissingMaxHtcl(t *testing.T) { t.Parallel() db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to make test database: %v", err) } graph := db.ChannelGraph() // We'd like to test the update of edges inserted into the database, so // we create two vertexes to connect. node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } if err := graph.AddLightningNode(node1); err != nil { t.Fatalf("unable to add node: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test node: %v", err) } edgeInfo, edge1, edge2 := createChannelEdge(db, node1, node2) if err := graph.AddLightningNode(node2); err != nil { t.Fatalf("unable to add node: %v", err) } if err := graph.AddChannelEdge(edgeInfo); err != nil { t.Fatalf("unable to create channel edge: %v", err) } chanID := edgeInfo.ChannelID from := edge2.Node.PubKeyBytes[:] to := edge1.Node.PubKeyBytes[:] // We'll remove the no max_htlc field from the first edge policy, and // all other opaque data, and serialize it. edge1.MessageFlags = 0 edge1.ExtraOpaqueData = nil var b bytes.Buffer err = serializeChanEdgePolicy(&b, edge1, to) if err != nil { t.Fatalf("unable to serialize policy") } // Set the max_htlc field. The extra bytes added to the serialization // will be the opaque data containing the serialized field. edge1.MessageFlags = lnwire.ChanUpdateOptionMaxHtlc edge1.MaxHTLC = 13928598 var b2 bytes.Buffer err = serializeChanEdgePolicy(&b2, edge1, to) if err != nil { t.Fatalf("unable to serialize policy") } withMaxHtlc := b2.Bytes() // Remove the opaque data from the serialization. stripped := withMaxHtlc[:len(b.Bytes())] // Attempting to deserialize these bytes should return an error. r := bytes.NewReader(stripped) err = kvdb.View(db, func(tx kvdb.RTx) error { nodes := tx.ReadBucket(nodeBucket) if nodes == nil { return ErrGraphNotFound } _, err = deserializeChanEdgePolicy(r, nodes) if err != ErrEdgePolicyOptionalFieldNotFound { t.Fatalf("expected "+ "ErrEdgePolicyOptionalFieldNotFound, got %v", err) } return nil }, func() {}) if err != nil { t.Fatalf("error reading db: %v", err) } // Put the stripped bytes in the DB. err = kvdb.Update(db, func(tx kvdb.RwTx) error { edges := tx.ReadWriteBucket(edgeBucket) if edges == nil { return ErrEdgeNotFound } edgeIndex := edges.NestedReadWriteBucket(edgeIndexBucket) if edgeIndex == nil { return ErrEdgeNotFound } var edgeKey [33 + 8]byte copy(edgeKey[:], from) byteOrder.PutUint64(edgeKey[33:], edge1.ChannelID) var scratch [8]byte var indexKey [8 + 8]byte copy(indexKey[:], scratch[:]) byteOrder.PutUint64(indexKey[8:], edge1.ChannelID) updateIndex, err := edges.CreateBucketIfNotExists(edgeUpdateIndexBucket) if err != nil { return err } if err := updateIndex.Put(indexKey[:], nil); err != nil { return err } return edges.Put(edgeKey[:], stripped) }) if err != nil { t.Fatalf("error writing db: %v", err) } // And add the second, unmodified edge. if err := graph.UpdateEdgePolicy(edge2); err != nil { t.Fatalf("unable to update edge: %v", err) } // Attempt to fetch the edge and policies from the DB. Since the policy // we added is invalid according to the new format, it should be as we // are not aware of the policy (indicated by the policy returned being // nil) dbEdgeInfo, dbEdge1, dbEdge2, err := graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch channel by ID: %v", err) } // The first edge should have a nil-policy returned if dbEdge1 != nil { t.Fatalf("expected db edge to be nil") } if err := compareEdgePolicies(dbEdge2, edge2); err != nil { t.Fatalf("edge doesn't match: %v", err) } assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo) // Now add the original, unmodified edge policy, and make sure the edge // policies then become fully populated. if err := graph.UpdateEdgePolicy(edge1); err != nil { t.Fatalf("unable to update edge: %v", err) } dbEdgeInfo, dbEdge1, dbEdge2, err = graph.FetchChannelEdgesByID(chanID) if err != nil { t.Fatalf("unable to fetch channel by ID: %v", err) } if err := compareEdgePolicies(dbEdge1, edge1); err != nil { t.Fatalf("edge doesn't match: %v", err) } if err := compareEdgePolicies(dbEdge2, edge2); err != nil { t.Fatalf("edge doesn't match: %v", err) } assertEdgeInfoEqual(t, dbEdgeInfo, edgeInfo) } // assertNumZombies queries the provided ChannelGraph for NumZombies, and // asserts that the returned number is equal to expZombies. func assertNumZombies(t *testing.T, graph *ChannelGraph, expZombies uint64) { t.Helper() numZombies, err := graph.NumZombies() if err != nil { t.Fatalf("unable to query number of zombies: %v", err) } if numZombies != expZombies { t.Fatalf("expected %d zombies, found %d", expZombies, numZombies) } } // TestGraphZombieIndex ensures that we can mark edges correctly as zombie/live. func TestGraphZombieIndex(t *testing.T) { t.Parallel() // We'll start by creating our test graph along with a test edge. db, cleanUp, err := MakeTestDB() defer cleanUp() if err != nil { t.Fatalf("unable to create test database: %v", err) } graph := db.ChannelGraph() node1, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test vertex: %v", err) } node2, err := createTestVertex(db) if err != nil { t.Fatalf("unable to create test vertex: %v", err) } // Swap the nodes if the second's pubkey is smaller than the first. // Without this, the comparisons at the end will fail probabilistically. if bytes.Compare(node2.PubKeyBytes[:], node1.PubKeyBytes[:]) < 0 { node1, node2 = node2, node1 } edge, _, _ := createChannelEdge(db, node1, node2) if err := graph.AddChannelEdge(edge); err != nil { t.Fatalf("unable to create channel edge: %v", err) } // Since the edge is known the graph and it isn't a zombie, IsZombieEdge // should not report the channel as a zombie. isZombie, _, _ := graph.IsZombieEdge(edge.ChannelID) if isZombie { t.Fatal("expected edge to not be marked as zombie") } assertNumZombies(t, graph, 0) // If we delete the edge and mark it as a zombie, then we should expect // to see it within the index. err = graph.DeleteChannelEdges(edge.ChannelID) if err != nil { t.Fatalf("unable to mark edge as zombie: %v", err) } isZombie, pubKey1, pubKey2 := graph.IsZombieEdge(edge.ChannelID) if !isZombie { t.Fatal("expected edge to be marked as zombie") } if pubKey1 != node1.PubKeyBytes { t.Fatalf("expected pubKey1 %x, got %x", node1.PubKeyBytes, pubKey1) } if pubKey2 != node2.PubKeyBytes { t.Fatalf("expected pubKey2 %x, got %x", node2.PubKeyBytes, pubKey2) } assertNumZombies(t, graph, 1) // Similarly, if we mark the same edge as live, we should no longer see // it within the index. if err := graph.MarkEdgeLive(edge.ChannelID); err != nil { t.Fatalf("unable to mark edge as live: %v", err) } isZombie, _, _ = graph.IsZombieEdge(edge.ChannelID) if isZombie { t.Fatal("expected edge to not be marked as zombie") } assertNumZombies(t, graph, 0) } // compareNodes is used to compare two LightningNodes while excluding the // Features struct, which cannot be compared as the semantics for reserializing // the featuresMap have not been defined. func compareNodes(a, b *LightningNode) error { if a.LastUpdate != b.LastUpdate { return fmt.Errorf("node LastUpdate doesn't match: expected %v, \n"+ "got %v", a.LastUpdate, b.LastUpdate) } if !reflect.DeepEqual(a.Addresses, b.Addresses) { return fmt.Errorf("Addresses doesn't match: expected %#v, \n "+ "got %#v", a.Addresses, b.Addresses) } if !reflect.DeepEqual(a.PubKeyBytes, b.PubKeyBytes) { return fmt.Errorf("PubKey doesn't match: expected %#v, \n "+ "got %#v", a.PubKeyBytes, b.PubKeyBytes) } if !reflect.DeepEqual(a.Color, b.Color) { return fmt.Errorf("Color doesn't match: expected %#v, \n "+ "got %#v", a.Color, b.Color) } if !reflect.DeepEqual(a.Alias, b.Alias) { return fmt.Errorf("Alias doesn't match: expected %#v, \n "+ "got %#v", a.Alias, b.Alias) } if !reflect.DeepEqual(a.db, b.db) { return fmt.Errorf("db doesn't match: expected %#v, \n "+ "got %#v", a.db, b.db) } if !reflect.DeepEqual(a.HaveNodeAnnouncement, b.HaveNodeAnnouncement) { return fmt.Errorf("HaveNodeAnnouncement doesn't match: expected %#v, \n "+ "got %#v", a.HaveNodeAnnouncement, b.HaveNodeAnnouncement) } if !bytes.Equal(a.ExtraOpaqueData, b.ExtraOpaqueData) { return fmt.Errorf("extra data doesn't match: %v vs %v", a.ExtraOpaqueData, b.ExtraOpaqueData) } return nil } // compareEdgePolicies is used to compare two ChannelEdgePolices using // compareNodes, so as to exclude comparisons of the Nodes' Features struct. func compareEdgePolicies(a, b *ChannelEdgePolicy) error { if a.ChannelID != b.ChannelID { return fmt.Errorf("ChannelID doesn't match: expected %v, "+ "got %v", a.ChannelID, b.ChannelID) } if !reflect.DeepEqual(a.LastUpdate, b.LastUpdate) { return fmt.Errorf("edge LastUpdate doesn't match: expected %#v, \n "+ "got %#v", a.LastUpdate, b.LastUpdate) } if a.MessageFlags != b.MessageFlags { return fmt.Errorf("MessageFlags doesn't match: expected %v, "+ "got %v", a.MessageFlags, b.MessageFlags) } if a.ChannelFlags != b.ChannelFlags { return fmt.Errorf("ChannelFlags doesn't match: expected %v, "+ "got %v", a.ChannelFlags, b.ChannelFlags) } if a.TimeLockDelta != b.TimeLockDelta { return fmt.Errorf("TimeLockDelta doesn't match: expected %v, "+ "got %v", a.TimeLockDelta, b.TimeLockDelta) } if a.MinHTLC != b.MinHTLC { return fmt.Errorf("MinHTLC doesn't match: expected %v, "+ "got %v", a.MinHTLC, b.MinHTLC) } if a.MaxHTLC != b.MaxHTLC { return fmt.Errorf("MaxHTLC doesn't match: expected %v, "+ "got %v", a.MaxHTLC, b.MaxHTLC) } if a.FeeBaseMSat != b.FeeBaseMSat { return fmt.Errorf("FeeBaseMSat doesn't match: expected %v, "+ "got %v", a.FeeBaseMSat, b.FeeBaseMSat) } if a.FeeProportionalMillionths != b.FeeProportionalMillionths { return fmt.Errorf("FeeProportionalMillionths doesn't match: "+ "expected %v, got %v", a.FeeProportionalMillionths, b.FeeProportionalMillionths) } if !bytes.Equal(a.ExtraOpaqueData, b.ExtraOpaqueData) { return fmt.Errorf("extra data doesn't match: %v vs %v", a.ExtraOpaqueData, b.ExtraOpaqueData) } if err := compareNodes(a.Node, b.Node); err != nil { return err } if !reflect.DeepEqual(a.db, b.db) { return fmt.Errorf("db doesn't match: expected %#v, \n "+ "got %#v", a.db, b.db) } return nil } // TestLightningNodeSigVerifcation checks that we can use the LightningNode's // pubkey to verify signatures. func TestLightningNodeSigVerification(t *testing.T) { t.Parallel() // Create some dummy data to sign. var data [32]byte if _, err := prand.Read(data[:]); err != nil { t.Fatalf("unable to read prand: %v", err) } // Create private key and sign the data with it. priv, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Fatalf("unable to crete priv key: %v", err) } sign, err := priv.Sign(data[:]) if err != nil { t.Fatalf("unable to sign: %v", err) } // Sanity check that the signature checks out. if !sign.Verify(data[:], priv.PubKey()) { t.Fatalf("signature doesn't check out") } // Create a LightningNode from the same private key. db, cleanUp, err := MakeTestDB() if err != nil { t.Fatalf("unable to make test database: %v", err) } defer cleanUp() node, err := createLightningNode(db, priv) if err != nil { t.Fatalf("unable to create node: %v", err) } // And finally check that we can verify the same signature from the // pubkey returned from the lightning node. nodePub, err := node.PubKey() if err != nil { t.Fatalf("unable to get pubkey: %v", err) } if !sign.Verify(data[:], nodePub) { t.Fatalf("unable to verify sig") } } // TestComputeFee tests fee calculation based on both in- and outgoing amt. func TestComputeFee(t *testing.T) { var ( policy = ChannelEdgePolicy{ FeeBaseMSat: 10000, FeeProportionalMillionths: 30000, } outgoingAmt = lnwire.MilliSatoshi(1000000) expectedFee = lnwire.MilliSatoshi(40000) ) fee := policy.ComputeFee(outgoingAmt) if fee != expectedFee { t.Fatalf("expected fee %v, got %v", expectedFee, fee) } fwdFee := policy.ComputeFeeFromIncoming(outgoingAmt + fee) if fwdFee != expectedFee { t.Fatalf("expected fee %v, but got %v", fee, fwdFee) } }