// +build rpctest package lnd import ( "context" "fmt" "time" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/davecgh/go-spew/spew" "github.com/lightningnetwork/lnd/lnrpc" "github.com/lightningnetwork/lnd/lnrpc/invoicesrpc" "github.com/lightningnetwork/lnd/lntest" "github.com/lightningnetwork/lnd/lntypes" ) // testMultiHopReceiverChainClaim tests that in the multi-hop setting, if the // receiver of an HTLC knows the preimage, but wasn't able to settle the HTLC // off-chain, then it goes on chain to claim the HTLC. In this scenario, the // node that sent the outgoing HTLC should extract the preimage from the sweep // transaction, and finish settling the HTLC backwards into the route. func testMultiHopReceiverChainClaim(net *lntest.NetworkHarness, t *harnessTest) { ctxb := context.Background() // First, we'll create a three hop network: Alice -> Bob -> Carol, with // Carol refusing to actually settle or directly cancel any HTLC's // self. aliceChanPoint, bobChanPoint, carol := createThreeHopNetwork( t, net, false, ) // Clean up carol's node when the test finishes. defer shutdownAndAssert(net, t, carol) // With the network active, we'll now add a new hodl invoice at Carol's // end. Make sure the cltv expiry delta is large enough, otherwise Bob // won't send out the outgoing htlc. const invoiceAmt = 100000 preimage := lntypes.Preimage{1, 2, 4} payHash := preimage.Hash() invoiceReq := &invoicesrpc.AddHoldInvoiceRequest{ Value: invoiceAmt, CltvExpiry: 40, Hash: payHash[:], } ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout) defer cancel() carolInvoice, err := carol.AddHoldInvoice(ctxt, invoiceReq) if err != nil { t.Fatalf("unable to add invoice: %v", err) } // Now that we've created the invoice, we'll send a single payment from // Alice to Carol. We won't wait for the response however, as Carol // will not immediately settle the payment. ctx, cancel := context.WithCancel(ctxb) defer cancel() alicePayStream, err := net.Alice.SendPayment(ctx) if err != nil { t.Fatalf("unable to create payment stream for alice: %v", err) } err = alicePayStream.Send(&lnrpc.SendRequest{ PaymentRequest: carolInvoice.PaymentRequest, }) if err != nil { t.Fatalf("unable to send payment: %v", err) } // At this point, all 3 nodes should now have an active channel with // the created HTLC pending on all of them. var predErr error nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol} err = lntest.WaitPredicate(func() bool { predErr = assertActiveHtlcs(nodes, payHash[:]) if predErr != nil { return false } return true }, time.Second*15) if err != nil { t.Fatalf("htlc mismatch: %v", predErr) } // Wait for carol to mark invoice as accepted. There is a small gap to // bridge between adding the htlc to the channel and executing the exit // hop logic. waitForInvoiceAccepted(t, carol, payHash) restartBob, err := net.SuspendNode(net.Bob) if err != nil { t.Fatalf("unable to suspend bob: %v", err) } // Settle invoice. This will just mark the invoice as settled, as there // is no link anymore to remove the htlc from the commitment tx. For // this test, it is important to actually settle and not leave the // invoice in the accepted state, because without a known preimage, the // channel arbitrator won't go to chain. ctx, cancel = context.WithTimeout(ctxb, defaultTimeout) defer cancel() _, err = carol.SettleInvoice(ctx, &invoicesrpc.SettleInvoiceMsg{ Preimage: preimage[:], }) if err != nil { t.Fatalf("settle invoice: %v", err) } // Now we'll mine enough blocks to prompt carol to actually go to the // chain in order to sweep her HTLC since the value is high enough. // TODO(roasbeef): modify once go to chain policy changes numBlocks := uint32( invoiceReq.CltvExpiry - defaultIncomingBroadcastDelta, ) if _, err := net.Miner.Node.Generate(numBlocks); err != nil { t.Fatalf("unable to generate blocks") } // At this point, Carol should broadcast her active commitment // transaction in order to go to the chain and sweep her HTLC. txids, err := waitForNTxsInMempool(net.Miner.Node, 1, minerMempoolTimeout) if err != nil { t.Fatalf("expected transaction not found in mempool: %v", err) } bobFundingTxid, err := getChanPointFundingTxid(bobChanPoint) if err != nil { t.Fatalf("unable to get txid: %v", err) } carolFundingPoint := wire.OutPoint{ Hash: *bobFundingTxid, Index: bobChanPoint.OutputIndex, } // The commitment transaction should be spending from the funding // transaction. commitHash := txids[0] tx, err := net.Miner.Node.GetRawTransaction(commitHash) if err != nil { t.Fatalf("unable to get txn: %v", err) } commitTx := tx.MsgTx() if commitTx.TxIn[0].PreviousOutPoint != carolFundingPoint { t.Fatalf("commit transaction not spending from expected "+ "outpoint: %v", spew.Sdump(commitTx)) } // Confirm the commitment. mineBlocks(t, net, 1, 1) // Restart bob again. if err := restartBob(); err != nil { t.Fatalf("unable to restart bob: %v", err) } // After the force close transaction is mined, Carol should broadcast // her second level HTLC transaction. Bob will broadcast a sweep tx to // sweep his output in the channel with Carol. When Bob notices Carol's // second level transaction in the mempool, he will extract the // preimage and settle the HTLC back off-chain. secondLevelHashes, err := waitForNTxsInMempool(net.Miner.Node, 2, minerMempoolTimeout) if err != nil { t.Fatalf("transactions not found in mempool: %v", err) } // Carol's second level transaction should be spending from // the commitment transaction. var secondLevelHash *chainhash.Hash for _, txid := range secondLevelHashes { tx, err := net.Miner.Node.GetRawTransaction(txid) if err != nil { t.Fatalf("unable to get txn: %v", err) } if tx.MsgTx().TxIn[0].PreviousOutPoint.Hash == *commitHash { secondLevelHash = txid } } if secondLevelHash == nil { t.Fatalf("Carol's second level tx not found") } // We'll now mine an additional block which should confirm both the // second layer transactions. if _, err := net.Miner.Node.Generate(1); err != nil { t.Fatalf("unable to generate block: %v", err) } time.Sleep(time.Second * 4) // TODO(roasbeef): assert bob pending state as well // Carol's pending channel report should now show two outputs under // limbo: her commitment output, as well as the second-layer claim // output. pendingChansRequest := &lnrpc.PendingChannelsRequest{} ctxt, _ = context.WithTimeout(ctxb, defaultTimeout) pendingChanResp, err := carol.PendingChannels(ctxt, pendingChansRequest) if err != nil { t.Fatalf("unable to query for pending channels: %v", err) } if len(pendingChanResp.PendingForceClosingChannels) == 0 { t.Fatalf("carol should have pending for close chan but doesn't") } forceCloseChan := pendingChanResp.PendingForceClosingChannels[0] if forceCloseChan.LimboBalance == 0 { t.Fatalf("carol should have nonzero limbo balance instead "+ "has: %v", forceCloseChan.LimboBalance) } // The pending HTLC carol has should also now be in stage 2. if len(forceCloseChan.PendingHtlcs) != 1 { t.Fatalf("carol should have pending htlc but doesn't") } if forceCloseChan.PendingHtlcs[0].Stage != 2 { t.Fatalf("carol's htlc should have advanced to the second "+ "stage: %v", err) } // Once the second-level transaction confirmed, Bob should have // extracted the preimage from the chain, and sent it back to Alice, // clearing the HTLC off-chain. nodes = []*lntest.HarnessNode{net.Alice} err = lntest.WaitPredicate(func() bool { predErr = assertNumActiveHtlcs(nodes, 0) if predErr != nil { return false } return true }, time.Second*15) if err != nil { t.Fatalf("htlc mismatch: %v", predErr) } // If we mine 4 additional blocks, then both outputs should now be // mature. if _, err := net.Miner.Node.Generate(defaultCSV); err != nil { t.Fatalf("unable to generate blocks: %v", err) } // We should have a new transaction in the mempool. _, err = waitForTxInMempool(net.Miner.Node, minerMempoolTimeout) if err != nil { t.Fatalf("unable to find bob's sweeping transaction: %v", err) } // Finally, if we mine an additional block to confirm these two sweep // transactions, Carol should not show a pending channel in her report // afterwards. if _, err := net.Miner.Node.Generate(1); err != nil { t.Fatalf("unable to mine block: %v", err) } err = lntest.WaitPredicate(func() bool { ctxt, _ = context.WithTimeout(ctxb, defaultTimeout) pendingChanResp, err = carol.PendingChannels(ctxt, pendingChansRequest) if err != nil { predErr = fmt.Errorf("unable to query for pending channels: %v", err) return false } if len(pendingChanResp.PendingForceClosingChannels) != 0 { predErr = fmt.Errorf("carol still has pending channels: %v", spew.Sdump(pendingChanResp)) return false } return true }, time.Second*15) if err != nil { t.Fatalf(predErr.Error()) } // The invoice should show as settled for Carol, indicating that it was // swept on-chain. invoicesReq := &lnrpc.ListInvoiceRequest{} invoicesResp, err := carol.ListInvoices(ctxb, invoicesReq) if err != nil { t.Fatalf("unable to retrieve invoices: %v", err) } if len(invoicesResp.Invoices) != 1 { t.Fatalf("expected 1 invoice, got %d", len(invoicesResp.Invoices)) } invoice := invoicesResp.Invoices[0] if invoice.State != lnrpc.Invoice_SETTLED { t.Fatalf("expected invoice to be settled on chain") } if invoice.AmtPaidSat != invoiceAmt { t.Fatalf("expected invoice to be settled with %d sat, got "+ "%d sat", invoiceAmt, invoice.AmtPaidSat) } // We'll close out the channel between Alice and Bob, then shutdown // carol to conclude the test. ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout) closeChannelAndAssert(ctxt, t, net, net.Alice, aliceChanPoint, false) }