package invoicesrpc import ( "bytes" "context" "crypto/rand" "errors" "fmt" "math" "time" "github.com/btcsuite/btcd/chaincfg" "github.com/btcsuite/btcd/chaincfg/chainhash" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/davecgh/go-spew/spew" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/lntypes" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/netann" "github.com/lightningnetwork/lnd/routing" "github.com/lightningnetwork/lnd/zpay32" ) // AddInvoiceConfig contains dependencies for invoice creation. type AddInvoiceConfig struct { // AddInvoice is called to add the invoice to the registry. AddInvoice func(invoice *channeldb.Invoice, paymentHash lntypes.Hash) ( uint64, error) // IsChannelActive is used to generate valid hop hints. IsChannelActive func(chanID lnwire.ChannelID) bool // ChainParams are required to properly decode invoice payment requests // that are marshalled over rpc. ChainParams *chaincfg.Params // NodeSigner is an implementation of the MessageSigner implementation // that's backed by the identity private key of the running lnd node. NodeSigner *netann.NodeSigner // DefaultCLTVExpiry is the default invoice expiry if no values is // specified. DefaultCLTVExpiry uint32 // ChanDB is a global boltdb instance which is needed to access the // channel graph. ChanDB *channeldb.DB // GenInvoiceFeatures returns a feature containing feature bits that // should be advertised on freshly generated invoices. GenInvoiceFeatures func() *lnwire.FeatureVector } // AddInvoiceData contains the required data to create a new invoice. type AddInvoiceData struct { // An optional memo to attach along with the invoice. Used for record // keeping purposes for the invoice's creator, and will also be set in // the description field of the encoded payment request if the // description_hash field is not being used. Memo string // The preimage which will allow settling an incoming HTLC payable to // this preimage. If Preimage is set, Hash should be nil. If both // Preimage and Hash are nil, a random preimage is generated. Preimage *lntypes.Preimage // The hash of the preimage. If Hash is set, Preimage should be nil. // This condition indicates that we have a 'hold invoice' for which the // htlc will be accepted and held until the preimage becomes known. Hash *lntypes.Hash // The value of this invoice in millisatoshis. Value lnwire.MilliSatoshi // Hash (SHA-256) of a description of the payment. Used if the // description of payment (memo) is too long to naturally fit within the // description field of an encoded payment request. DescriptionHash []byte // Payment request expiry time in seconds. Default is 3600 (1 hour). Expiry int64 // Fallback on-chain address. FallbackAddr string // Delta to use for the time-lock of the CLTV extended to the final hop. CltvExpiry uint64 // Whether this invoice should include routing hints for private // channels. Private bool // HodlInvoice signals that this invoice shouldn't be settled // immediately upon receiving the payment. HodlInvoice bool } // AddInvoice attempts to add a new invoice to the invoice database. Any // duplicated invoices are rejected, therefore all invoices *must* have a // unique payment preimage. func AddInvoice(ctx context.Context, cfg *AddInvoiceConfig, invoice *AddInvoiceData) (*lntypes.Hash, *channeldb.Invoice, error) { var ( paymentPreimage *lntypes.Preimage paymentHash lntypes.Hash ) switch { // Only either preimage or hash can be set. case invoice.Preimage != nil && invoice.Hash != nil: return nil, nil, errors.New("preimage and hash both set") // If no hash or preimage is given, generate a random preimage. case invoice.Preimage == nil && invoice.Hash == nil: paymentPreimage = &lntypes.Preimage{} if _, err := rand.Read(paymentPreimage[:]); err != nil { return nil, nil, err } paymentHash = paymentPreimage.Hash() // If just a hash is given, we create a hold invoice by setting the // preimage to unknown. case invoice.Preimage == nil && invoice.Hash != nil: paymentHash = *invoice.Hash // A specific preimage was supplied. Use that for the invoice. case invoice.Preimage != nil && invoice.Hash == nil: preimage := *invoice.Preimage paymentPreimage = &preimage paymentHash = invoice.Preimage.Hash() } // The size of the memo, receipt and description hash attached must not // exceed the maximum values for either of the fields. if len(invoice.Memo) > channeldb.MaxMemoSize { return nil, nil, fmt.Errorf("memo too large: %v bytes "+ "(maxsize=%v)", len(invoice.Memo), channeldb.MaxMemoSize) } if len(invoice.DescriptionHash) > 0 && len(invoice.DescriptionHash) != 32 { return nil, nil, fmt.Errorf("description hash is %v bytes, must be 32", len(invoice.DescriptionHash)) } // We set the max invoice amount to 100k BTC, which itself is several // multiples off the current block reward. maxInvoiceAmt := btcutil.Amount(btcutil.SatoshiPerBitcoin * 100000) switch { // The value of the invoice must not be negative. case int64(invoice.Value) < 0: return nil, nil, fmt.Errorf("payments of negative value "+ "are not allowed, value is %v", int64(invoice.Value)) // Also ensure that the invoice is actually realistic, while preventing // any issues due to underflow. case invoice.Value.ToSatoshis() > maxInvoiceAmt: return nil, nil, fmt.Errorf("invoice amount %v is "+ "too large, max is %v", invoice.Value.ToSatoshis(), maxInvoiceAmt) } amtMSat := invoice.Value // We also create an encoded payment request which allows the // caller to compactly send the invoice to the payer. We'll create a // list of options to be added to the encoded payment request. For now // we only support the required fields description/description_hash, // expiry, fallback address, and the amount field. var options []func(*zpay32.Invoice) // We only include the amount in the invoice if it is greater than 0. // By not including the amount, we enable the creation of invoices that // allow the payee to specify the amount of satoshis they wish to send. if amtMSat > 0 { options = append(options, zpay32.Amount(amtMSat)) } // If specified, add a fallback address to the payment request. if len(invoice.FallbackAddr) > 0 { addr, err := btcutil.DecodeAddress(invoice.FallbackAddr, cfg.ChainParams) if err != nil { return nil, nil, fmt.Errorf("invalid fallback address: %v", err) } options = append(options, zpay32.FallbackAddr(addr)) } // If expiry is set, specify it. If it is not provided, no expiry time // will be explicitly added to this payment request, which will imply // the default 3600 seconds. if invoice.Expiry > 0 { // We'll ensure that the specified expiry is restricted to sane // number of seconds. As a result, we'll reject an invoice with // an expiry greater than 1 year. maxExpiry := time.Hour * 24 * 365 expSeconds := invoice.Expiry if float64(expSeconds) > maxExpiry.Seconds() { return nil, nil, fmt.Errorf("expiry of %v seconds "+ "greater than max expiry of %v seconds", float64(expSeconds), maxExpiry.Seconds()) } expiry := time.Duration(invoice.Expiry) * time.Second options = append(options, zpay32.Expiry(expiry)) } // If the description hash is set, then we add it do the list of options. // If not, use the memo field as the payment request description. if len(invoice.DescriptionHash) > 0 { var descHash [32]byte copy(descHash[:], invoice.DescriptionHash[:]) options = append(options, zpay32.DescriptionHash(descHash)) } else { // Use the memo field as the description. If this is not set // this will just be an empty string. options = append(options, zpay32.Description(invoice.Memo)) } // We'll use our current default CLTV value unless one was specified as // an option on the command line when creating an invoice. switch { case invoice.CltvExpiry > math.MaxUint16: return nil, nil, fmt.Errorf("CLTV delta of %v is too large, max "+ "accepted is: %v", invoice.CltvExpiry, math.MaxUint16) case invoice.CltvExpiry != 0: // Disallow user-chosen final CLTV deltas below the required // minimum. if invoice.CltvExpiry < routing.MinCLTVDelta { return nil, nil, fmt.Errorf("CLTV delta of %v must be "+ "greater than minimum of %v", routing.MinCLTVDelta, invoice.CltvExpiry) } options = append(options, zpay32.CLTVExpiry(invoice.CltvExpiry)) default: // TODO(roasbeef): assumes set delta between versions defaultDelta := cfg.DefaultCLTVExpiry options = append(options, zpay32.CLTVExpiry(uint64(defaultDelta))) } // If we were requested to include routing hints in the invoice, then // we'll fetch all of our available private channels and create routing // hints for them. if invoice.Private { openChannels, err := cfg.ChanDB.FetchAllChannels() if err != nil { return nil, nil, fmt.Errorf("could not fetch all channels") } if len(openChannels) > 0 { // We'll restrict the number of individual route hints // to 20 to avoid creating overly large invoices. const numMaxHophints = 20 hopHints := selectHopHints( amtMSat, cfg, openChannels, numMaxHophints, ) options = append(options, hopHints...) } } // Set our desired invoice features and add them to our list of options. invoiceFeatures := cfg.GenInvoiceFeatures() options = append(options, zpay32.Features(invoiceFeatures)) // Generate and set a random payment address for this invoice. If the // sender understands payment addresses, this can be used to avoid // intermediaries probing the receiver. var paymentAddr [32]byte if _, err := rand.Read(paymentAddr[:]); err != nil { return nil, nil, err } options = append(options, zpay32.PaymentAddr(paymentAddr)) // Create and encode the payment request as a bech32 (zpay32) string. creationDate := time.Now() payReq, err := zpay32.NewInvoice( cfg.ChainParams, paymentHash, creationDate, options..., ) if err != nil { return nil, nil, err } payReqString, err := payReq.Encode( zpay32.MessageSigner{ SignCompact: func(msg []byte) ([]byte, error) { hash := chainhash.HashB(msg) return cfg.NodeSigner.SignDigestCompact(hash) }, }, ) if err != nil { return nil, nil, err } newInvoice := &channeldb.Invoice{ CreationDate: creationDate, Memo: []byte(invoice.Memo), PaymentRequest: []byte(payReqString), Terms: channeldb.ContractTerm{ FinalCltvDelta: int32(payReq.MinFinalCLTVExpiry()), Expiry: payReq.Expiry(), Value: amtMSat, PaymentPreimage: paymentPreimage, PaymentAddr: paymentAddr, Features: invoiceFeatures, }, HodlInvoice: invoice.HodlInvoice, } log.Tracef("[addinvoice] adding new invoice %v", newLogClosure(func() string { return spew.Sdump(newInvoice) }), ) // With all sanity checks passed, write the invoice to the database. _, err = cfg.AddInvoice(newInvoice, paymentHash) if err != nil { return nil, nil, err } return &paymentHash, newInvoice, nil } // chanCanBeHopHint returns true if the target channel is eligible to be a hop // hint. func chanCanBeHopHint(channel *channeldb.OpenChannel, graph *channeldb.ChannelGraph, cfg *AddInvoiceConfig) (*channeldb.ChannelEdgePolicy, bool) { // Since we're only interested in our private channels, we'll skip // public ones. isPublic := channel.ChannelFlags&lnwire.FFAnnounceChannel != 0 if isPublic { return nil, false } // Make sure the channel is active. chanPoint := lnwire.NewChanIDFromOutPoint( &channel.FundingOutpoint, ) if !cfg.IsChannelActive(chanPoint) { log.Debugf("Skipping channel %v due to not "+ "being eligible to forward payments", chanPoint) return nil, false } // To ensure we don't leak unadvertised nodes, we'll make sure our // counterparty is publicly advertised within the network. Otherwise, // we'll end up leaking information about nodes that intend to stay // unadvertised, like in the case of a node only having private // channels. var remotePub [33]byte copy(remotePub[:], channel.IdentityPub.SerializeCompressed()) isRemoteNodePublic, err := graph.IsPublicNode(remotePub) if err != nil { log.Errorf("Unable to determine if node %x "+ "is advertised: %v", remotePub, err) return nil, false } if !isRemoteNodePublic { log.Debugf("Skipping channel %v due to "+ "counterparty %x being unadvertised", chanPoint, remotePub) return nil, false } // Fetch the policies for each end of the channel. chanID := channel.ShortChanID().ToUint64() info, p1, p2, err := graph.FetchChannelEdgesByID(chanID) if err != nil { log.Errorf("Unable to fetch the routing "+ "policies for the edges of the channel "+ "%v: %v", chanPoint, err) return nil, false } // Now, we'll need to determine which is the correct policy for HTLCs // being sent from the remote node. var remotePolicy *channeldb.ChannelEdgePolicy if bytes.Equal(remotePub[:], info.NodeKey1Bytes[:]) { remotePolicy = p1 } else { remotePolicy = p2 } return remotePolicy, true } // addHopHint creates a hop hint out of the passed channel and channel policy. // The new hop hint is appended to the passed slice. func addHopHint(hopHints *[]func(*zpay32.Invoice), channel *channeldb.OpenChannel, chanPolicy *channeldb.ChannelEdgePolicy) { hopHint := zpay32.HopHint{ NodeID: channel.IdentityPub, ChannelID: channel.ShortChanID().ToUint64(), FeeBaseMSat: uint32(chanPolicy.FeeBaseMSat), FeeProportionalMillionths: uint32( chanPolicy.FeeProportionalMillionths, ), CLTVExpiryDelta: chanPolicy.TimeLockDelta, } *hopHints = append( *hopHints, zpay32.RouteHint([]zpay32.HopHint{hopHint}), ) } // selectHopHints will select up to numMaxHophints from the set of passed open // channels. The set of hop hints will be returned as a slice of functional // options that'll append the route hint to the set of all route hints. // // TODO(roasbeef): do proper sub-set sum max hints usually << numChans func selectHopHints(amtMSat lnwire.MilliSatoshi, cfg *AddInvoiceConfig, openChannels []*channeldb.OpenChannel, numMaxHophints int) []func(*zpay32.Invoice) { graph := cfg.ChanDB.ChannelGraph() // We'll add our hop hints in two passes, first we'll add all channels // that are eligible to be hop hints, and also have a local balance // above the payment amount. var totalHintBandwidth lnwire.MilliSatoshi hopHintChans := make(map[wire.OutPoint]struct{}) hopHints := make([]func(*zpay32.Invoice), 0, numMaxHophints) for _, channel := range openChannels { // If this channel can't be a hop hint, then skip it. edgePolicy, canBeHopHint := chanCanBeHopHint( channel, graph, cfg, ) if edgePolicy == nil || !canBeHopHint { continue } // Similarly, in this first pass, we'll ignore all channels in // isolation can't satisfy this payment. if channel.LocalCommitment.RemoteBalance < amtMSat { continue } // Now that we now this channel use usable, add it as a hop // hint and the indexes we'll use later. addHopHint(&hopHints, channel, edgePolicy) hopHintChans[channel.FundingOutpoint] = struct{}{} totalHintBandwidth += channel.LocalCommitment.RemoteBalance } // If we have enough hop hints at this point, then we'll exit early. // Otherwise, we'll continue to add more that may help out mpp users. if len(hopHints) >= numMaxHophints { return hopHints } // In this second pass we'll add channels, and we'll either stop when // we have 20 hop hints, we've run through all the available channels, // or if the sum of available bandwidth in the routing hints exceeds 2x // the payment amount. We do 2x here to account for a margin of error // if some of the selected channels no longer become operable. hopHintFactor := lnwire.MilliSatoshi(2) for i := 0; i < len(openChannels); i++ { // If we hit either of our early termination conditions, then // we'll break the loop here. if totalHintBandwidth > amtMSat*hopHintFactor || len(hopHints) >= numMaxHophints { break } channel := openChannels[i] // Skip the channel if we already selected it. if _, ok := hopHintChans[channel.FundingOutpoint]; ok { continue } // If the channel can't be a hop hint, then we'll skip it. // Otherwise, we'll use the policy information to populate the // hop hint. remotePolicy, canBeHopHint := chanCanBeHopHint( channel, graph, cfg, ) if !canBeHopHint || remotePolicy == nil { continue } // Include the route hint in our set of options that will be // used when creating the invoice. addHopHint(&hopHints, channel, remotePolicy) // As we've just added a new hop hint, we'll accumulate it's // available balance now to update our tally. // // TODO(roasbeef): have a cut off based on min bandwidth? totalHintBandwidth += channel.LocalCommitment.RemoteBalance } return hopHints }