package main import ( "crypto/rand" "crypto/sha256" "encoding/hex" "errors" "fmt" "io" "math" "net" "strconv" "strings" "time" "sync" "sync/atomic" "github.com/boltdb/bolt" "github.com/davecgh/go-spew/spew" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/htlcswitch" "github.com/lightningnetwork/lnd/lnrpc" "github.com/lightningnetwork/lnd/lnwallet" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/routing" "github.com/lightningnetwork/lnd/zpay32" "github.com/roasbeef/btcd/blockchain" "github.com/roasbeef/btcd/btcec" "github.com/roasbeef/btcd/chaincfg" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/txscript" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" "github.com/roasbeef/btcwallet/waddrmgr" "github.com/tv42/zbase32" "golang.org/x/net/context" ) var ( defaultAccount uint32 = waddrmgr.DefaultAccountNum ) // rpcServer is a gRPC, RPC front end to the lnd daemon. // TODO(roasbeef): pagination support for the list-style calls type rpcServer struct { started int32 // To be used atomically. shutdown int32 // To be used atomically. server *server wg sync.WaitGroup quit chan struct{} } // A compile time check to ensure that rpcServer fully implements the // LightningServer gRPC service. var _ lnrpc.LightningServer = (*rpcServer)(nil) // newRPCServer creates and returns a new instance of the rpcServer. func newRPCServer(s *server) *rpcServer { return &rpcServer{server: s, quit: make(chan struct{}, 1)} } // Start launches any helper goroutines required for the rpcServer // to function. func (r *rpcServer) Start() error { if atomic.AddInt32(&r.started, 1) != 1 { return nil } return nil } // Stop signals any active goroutines for a graceful closure. func (r *rpcServer) Stop() error { if atomic.AddInt32(&r.shutdown, 1) != 1 { return nil } close(r.quit) return nil } // addrPairsToOutputs converts a map describing a set of outputs to be created, // the outputs themselves. The passed map pairs up an address, to a desired // output value amount. Each address is converted to its corresponding pkScript // to be used within the constructed output(s). func addrPairsToOutputs(addrPairs map[string]int64) ([]*wire.TxOut, error) { outputs := make([]*wire.TxOut, 0, len(addrPairs)) for addr, amt := range addrPairs { addr, err := btcutil.DecodeAddress(addr, activeNetParams.Params) if err != nil { return nil, err } pkscript, err := txscript.PayToAddrScript(addr) if err != nil { return nil, err } outputs = append(outputs, wire.NewTxOut(amt, pkscript)) } return outputs, nil } // sendCoinsOnChain makes an on-chain transaction in or to send coins to one or // more addresses specified in the passed payment map. The payment map maps an // address to a specified output value to be sent to that address. func (r *rpcServer) sendCoinsOnChain(paymentMap map[string]int64) (*chainhash.Hash, error) { outputs, err := addrPairsToOutputs(paymentMap) if err != nil { return nil, err } return r.server.cc.wallet.SendOutputs(outputs) } // SendCoins executes a request to send coins to a particular address. Unlike // SendMany, this RPC call only allows creating a single output at a time. func (r *rpcServer) SendCoins(ctx context.Context, in *lnrpc.SendCoinsRequest) (*lnrpc.SendCoinsResponse, error) { rpcsLog.Infof("[sendcoins] addr=%v, amt=%v", in.Addr, btcutil.Amount(in.Amount)) paymentMap := map[string]int64{in.Addr: in.Amount} txid, err := r.sendCoinsOnChain(paymentMap) if err != nil { return nil, err } rpcsLog.Infof("[sendcoins] spend generated txid: %v", txid.String()) return &lnrpc.SendCoinsResponse{Txid: txid.String()}, nil } // SendMany handles a request for a transaction create multiple specified // outputs in parallel. func (r *rpcServer) SendMany(ctx context.Context, in *lnrpc.SendManyRequest) (*lnrpc.SendManyResponse, error) { txid, err := r.sendCoinsOnChain(in.AddrToAmount) if err != nil { return nil, err } rpcsLog.Infof("[sendmany] spend generated txid: %v", txid.String()) return &lnrpc.SendManyResponse{Txid: txid.String()}, nil } // NewAddress creates a new address under control of the local wallet. func (r *rpcServer) NewAddress(ctx context.Context, in *lnrpc.NewAddressRequest) (*lnrpc.NewAddressResponse, error) { // Translate the gRPC proto address type to the wallet controller's // available address types. var addrType lnwallet.AddressType switch in.Type { case lnrpc.NewAddressRequest_WITNESS_PUBKEY_HASH: addrType = lnwallet.WitnessPubKey case lnrpc.NewAddressRequest_NESTED_PUBKEY_HASH: addrType = lnwallet.NestedWitnessPubKey case lnrpc.NewAddressRequest_PUBKEY_HASH: addrType = lnwallet.PubKeyHash } addr, err := r.server.cc.wallet.NewAddress(addrType, false) if err != nil { return nil, err } rpcsLog.Infof("[newaddress] addr=%v", addr.String()) return &lnrpc.NewAddressResponse{Address: addr.String()}, nil } // NewWitnessAddress returns a new native witness address under the control of // the local wallet. func (r *rpcServer) NewWitnessAddress(ctx context.Context, in *lnrpc.NewWitnessAddressRequest) (*lnrpc.NewAddressResponse, error) { addr, err := r.server.cc.wallet.NewAddress(lnwallet.WitnessPubKey, false) if err != nil { return nil, err } rpcsLog.Infof("[newaddress] addr=%v", addr.String()) return &lnrpc.NewAddressResponse{Address: addr.String()}, nil } // SignMessage signs a message with the resident node's private key. The // returned signature string is zbase32 encoded and pubkey recoverable, // meaning that only the message digest and signature are needed for // verification. func (r *rpcServer) SignMessage(ctx context.Context, in *lnrpc.SignMessageRequest) (*lnrpc.SignMessageResponse, error) { if in.Msg == nil { return nil, fmt.Errorf("need a message to sign") } sigBytes, err := r.server.nodeSigner.SignCompact(in.Msg) if err != nil { return nil, err } sig := zbase32.EncodeToString(sigBytes) return &lnrpc.SignMessageResponse{Signature: sig}, nil } // VerifyMessage verifies a signature over a msg. The signature must be // zbase32 encoded and signed by an active node in the resident node's // channel database. In addition to returning the validity of the signature, // VerifyMessage also returns the recovered pubkey from the signature. func (r *rpcServer) VerifyMessage(ctx context.Context, in *lnrpc.VerifyMessageRequest) (*lnrpc.VerifyMessageResponse, error) { if in.Msg == nil { return nil, fmt.Errorf("need a message to verify") } // The signature should be zbase32 encoded sig, err := zbase32.DecodeString(in.Signature) if err != nil { return nil, fmt.Errorf("failed to decode signature: %v", err) } // The signature is over the double-sha256 hash of the message. digest := chainhash.DoubleHashB(in.Msg) // RecoverCompact both recovers the pubkey and validates the signature. pubKey, _, err := btcec.RecoverCompact(btcec.S256(), sig, digest) if err != nil { return &lnrpc.VerifyMessageResponse{Valid: false}, nil } pubKeyHex := hex.EncodeToString(pubKey.SerializeCompressed()) // Query the channel graph to ensure a node in the network with active // channels signed the message. // TODO(phlip9): Require valid nodes to have capital in active channels. graph := r.server.chanDB.ChannelGraph() _, active, err := graph.HasLightningNode(pubKey) if err != nil { return nil, fmt.Errorf("failed to query graph: %v", err) } return &lnrpc.VerifyMessageResponse{Valid: active, Pubkey: pubKeyHex}, nil } // ConnectPeer attempts to establish a connection to a remote peer. func (r *rpcServer) ConnectPeer(ctx context.Context, in *lnrpc.ConnectPeerRequest) (*lnrpc.ConnectPeerResponse, error) { if in.Addr == nil { return nil, fmt.Errorf("need: lnc pubkeyhash@hostname") } pubkeyHex, err := hex.DecodeString(in.Addr.Pubkey) if err != nil { return nil, err } pubKey, err := btcec.ParsePubKey(pubkeyHex, btcec.S256()) if err != nil { return nil, err } // Connections to ourselves are disallowed for obvious reasons. if pubKey.IsEqual(r.server.identityPriv.PubKey()) { return nil, fmt.Errorf("cannot make connection to self") } // If the address doesn't already have a port, we'll assume the current // default port. var addr string _, _, err = net.SplitHostPort(in.Addr.Host) if err != nil { addr = net.JoinHostPort(in.Addr.Host, strconv.Itoa(defaultPeerPort)) } else { addr = in.Addr.Host } host, err := net.ResolveTCPAddr("tcp", addr) if err != nil { return nil, err } peerAddr := &lnwire.NetAddress{ IdentityKey: pubKey, Address: host, ChainNet: activeNetParams.Net, } if err := r.server.ConnectToPeer(peerAddr, in.Perm); err != nil { rpcsLog.Errorf("(connectpeer): error connecting to peer: %v", err) return nil, err } rpcsLog.Debugf("Connected to peer: %v", peerAddr.String()) return &lnrpc.ConnectPeerResponse{}, nil } // DisconnectPeer attempts to disconnect one peer from another identified by a // given pubKey. In the case that we currently ahve a pending or active channel // with the target peer, then func (r *rpcServer) DisconnectPeer(ctx context.Context, in *lnrpc.DisconnectPeerRequest) (*lnrpc.DisconnectPeerResponse, error) { rpcsLog.Debugf("[disconnectpeer] from peer(%s)", in.PubKey) // First we'll validate the string passed in within the request to // ensure that it's a valid hex-string, and also a valid compressed // public key. pubKeyBytes, err := hex.DecodeString(in.PubKey) if err != nil { return nil, fmt.Errorf("unable to decode pubkey bytes: %v", err) } peerPubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { return nil, fmt.Errorf("unable to parse pubkey: %v", err) } // Next, we'll fetch the pending/active channels we have with a // particular peer. nodeChannels, err := r.server.chanDB.FetchOpenChannels(peerPubKey) if err != nil { return nil, fmt.Errorf("unable to fetch channels for peer: %v", err) } // In order to avoid erroneously disconnecting from a peer that we have // an active channel with, if we have any channels active with this // peer, then we'll disallow disconnecting from them. if len(nodeChannels) > 0 { return nil, fmt.Errorf("cannot disconnect from peer(%x), "+ "all active channels with the peer need to be closed "+ "first", pubKeyBytes) } // With all initial validation complete, we'll now request that the // sever disconnects from the per. if err := r.server.DisconnectPeer(peerPubKey); err != nil { return nil, fmt.Errorf("unable to disconnect peer: %v", err) } return &lnrpc.DisconnectPeerResponse{}, nil } // OpenChannel attempts to open a singly funded channel specified in the // request to a remote peer. func (r *rpcServer) OpenChannel(in *lnrpc.OpenChannelRequest, updateStream lnrpc.Lightning_OpenChannelServer) error { rpcsLog.Tracef("[openchannel] request to peerid(%v) "+ "allocation(us=%v, them=%v) numconfs=%v", in.TargetPeerId, in.LocalFundingAmount, in.PushSat, in.NumConfs) localFundingAmt := btcutil.Amount(in.LocalFundingAmount) remoteInitialBalance := btcutil.Amount(in.PushSat) // Ensure that the initial balance of the remote party (if pushing // satoshis) does not execeed the amount the local party has requested // for funding. if remoteInitialBalance >= localFundingAmt { return fmt.Errorf("amount pushed to remote peer for initial " + "state must be below the local funding amount") } const minChannelSize = btcutil.Amount(6000) // Restrict the size of the channel we'll actually open. Atm, we // require the amount to be above 6k satoahis s we currently hard-coded // a 5k satoshi fee in several areas. As a result 6k sat is the min // channnel size that allows us to safely sit above the dust threshold // after fees are applied // TODO(roasbeef): remove after dynamic fees are in if localFundingAmt < minChannelSize { return fmt.Errorf("channel is too small, the minimum channel "+ "size is: %v (6k sat)", minChannelSize) } var ( nodePubKey *btcec.PublicKey nodePubKeyBytes []byte err error ) // TODO(roasbeef): also return channel ID? // If the node key is set, the we'll parse the raw bytes into a pubkey // object so we can easily manipulate it. If this isn't set, then we // expected the TargetPeerId to be set accordingly. if len(in.NodePubkey) != 0 { nodePubKey, err = btcec.ParsePubKey(in.NodePubkey, btcec.S256()) if err != nil { return err } // Making a channel to ourselves wouldn't be of any use, so we // explicitly disallow them. if nodePubKey.IsEqual(r.server.identityPriv.PubKey()) { return fmt.Errorf("cannot open channel to self") } nodePubKeyBytes = nodePubKey.SerializeCompressed() } // Instruct the server to trigger the necessary events to attempt to // open a new channel. A stream is returned in place, this stream will // be used to consume updates of the state of the pending channel. updateChan, errChan := r.server.OpenChannel(in.TargetPeerId, nodePubKey, localFundingAmt, remoteInitialBalance, in.NumConfs) var outpoint wire.OutPoint out: for { select { case err := <-errChan: rpcsLog.Errorf("unable to open channel to "+ "identityPub(%x) nor peerID(%v): %v", nodePubKeyBytes, in.TargetPeerId, err) return err case fundingUpdate := <-updateChan: rpcsLog.Tracef("[openchannel] sending update: %v", fundingUpdate) if err := updateStream.Send(fundingUpdate); err != nil { return err } // If a final channel open update is being sent, then // we can break out of our recv loop as we no longer // need to process any further updates. switch update := fundingUpdate.Update.(type) { case *lnrpc.OpenStatusUpdate_ChanOpen: chanPoint := update.ChanOpen.ChannelPoint h, _ := chainhash.NewHash(chanPoint.FundingTxid) outpoint = wire.OutPoint{ Hash: *h, Index: chanPoint.OutputIndex, } break out } case <-r.quit: return nil } } rpcsLog.Tracef("[openchannel] success peerid(%v), ChannelPoint(%v)", in.TargetPeerId, outpoint) return nil } // OpenChannelSync is a synchronous version of the OpenChannel RPC call. This // call is meant to be consumed by clients to the REST proxy. As with all other // sync calls, all byte slices are instead to be populated as hex encoded // strings. func (r *rpcServer) OpenChannelSync(ctx context.Context, in *lnrpc.OpenChannelRequest) (*lnrpc.ChannelPoint, error) { rpcsLog.Tracef("[openchannel] request to peerid(%v) "+ "allocation(us=%v, them=%v) numconfs=%v", in.TargetPeerId, in.LocalFundingAmount, in.PushSat, in.NumConfs) // Creation of channels before the wallet syncs up is currently // disallowed. isSynced, err := r.server.cc.wallet.IsSynced() if err != nil { return nil, err } if !isSynced { return nil, errors.New("channels cannot be created before the " + "wallet is fully synced") } // Decode the provided target node's public key, parsing it into a pub // key object. For all sync call, byte slices are expected to be // encoded as hex strings. keyBytes, err := hex.DecodeString(in.NodePubkeyString) if err != nil { return nil, err } nodepubKey, err := btcec.ParsePubKey(keyBytes, btcec.S256()) if err != nil { return nil, err } localFundingAmt := btcutil.Amount(in.LocalFundingAmount) remoteInitialBalance := btcutil.Amount(in.PushSat) // Ensure that the initial balance of the remote party (if pushing // satoshis) does not execeed the amount the local party has requested // for funding. if remoteInitialBalance >= localFundingAmt { return nil, fmt.Errorf("amount pushed to remote peer for " + "initial state must be below the local funding amount") } updateChan, errChan := r.server.OpenChannel(in.TargetPeerId, nodepubKey, localFundingAmt, remoteInitialBalance, in.NumConfs) select { // If an error occurs them immediately return the error to the client. case err := <-errChan: rpcsLog.Errorf("unable to open channel to "+ "identityPub(%x) nor peerID(%v): %v", nodepubKey, in.TargetPeerId, err) return nil, err // Otherwise, wait for the first channel update. The first update sent // is when the funding transaction is broadcast to the network. case fundingUpdate := <-updateChan: rpcsLog.Tracef("[openchannel] sending update: %v", fundingUpdate) // Parse out the txid of the pending funding transaction. The // sync client can use this to poll against the list of // PendingChannels. openUpdate := fundingUpdate.Update.(*lnrpc.OpenStatusUpdate_ChanPending) chanUpdate := openUpdate.ChanPending return &lnrpc.ChannelPoint{ FundingTxid: chanUpdate.Txid, }, nil case <-r.quit: return nil, nil } } // CloseLink attempts to close an active channel identified by its channel // point. The actions of this method can additionally be augmented to attempt // a force close after a timeout period in the case of an inactive peer. func (r *rpcServer) CloseChannel(in *lnrpc.CloseChannelRequest, updateStream lnrpc.Lightning_CloseChannelServer) error { force := in.Force index := in.ChannelPoint.OutputIndex txid, err := chainhash.NewHash(in.ChannelPoint.FundingTxid) if err != nil { rpcsLog.Errorf("[closechannel] invalid txid: %v", err) return err } chanPoint := wire.NewOutPoint(txid, index) rpcsLog.Tracef("[closechannel] request for ChannelPoint(%v)", chanPoint) var ( updateChan chan *lnrpc.CloseStatusUpdate errChan chan error ) // If a force closure was requested, then we'll handle all the details // around the creation and broadcast of the unilateral closure // transaction here rather than going to the switch as we don't require // interaction from the peer. if force { // As the first part of the force closure, we first fetch the // channel from the database, then execute a direct force // closure broadcasting our current commitment transaction. channel, err := r.fetchActiveChannel(*chanPoint) if err != nil { return err } _, bestHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return err } // As we're force closing this channel, as a precaution, we'll // ensure that the switch doesn't continue to see this channel // as eligible for forwarding HTLC's. If the peer is online, // then we'll also purge all of its indexes. remotePub := &channel.StateSnapshot().RemoteIdentity if peer, err := r.server.findPeer(remotePub); err == nil { // TODO(roasbeef): actually get the active channel // instead too? // * so only need to grab from database peer.WipeChannel(channel) } else { chanID := lnwire.NewChanIDFromOutPoint(channel.ChannelPoint()) r.server.htlcSwitch.RemoveLink(chanID) } r.server.breachArbiter.settledContracts <- chanPoint // With the necessary indexes cleaned up, we'll now force close // the channel. closingTxid, err := r.forceCloseChan(channel) if err != nil { rpcsLog.Errorf("unable to force close transaction: %v", err) return err } // With the transaction broadcast, we send our first update to // the client. updateChan = make(chan *lnrpc.CloseStatusUpdate, 1) updateChan <- &lnrpc.CloseStatusUpdate{ Update: &lnrpc.CloseStatusUpdate_ClosePending{ ClosePending: &lnrpc.PendingUpdate{ Txid: closingTxid[:], }, }, } errChan = make(chan error, 1) notifier := r.server.cc.chainNotifier go waitForChanToClose(uint32(bestHeight), notifier, errChan, chanPoint, closingTxid, func() { // Respond to the local subsystem which // requested the channel closure. updateChan <- &lnrpc.CloseStatusUpdate{ Update: &lnrpc.CloseStatusUpdate_ChanClose{ ChanClose: &lnrpc.ChannelCloseUpdate{ ClosingTxid: closingTxid[:], Success: true, }, }, } }) // TODO(roasbeef): utxo nursery marks as fully closed } else { // Otherwise, the caller has requested a regular interactive // cooperative channel closure. So we'll forward the request to // the htlc switch which will handle the negotiation and // broadcast details. updateChan, errChan = r.server.htlcSwitch.CloseLink(chanPoint, htlcswitch.CloseRegular) } out: for { select { case err := <-errChan: rpcsLog.Errorf("[closechannel] unable to close "+ "ChannelPoint(%v): %v", chanPoint, err) return err case closingUpdate := <-updateChan: rpcsLog.Tracef("[closechannel] sending update: %v", closingUpdate) if err := updateStream.Send(closingUpdate); err != nil { return err } // If a final channel closing updates is being sent, // then we can break out of our dispatch loop as we no // longer need to process any further updates. switch closeUpdate := closingUpdate.Update.(type) { case *lnrpc.CloseStatusUpdate_ChanClose: h, _ := chainhash.NewHash(closeUpdate.ChanClose.ClosingTxid) rpcsLog.Infof("[closechannel] close completed: "+ "txid(%v)", h) break out } case <-r.quit: return nil } } return nil } // fetchActiveChannel attempts to locate a channel identified by it's channel // point from the database's set of all currently opened channels. func (r *rpcServer) fetchActiveChannel(chanPoint wire.OutPoint) (*lnwallet.LightningChannel, error) { dbChannels, err := r.server.chanDB.FetchAllChannels() if err != nil { return nil, err } // With the channels fetched, attempt to locate the target channel // according to its channel point. var dbChan *channeldb.OpenChannel for _, dbChannel := range dbChannels { if *dbChannel.ChanID == chanPoint { dbChan = dbChannel break } } // If the channel cannot be located, then we exit with an error to the // caller. if dbChan == nil { return nil, fmt.Errorf("unable to find channel") } // Otherwise, we create a fully populated channel state machine which // uses the db channel as backing storage. return lnwallet.NewLightningChannel(r.server.cc.wallet.Signer, nil, r.server.cc.feeEstimator, dbChan) } // forceCloseChan executes a unilateral close of the target channel by // broadcasting the current commitment state directly on-chain. Once the // commitment transaction has been broadcast, a struct describing the final // state of the channel is sent to the utxoNursery in order to ultimately sweep // the immature outputs. func (r *rpcServer) forceCloseChan(channel *lnwallet.LightningChannel) (*chainhash.Hash, error) { // Execute a unilateral close shutting down all further channel // operation. closeSummary, err := channel.ForceClose() if err != nil { return nil, err } closeTx := closeSummary.CloseTx txid := closeTx.TxHash() // With the close transaction in hand, broadcast the transaction to the // network, thereby entering the postk channel resolution state. rpcsLog.Infof("Broadcasting force close transaction, ChannelPoint(%v): %v", channel.ChannelPoint(), newLogClosure(func() string { return spew.Sdump(closeTx) })) if err := r.server.cc.wallet.PublishTransaction(closeTx); err != nil { return nil, err } // Now that the closing transaction has been broadcast successfully, // we'll mark this channel as being in the pending closed state. The // UTXO nursery will mark the channel as fully closed once all the // outputs have been swept. chanPoint := channel.ChannelPoint() chanInfo := channel.StateSnapshot() closeInfo := &channeldb.ChannelCloseSummary{ ChanPoint: *chanPoint, ClosingTXID: closeTx.TxHash(), RemotePub: &chanInfo.RemoteIdentity, Capacity: chanInfo.Capacity, SettledBalance: chanInfo.LocalBalance, TimeLockedBalance: chanInfo.LocalBalance, CloseType: channeldb.ForceClose, IsPending: true, } if err := channel.DeleteState(closeInfo); err != nil { return nil, err } // Send the closed channel summary over to the utxoNursery in order to // have its outputs swept back into the wallet once they're mature. r.server.utxoNursery.IncubateOutputs(closeSummary) return &txid, nil } // GetInfo serves a request to the "getinfo" RPC call. This call returns // general information concerning the lightning node including it's LN ID, // identity address, and information concerning the number of open+pending // channels. func (r *rpcServer) GetInfo(ctx context.Context, in *lnrpc.GetInfoRequest) (*lnrpc.GetInfoResponse, error) { var activeChannels uint32 serverPeers := r.server.Peers() for _, serverPeer := range serverPeers { activeChannels += uint32(len(serverPeer.ChannelSnapshots())) } pendingChannels, err := r.server.fundingMgr.NumPendingChannels() if err != nil { return nil, fmt.Errorf("unable to get number of pending "+ "channels: %v", err) } idPub := r.server.identityPriv.PubKey().SerializeCompressed() bestHash, bestHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return nil, fmt.Errorf("unable to get best block info: %v", err) } isSynced, err := r.server.cc.wallet.IsSynced() if err != nil { return nil, fmt.Errorf("unable to sync PoV of the wallet "+ "with current best block in the main chain: %v", err) } activeChains := make([]string, registeredChains.NumActiveChains()) for i, chain := range registeredChains.ActiveChains() { activeChains[i] = chain.String() } // TODO(roasbeef): add synced height n stuff return &lnrpc.GetInfoResponse{ IdentityPubkey: hex.EncodeToString(idPub), NumPendingChannels: pendingChannels, NumActiveChannels: activeChannels, NumPeers: uint32(len(serverPeers)), BlockHeight: uint32(bestHeight), BlockHash: bestHash.String(), SyncedToChain: isSynced, Testnet: activeNetParams.Params == &chaincfg.TestNet3Params, Chains: activeChains, }, nil } // ListPeers returns a verbose listing of all currently active peers. func (r *rpcServer) ListPeers(ctx context.Context, in *lnrpc.ListPeersRequest) (*lnrpc.ListPeersResponse, error) { rpcsLog.Tracef("[listpeers] request") serverPeers := r.server.Peers() resp := &lnrpc.ListPeersResponse{ Peers: make([]*lnrpc.Peer, 0, len(serverPeers)), } for _, serverPeer := range serverPeers { // TODO(roasbeef): add a snapshot method which grabs peer read mtx var ( satSent int64 satRecv int64 ) // In order to display the total number of satoshis of outbound // (sent) and inbound (recv'd) satoshis that have been // transported through this peer, we'll sum up the sent/recv'd // values for each of the active channels we have with the // peer. chans := serverPeer.ChannelSnapshots() for _, c := range chans { satSent += int64(c.TotalSatoshisSent) satRecv += int64(c.TotalSatoshisReceived) } nodePub := serverPeer.addr.IdentityKey.SerializeCompressed() peer := &lnrpc.Peer{ PubKey: hex.EncodeToString(nodePub), PeerId: serverPeer.id, Address: serverPeer.conn.RemoteAddr().String(), Inbound: serverPeer.inbound, BytesRecv: atomic.LoadUint64(&serverPeer.bytesReceived), BytesSent: atomic.LoadUint64(&serverPeer.bytesSent), SatSent: satSent, SatRecv: satRecv, PingTime: serverPeer.PingTime(), } resp.Peers = append(resp.Peers, peer) } rpcsLog.Debugf("[listpeers] yielded %v peers", serverPeers) return resp, nil } // WalletBalance returns the sum of all confirmed unspent outputs under control // by the wallet. This method can be modified by having the request specify // only witness outputs should be factored into the final output sum. // TODO(roasbeef): split into total and confirmed/unconfirmed // TODO(roasbeef): add async hooks into wallet balance changes func (r *rpcServer) WalletBalance(ctx context.Context, in *lnrpc.WalletBalanceRequest) (*lnrpc.WalletBalanceResponse, error) { balance, err := r.server.cc.wallet.ConfirmedBalance(1, in.WitnessOnly) if err != nil { return nil, err } rpcsLog.Debugf("[walletbalance] balance=%v", balance) return &lnrpc.WalletBalanceResponse{ Balance: int64(balance), }, nil } // ChannelBalance returns the total available channel flow across all open // channels in satoshis. func (r *rpcServer) ChannelBalance(ctx context.Context, in *lnrpc.ChannelBalanceRequest) (*lnrpc.ChannelBalanceResponse, error) { channels, err := r.server.chanDB.FetchAllChannels() if err != nil { return nil, err } var balance btcutil.Amount for _, channel := range channels { if !channel.IsPending { balance += channel.OurBalance } } return &lnrpc.ChannelBalanceResponse{Balance: int64(balance)}, nil } // PendingChannels returns a list of all the channels that are currently // considered "pending". A channel is pending if it has finished the funding // workflow and is waiting for confirmations for the funding txn, or is in the // process of closure, either initiated cooperatively or non-cooperatively. func (r *rpcServer) PendingChannels(ctx context.Context, in *lnrpc.PendingChannelRequest) (*lnrpc.PendingChannelResponse, error) { rpcsLog.Debugf("[pendingchannels]") resp := &lnrpc.PendingChannelResponse{} // First, we'll populate the response with all the channels that are // soon to be opened. We can easily fetch this data from the database // and map the db struct to the proto response. pendingOpenChannels, err := r.server.chanDB.FetchPendingChannels() if err != nil { return nil, err } resp.PendingOpenChannels = make([]*lnrpc.PendingChannelResponse_PendingOpenChannel, len(pendingOpenChannels)) for i, pendingChan := range pendingOpenChannels { pub := pendingChan.IdentityPub.SerializeCompressed() // As this is required for display purposes, we'll calculate // the weight of the commitment transaction. We also add on the // estimated weight of the witness to calculate the weight of // the transaction if it were to be immediately unilaterally // broadcast. // TODO(roasbeef): query for funding tx from wallet, display // that also? utx := btcutil.NewTx(pendingChan.OurCommitTx) commitBaseWeight := blockchain.GetTransactionWeight(utx) commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight resp.PendingOpenChannels[i] = &lnrpc.PendingChannelResponse_PendingOpenChannel{ Channel: &lnrpc.PendingChannelResponse_PendingChannel{ RemoteNodePub: hex.EncodeToString(pub), ChannelPoint: pendingChan.ChanID.String(), Capacity: int64(pendingChan.Capacity), LocalBalance: int64(pendingChan.OurBalance), RemoteBalance: int64(pendingChan.TheirBalance), }, CommitWeight: commitWeight, CommitFee: int64(pendingChan.CommitFee), FeePerKw: int64(pendingChan.FeePerKw), // TODO(roasbeef): need to track confirmation height } } _, currentHeight, err := r.server.cc.chainIO.GetBestBlock() if err != nil { return nil, err } // Next, we'll examine the channels that are soon to be closed so we // can populate these fields within the response. pendingCloseChannels, err := r.server.chanDB.FetchClosedChannels(true) if err != nil { return nil, err } for _, pendingClose := range pendingCloseChannels { // First construct the channel struct itself, this will be // needed regardless of how this channel was closed. pub := pendingClose.RemotePub.SerializeCompressed() chanPoint := pendingClose.ChanPoint channel := &lnrpc.PendingChannelResponse_PendingChannel{ RemoteNodePub: hex.EncodeToString(pub), ChannelPoint: chanPoint.String(), Capacity: int64(pendingClose.Capacity), LocalBalance: int64(pendingClose.SettledBalance), } closeTXID := pendingClose.ClosingTXID.String() switch pendingClose.CloseType { // If the channel was closed cooperatively, then we'll only // need to tack on the closing txid. case channeldb.CooperativeClose: resp.PendingClosingChannels = append( resp.PendingClosingChannels, &lnrpc.PendingChannelResponse_ClosedChannel{ Channel: channel, ClosingTxid: closeTXID, }, ) resp.TotalLimboBalance += channel.LocalBalance // If the channel was force closed, then we'll need to query // the utxoNursery for additional information. case channeldb.ForceClose: forceClose := &lnrpc.PendingChannelResponse_ForceClosedChannel{ Channel: channel, ClosingTxid: closeTXID, } // Query for the maturity state for this force closed // channel. If we didn't have any time-locked outputs, // then the nursery may not know of the contract. nurseryInfo, err := r.server.utxoNursery.NurseryReport(&chanPoint) if err != nil && err != ErrContractNotFound { return nil, fmt.Errorf("unable to obtain "+ "nursery report for ChannelPoint(%v): %v", chanPoint, err) } // If the nursery knows of this channel, then we can // populate information detailing exactly how much // funds are time locked and also the height in which // we can ultimately sweep the funds into the wallet. if nurseryInfo != nil { forceClose.LimboBalance = int64(nurseryInfo.limboBalance) forceClose.MaturityHeight = nurseryInfo.maturityHeight // If the transaction has been confirmed, then // we can compute how many blocks it has left. if forceClose.MaturityHeight != 0 { forceClose.BlocksTilMaturity = (forceClose.MaturityHeight - uint32(currentHeight)) } resp.TotalLimboBalance += int64(nurseryInfo.limboBalance) } resp.PendingForceClosingChannels = append( resp.PendingForceClosingChannels, forceClose, ) } } return resp, nil } // ListChannels returns a description of all direct active, open channels the // node knows of. func (r *rpcServer) ListChannels(ctx context.Context, in *lnrpc.ListChannelsRequest) (*lnrpc.ListChannelsResponse, error) { resp := &lnrpc.ListChannelsResponse{} graph := r.server.chanDB.ChannelGraph() dbChannels, err := r.server.chanDB.FetchAllChannels() if err != nil { return nil, err } rpcsLog.Infof("[listchannels] fetched %v channels from DB", len(dbChannels)) for _, dbChannel := range dbChannels { if dbChannel.IsPending { continue } nodePub := dbChannel.IdentityPub nodeID := hex.EncodeToString(nodePub.SerializeCompressed()) chanPoint := dbChannel.ChanID // With the channel point known, retrieve the network channel // ID from the database. var chanID uint64 chanID, _ = graph.ChannelID(chanPoint) var peerOnline bool if _, err := r.server.findPeer(nodePub); err == nil { peerOnline = true } // As this is required for display purposes, we'll calculate // the weight of the commitment transaction. We also add on the // estimated weight of the witness to calculate the weight of // the transaction if it were to be immediately unilaterally // broadcast. utx := btcutil.NewTx(dbChannel.OurCommitTx) commitBaseWeight := blockchain.GetTransactionWeight(utx) commitWeight := commitBaseWeight + lnwallet.WitnessCommitmentTxWeight channel := &lnrpc.ActiveChannel{ Active: peerOnline, RemotePubkey: nodeID, ChannelPoint: chanPoint.String(), ChanId: chanID, Capacity: int64(dbChannel.Capacity), LocalBalance: int64(dbChannel.OurBalance), RemoteBalance: int64(dbChannel.TheirBalance), CommitFee: int64(dbChannel.CommitFee), CommitWeight: commitWeight, FeePerKw: int64(dbChannel.FeePerKw), TotalSatoshisSent: int64(dbChannel.TotalSatoshisSent), TotalSatoshisReceived: int64(dbChannel.TotalSatoshisReceived), NumUpdates: dbChannel.NumUpdates, PendingHtlcs: make([]*lnrpc.HTLC, len(dbChannel.Htlcs)), } for i, htlc := range dbChannel.Htlcs { channel.PendingHtlcs[i] = &lnrpc.HTLC{ Incoming: htlc.Incoming, Amount: int64(htlc.Amt), HashLock: htlc.RHash[:], ExpirationHeight: htlc.RefundTimeout, RevocationDelay: htlc.RevocationDelay, } } resp.Channels = append(resp.Channels, channel) } return resp, nil } // savePayment saves a successfully completed payment to the database for // historical record keeping. func (r *rpcServer) savePayment(route *routing.Route, amount btcutil.Amount, rHash []byte) error { paymentPath := make([][33]byte, len(route.Hops)) for i, hop := range route.Hops { hopPub := hop.Channel.Node.PubKey.SerializeCompressed() copy(paymentPath[i][:], hopPub) } payment := &channeldb.OutgoingPayment{ Invoice: channeldb.Invoice{ Terms: channeldb.ContractTerm{ Value: amount, }, CreationDate: time.Now(), }, Path: paymentPath, Fee: route.TotalFees, TimeLockLength: route.TotalTimeLock, } copy(payment.PaymentHash[:], rHash) return r.server.chanDB.AddPayment(payment) } // SendPayment dispatches a bi-directional streaming RPC for sending payments // through the Lightning Network. A single RPC invocation creates a persistent // bi-directional stream allowing clients to rapidly send payments through the // Lightning Network with a single persistent connection. func (r *rpcServer) SendPayment(paymentStream lnrpc.Lightning_SendPaymentServer) error { errChan := make(chan error, 1) payChan := make(chan *lnrpc.SendRequest) // TODO(roasbeef): check payment filter to see if already used? // In order to limit the level of concurrency and prevent a client from // attempting to OOM the server, we'll set up a semaphore to create an // upper ceiling on the number of outstanding payments. const numOutstandingPayments = 2000 htlcSema := make(chan struct{}, numOutstandingPayments) for i := 0; i < numOutstandingPayments; i++ { htlcSema <- struct{}{} } // Launch a new goroutine to handle reading new payment requests from // the client. This way we can handle errors independently of blocking // and waiting for the next payment request to come through. go func() { for { select { case <-r.quit: errChan <- nil return default: // Receive the next pending payment within the // stream sent by the client. If we read the // EOF sentinel, then the client has closed the // stream, and we can exit normally. nextPayment, err := paymentStream.Recv() if err == io.EOF { errChan <- nil return } else if err != nil { errChan <- err return } // If the payment request field isn't blank, // then the details of the invoice are encoded // entirely within the encode payReq. So we'll // attempt to decode it, populating the // nextPayment accordingly. if nextPayment.PaymentRequest != "" { payReq, err := zpay32.Decode(nextPayment.PaymentRequest) if err != nil { errChan <- err return } // TODO(roasbeef): eliminate necessary // encode/decode nextPayment.Dest = payReq.Destination.SerializeCompressed() nextPayment.Amt = int64(payReq.Amount) nextPayment.PaymentHash = payReq.PaymentHash[:] } payChan <- nextPayment } } }() for { select { case err := <-errChan: return err case nextPayment := <-payChan: // Parse the details of the payment which include the // pubkey of the destination and the payment amount. dest := nextPayment.Dest amt := btcutil.Amount(nextPayment.Amt) destNode, err := btcec.ParsePubKey(dest, btcec.S256()) if err != nil { return err } // If we're in debug HTLC mode, then all outgoing HTLCs // will pay to the same debug rHash. Otherwise, we pay // to the rHash specified within the RPC request. var rHash [32]byte if cfg.DebugHTLC && len(nextPayment.PaymentHash) == 0 { rHash = debugHash } else { copy(rHash[:], nextPayment.PaymentHash) } // We launch a new goroutine to execute the current // payment so we can continue to serve requests while // this payment is being dispatched. go func() { // Attempt to grab a free semaphore slot, using // a defer to eventually release the slot // regardless of payment success. <-htlcSema defer func() { htlcSema <- struct{}{} }() // Construct a payment request to send to the // channel router. If the payment is // successful, the route chosen will be // returned. Otherwise, we'll get a non-nil // error. payment := &routing.LightningPayment{ Target: destNode, Amount: amt, PaymentHash: rHash, } preImage, route, err := r.server.chanRouter.SendPayment(payment) if err != nil { // If we receive payment error than, // instead of terminating the stream, // send error response to the user. err := paymentStream.Send(&lnrpc.SendResponse{ PaymentError: err.Error(), PaymentPreimage: nil, PaymentRoute: nil, }) if err != nil { errChan <- err return } return } // Save the completed payment to the database // for record keeping purposes. if err := r.savePayment(route, amt, rHash[:]); err != nil { errChan <- err return } err = paymentStream.Send(&lnrpc.SendResponse{ PaymentPreimage: preImage[:], PaymentRoute: marshalRoute(route), }) if err != nil { errChan <- err return } }() } } } // SendPaymentSync is the synchronous non-streaming version of SendPayment. // This RPC is intended to be consumed by clients of the REST proxy. // Additionally, this RPC expects the destination's public key and the payment // hash (if any) to be encoded as hex strings. func (r *rpcServer) SendPaymentSync(ctx context.Context, nextPayment *lnrpc.SendRequest) (*lnrpc.SendResponse, error) { var ( destPub *btcec.PublicKey amt btcutil.Amount rHash [32]byte ) // If the proto request has an encoded payment request, then we we'll // use that solely to dipatch the payment. if nextPayment.PaymentRequest != "" { payReq, err := zpay32.Decode(nextPayment.PaymentRequest) if err != nil { return nil, err } destPub = payReq.Destination amt = payReq.Amount rHash = payReq.PaymentHash // Otherwise, the payment conditions have been manually // specified in the proto. } else { // If we're in debug HTLC mode, then all outgoing HTLCs will // pay to the same debug rHash. Otherwise, we pay to the rHash // specified within the RPC request. if cfg.DebugHTLC && nextPayment.PaymentHashString == "" { rHash = debugHash } else { paymentHash, err := hex.DecodeString(nextPayment.PaymentHashString) if err != nil { return nil, err } copy(rHash[:], paymentHash) } pubBytes, err := hex.DecodeString(nextPayment.DestString) if err != nil { return nil, err } destPub, err = btcec.ParsePubKey(pubBytes, btcec.S256()) if err != nil { return nil, err } amt = btcutil.Amount(nextPayment.Amt) } // Finally, send a payment request to the channel router. If the // payment succeeds, then the returned route will be that was used // successfully within the payment. preImage, route, err := r.server.chanRouter.SendPayment(&routing.LightningPayment{ Target: destPub, Amount: amt, PaymentHash: rHash, }) if err != nil { return nil, err } // With the payment completed successfully, we now ave the details of // the completed payment to the database for historical record keeping. if err := r.savePayment(route, amt, rHash[:]); err != nil { return nil, err } return &lnrpc.SendResponse{ PaymentPreimage: preImage[:], PaymentRoute: marshalRoute(route), }, nil } // AddInvoice attempts to add a new invoice to the invoice database. Any // duplicated invoices are rejected, therefore all invoices *must* have a // unique payment preimage. func (r *rpcServer) AddInvoice(ctx context.Context, invoice *lnrpc.Invoice) (*lnrpc.AddInvoiceResponse, error) { var paymentPreimage [32]byte switch { // If a preimage wasn't specified, then we'll generate a new preimage // from fresh cryptographic randomness. case len(invoice.RPreimage) == 0: if _, err := rand.Read(paymentPreimage[:]); err != nil { return nil, err } // Otherwise, if a preimage was specified, then it MUST be exactly // 32-bytes. case len(invoice.RPreimage) > 0 && len(invoice.RPreimage) != 32: return nil, fmt.Errorf("payment preimage must be exactly "+ "32 bytes, is instead %v", len(invoice.RPreimage)) // If the preimage meets the size specifications, then it can be used // as is. default: copy(paymentPreimage[:], invoice.RPreimage[:]) } // The size of the memo and receipt attached must not exceed the // maximum values for either of the fields. if len(invoice.Memo) > channeldb.MaxMemoSize { return nil, fmt.Errorf("memo too large: %v bytes "+ "(maxsize=%v)", len(invoice.Memo), channeldb.MaxMemoSize) } if len(invoice.Receipt) > channeldb.MaxReceiptSize { return nil, fmt.Errorf("receipt too large: %v bytes "+ "(maxsize=%v)", len(invoice.Receipt), channeldb.MaxReceiptSize) } // Finally, the value of an invoice MUST NOT be zero. if invoice.Value == 0 { return nil, fmt.Errorf("zero value invoices are disallowed") } i := &channeldb.Invoice{ CreationDate: time.Now(), Memo: []byte(invoice.Memo), Receipt: invoice.Receipt, Terms: channeldb.ContractTerm{ Value: btcutil.Amount(invoice.Value), }, } copy(i.Terms.PaymentPreimage[:], paymentPreimage[:]) rpcsLog.Tracef("[addinvoice] adding new invoice %v", newLogClosure(func() string { return spew.Sdump(i) })) // With all sanity checks passed, write the invoice to the database. if err := r.server.invoices.AddInvoice(i); err != nil { return nil, err } // Next, generate the payment hash itself from the preimage. This will // be used by clients to query for the state of a particular invoice. rHash := sha256.Sum256(paymentPreimage[:]) // Finally we also create an encoded payment request which allows the // caller to comactly send the invoice to the payer. payReqString := zpay32.Encode(&zpay32.PaymentRequest{ Destination: r.server.identityPriv.PubKey(), PaymentHash: rHash, Amount: btcutil.Amount(invoice.Value), }) return &lnrpc.AddInvoiceResponse{ RHash: rHash[:], PaymentRequest: payReqString, }, nil } // LookupInvoice attemps to look up an invoice according to its payment hash. // The passed payment hash *must* be exactly 32 bytes, if not an error is // returned. func (r *rpcServer) LookupInvoice(ctx context.Context, req *lnrpc.PaymentHash) (*lnrpc.Invoice, error) { var ( payHash [32]byte rHash []byte err error ) // If the RHash as a raw string was provided, then decode that and use // that directly. Otherwise, we use the raw bytes provided. if req.RHashStr != "" { rHash, err = hex.DecodeString(req.RHashStr) if err != nil { return nil, err } } else { rHash = req.RHash } // Ensure that the payment hash is *exactly* 32-bytes. if len(rHash) != 0 && len(rHash) != 32 { return nil, fmt.Errorf("payment hash must be exactly "+ "32 bytes, is instead %v", len(rHash)) } copy(payHash[:], rHash) rpcsLog.Tracef("[lookupinvoice] searching for invoice %x", payHash[:]) invoice, err := r.server.invoices.LookupInvoice(payHash) if err != nil { return nil, err } rpcsLog.Tracef("[lookupinvoice] located invoice %v", newLogClosure(func() string { return spew.Sdump(invoice) })) preimage := invoice.Terms.PaymentPreimage return &lnrpc.Invoice{ Memo: string(invoice.Memo[:]), Receipt: invoice.Receipt[:], RHash: rHash, RPreimage: preimage[:], Value: int64(invoice.Terms.Value), CreationDate: invoice.CreationDate.Unix(), Settled: invoice.Terms.Settled, PaymentRequest: zpay32.Encode(&zpay32.PaymentRequest{ Destination: r.server.identityPriv.PubKey(), PaymentHash: sha256.Sum256(preimage[:]), Amount: invoice.Terms.Value, }), }, nil } // ListInvoices returns a list of all the invoices currently stored within the // database. Any active debug invoices are ignored. func (r *rpcServer) ListInvoices(ctx context.Context, req *lnrpc.ListInvoiceRequest) (*lnrpc.ListInvoiceResponse, error) { dbInvoices, err := r.server.chanDB.FetchAllInvoices(req.PendingOnly) if err != nil { return nil, err } invoices := make([]*lnrpc.Invoice, len(dbInvoices)) for i, dbInvoice := range dbInvoices { invoiceAmount := dbInvoice.Terms.Value paymentPreimge := dbInvoice.Terms.PaymentPreimage[:] rHash := sha256.Sum256(paymentPreimge) invoice := &lnrpc.Invoice{ Memo: string(dbInvoice.Memo[:]), Receipt: dbInvoice.Receipt[:], RHash: rHash[:], RPreimage: paymentPreimge, Value: int64(invoiceAmount), Settled: dbInvoice.Terms.Settled, CreationDate: dbInvoice.CreationDate.Unix(), PaymentRequest: zpay32.Encode(&zpay32.PaymentRequest{ Destination: r.server.identityPriv.PubKey(), PaymentHash: sha256.Sum256(paymentPreimge), Amount: invoiceAmount, }), } invoices[i] = invoice } return &lnrpc.ListInvoiceResponse{ Invoices: invoices, }, nil } // SubscribeInvoices returns a uni-directional stream (sever -> client) for // notifying the client of newly added/settled invoices. func (r *rpcServer) SubscribeInvoices(req *lnrpc.InvoiceSubscription, updateStream lnrpc.Lightning_SubscribeInvoicesServer) error { invoiceClient := r.server.invoices.SubscribeNotifications() defer invoiceClient.Cancel() for { select { // TODO(roasbeef): include newly added invoices? case settledInvoice := <-invoiceClient.SettledInvoices: preImage := settledInvoice.Terms.PaymentPreimage[:] rHash := sha256.Sum256(preImage) invoice := &lnrpc.Invoice{ Memo: string(settledInvoice.Memo[:]), Receipt: settledInvoice.Receipt[:], RHash: rHash[:], RPreimage: preImage, Value: int64(settledInvoice.Terms.Value), Settled: settledInvoice.Terms.Settled, } if err := updateStream.Send(invoice); err != nil { return err } case <-r.quit: return nil } } } // SubscribeTransactions creates a uni-directional stream (server -> client) in // which any newly discovered transactions relevant to the wallet are sent // over. func (r *rpcServer) SubscribeTransactions(req *lnrpc.GetTransactionsRequest, updateStream lnrpc.Lightning_SubscribeTransactionsServer) error { txClient, err := r.server.cc.wallet.SubscribeTransactions() if err != nil { return err } defer txClient.Cancel() for { select { case tx := <-txClient.ConfirmedTransactions(): detail := &lnrpc.Transaction{ TxHash: tx.Hash.String(), Amount: int64(tx.Value), NumConfirmations: tx.NumConfirmations, BlockHash: tx.BlockHash.String(), TimeStamp: tx.Timestamp, TotalFees: tx.TotalFees, } if err := updateStream.Send(detail); err != nil { return err } case tx := <-txClient.UnconfirmedTransactions(): detail := &lnrpc.Transaction{ TxHash: tx.Hash.String(), Amount: int64(tx.Value), TimeStamp: tx.Timestamp, TotalFees: tx.TotalFees, } if err := updateStream.Send(detail); err != nil { return err } case <-r.quit: return nil } } } // GetTransactions returns a list of describing all the known transactions // relevant to the wallet. func (r *rpcServer) GetTransactions(context.Context, *lnrpc.GetTransactionsRequest) (*lnrpc.TransactionDetails, error) { // TODO(btcsuite): add pagination support transactions, err := r.server.cc.wallet.ListTransactionDetails() if err != nil { return nil, err } txDetails := &lnrpc.TransactionDetails{ Transactions: make([]*lnrpc.Transaction, len(transactions)), } for i, tx := range transactions { txDetails.Transactions[i] = &lnrpc.Transaction{ TxHash: tx.Hash.String(), Amount: int64(tx.Value), NumConfirmations: tx.NumConfirmations, BlockHash: tx.BlockHash.String(), BlockHeight: tx.BlockHeight, TimeStamp: tx.Timestamp, TotalFees: tx.TotalFees, } } return txDetails, nil } // DescribeGraph returns a description of the latest graph state from the PoV // of the node. The graph information is partitioned into two components: all // the nodes/vertexes, and all the edges that connect the vertexes themselves. // As this is a directed graph, the edges also contain the node directional // specific routing policy which includes: the time lock delta, fee // information, etc. func (r *rpcServer) DescribeGraph(context.Context, *lnrpc.ChannelGraphRequest) (*lnrpc.ChannelGraph, error) { resp := &lnrpc.ChannelGraph{} // Obtain the pointer to the global singleton channel graph, this will // provide a consistent view of the graph due to bolt db's // transactional model. graph := r.server.chanDB.ChannelGraph() // First iterate through all the known nodes (connected or unconnected // within the graph), collating their current state into the RPC // response. err := graph.ForEachNode(nil, func(_ *bolt.Tx, node *channeldb.LightningNode) error { nodeAddrs := make([]*lnrpc.NodeAddress, 0) for _, addr := range node.Addresses { nodeAddr := &lnrpc.NodeAddress{ Network: addr.Network(), Addr: addr.String(), } nodeAddrs = append(nodeAddrs, nodeAddr) } resp.Nodes = append(resp.Nodes, &lnrpc.LightningNode{ LastUpdate: uint32(node.LastUpdate.Unix()), PubKey: hex.EncodeToString(node.PubKey.SerializeCompressed()), Addresses: nodeAddrs, Alias: node.Alias, }) return nil }) if err != nil { return nil, err } // Next, for each active channel we know of within the graph, create a // similar response which details both the edge information as well as // the routing policies of th nodes connecting the two edges. err = graph.ForEachChannel(func(edgeInfo *channeldb.ChannelEdgeInfo, c1, c2 *channeldb.ChannelEdgePolicy) error { edge := marshalDbEdge(edgeInfo, c1, c2) resp.Edges = append(resp.Edges, edge) return nil }) if err != nil && err != channeldb.ErrGraphNoEdgesFound { return nil, err } return resp, nil } func marshalDbEdge(edgeInfo *channeldb.ChannelEdgeInfo, c1, c2 *channeldb.ChannelEdgePolicy) *lnrpc.ChannelEdge { var ( lastUpdate int64 ) if c2 != nil { lastUpdate = c2.LastUpdate.Unix() } if c1 != nil { lastUpdate = c1.LastUpdate.Unix() } edge := &lnrpc.ChannelEdge{ ChannelId: edgeInfo.ChannelID, ChanPoint: edgeInfo.ChannelPoint.String(), // TODO(roasbeef): update should be on edge info itself LastUpdate: uint32(lastUpdate), Node1Pub: hex.EncodeToString(edgeInfo.NodeKey1.SerializeCompressed()), Node2Pub: hex.EncodeToString(edgeInfo.NodeKey2.SerializeCompressed()), Capacity: int64(edgeInfo.Capacity), } if c1 != nil { edge.Node1Policy = &lnrpc.RoutingPolicy{ TimeLockDelta: uint32(c1.TimeLockDelta), MinHtlc: int64(c1.MinHTLC), FeeBaseMsat: int64(c1.FeeBaseMSat), FeeRateMilliMsat: int64(c1.FeeProportionalMillionths), } } if c2 != nil { edge.Node2Policy = &lnrpc.RoutingPolicy{ TimeLockDelta: uint32(c2.TimeLockDelta), MinHtlc: int64(c2.MinHTLC), FeeBaseMsat: int64(c2.FeeBaseMSat), FeeRateMilliMsat: int64(c2.FeeProportionalMillionths), } } return edge } // GetChainInfo returns the latest authenticated network announcement for the // given channel identified by its channel ID: an 8-byte integer which uniquely // identifies the location of transaction's funding output within the block // chain. func (r *rpcServer) GetChanInfo(_ context.Context, in *lnrpc.ChanInfoRequest) (*lnrpc.ChannelEdge, error) { graph := r.server.chanDB.ChannelGraph() edgeInfo, edge1, edge2, err := graph.FetchChannelEdgesByID(in.ChanId) if err != nil { return nil, err } // Convert the database's edge format into the network/RPC edge format // which couples the edge itself along with the directional node // routing policies of each node involved within the channel. channelEdge := marshalDbEdge(edgeInfo, edge1, edge2) return channelEdge, nil } // GetNodeInfo returns the latest advertised and aggregate authenticated // channel information for the specified node identified by its public key. func (r *rpcServer) GetNodeInfo(_ context.Context, in *lnrpc.NodeInfoRequest) (*lnrpc.NodeInfo, error) { graph := r.server.chanDB.ChannelGraph() // First, parse the hex-encoded public key into a full in-memory public // key object we can work with for querying. pubKeyBytes, err := hex.DecodeString(in.PubKey) if err != nil { return nil, err } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { return nil, err } // With the public key decoded, attempt to fetch the node corresponding // to this public key. If the node cannot be found, then an error will // be returned. node, err := graph.FetchLightningNode(pubKey) if err != nil { return nil, err } // With the node obtained, we'll now iterate through all its out going // edges to gather some basic statistics about its out going channels. var ( numChannels uint32 totalCapcity btcutil.Amount ) if err := node.ForEachChannel(nil, func(_ *bolt.Tx, edge *channeldb.ChannelEdgeInfo, _ *channeldb.ChannelEdgePolicy) error { numChannels++ totalCapcity += edge.Capacity return nil }); err != nil { return nil, err } nodeAddrs := make([]*lnrpc.NodeAddress, 0) for _, addr := range node.Addresses { nodeAddr := &lnrpc.NodeAddress{ Network: addr.Network(), Addr: addr.String(), } nodeAddrs = append(nodeAddrs, nodeAddr) } // TODO(roasbeef): list channels as well? return &lnrpc.NodeInfo{ Node: &lnrpc.LightningNode{ LastUpdate: uint32(node.LastUpdate.Unix()), PubKey: in.PubKey, Addresses: nodeAddrs, Alias: node.Alias, }, NumChannels: numChannels, TotalCapacity: int64(totalCapcity), }, nil } // QueryRoutes attempts to query the daemons' Channel Router for a possible // route to a target destination capable of carrying a specific amount of // satoshis within the route's flow. The retuned route contains the full // details required to craft and send an HTLC, also including the necessary // information that should be present within the Sphinx packet encapsualted // within the HTLC. // // TODO(roasbeef): should return a slice of routes in reality // * create separate PR to send based on well formatted route func (r *rpcServer) QueryRoutes(_ context.Context, in *lnrpc.QueryRoutesRequest) (*lnrpc.QueryRoutesResponse, error) { // First parse the hex-encdoed public key into a full public key objet // we can properly manipulate. pubKeyBytes, err := hex.DecodeString(in.PubKey) if err != nil { return nil, err } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { return nil, err } // Query the channel router for a possible path to the destination that // can carry `in.Amt` satoshis _including_ the total fee required on // the route. routes, err := r.server.chanRouter.FindRoutes(pubKey, btcutil.Amount(in.Amt)) if err != nil { return nil, err } // For each valid route, we'll convert the result into the format // required by the RPC system. routeResp := &lnrpc.QueryRoutesResponse{ Routes: make([]*lnrpc.Route, len(routes)), } for i, route := range routes { routeResp.Routes[i] = marshalRoute(route) } return routeResp, nil } func marshalRoute(route *routing.Route) *lnrpc.Route { resp := &lnrpc.Route{ TotalTimeLock: route.TotalTimeLock, TotalFees: int64(route.TotalFees), TotalAmt: int64(route.TotalAmount), Hops: make([]*lnrpc.Hop, len(route.Hops)), } for i, hop := range route.Hops { resp.Hops[i] = &lnrpc.Hop{ ChanId: hop.Channel.ChannelID, ChanCapacity: int64(hop.Channel.Capacity), AmtToForward: int64(hop.AmtToForward), Fee: int64(hop.Fee), } } return resp } // GetNetworkInfo returns some basic stats about the known channel graph from // the PoV of the node. func (r *rpcServer) GetNetworkInfo(context.Context, *lnrpc.NetworkInfoRequest) (*lnrpc.NetworkInfo, error) { graph := r.server.chanDB.ChannelGraph() var ( numNodes uint32 numChannels uint32 maxChanOut uint32 totalNetworkCapacity btcutil.Amount minChannelSize btcutil.Amount = math.MaxInt64 maxChannelSize btcutil.Amount ) // We'll use this map to de-duplicate channels during our traversal. // This is needed since channels are directional, so there will be two // edges for each channel within the graph. seenChans := make(map[uint64]struct{}) // We'll run through all the known nodes in the within our view of the // network, tallying up the total number of nodes, and also gathering // each node so we can measure the graph diameter and degree stats // below. if err := graph.ForEachNode(nil, func(tx *bolt.Tx, node *channeldb.LightningNode) error { // Increment the total number of nodes with each iteration. numNodes++ // For each channel we'll compute the out degree of each node, // and also update our running tallies of the min/max channel // capacity, as well as the total channel capacity. We pass // through the db transaction from the outer view so we can // re-use it within this inner view. var outDegree uint32 if err := node.ForEachChannel(tx, func(_ *bolt.Tx, edge *channeldb.ChannelEdgeInfo, _ *channeldb.ChannelEdgePolicy) error { // Bump up the out degree for this node for each // channel encountered. outDegree++ // If we've already seen this channel, then we'll // return early to ensure that we don't double-count // stats. if _, ok := seenChans[edge.ChannelID]; ok { return nil } // Compare the capacity of this channel against the // running min/max to see if we should update the // extrema. chanCapacity := edge.Capacity if chanCapacity < minChannelSize { minChannelSize = chanCapacity } if chanCapacity > maxChannelSize { maxChannelSize = chanCapacity } // Accumulate the total capacity of this channel to the // network wide-capacity. totalNetworkCapacity += chanCapacity numChannels++ seenChans[edge.ChannelID] = struct{}{} return nil }); err != nil { return err } // Finally, if the out degree of this node is greater than what // we've seen so far, update the maxChanOut variable. if outDegree > maxChanOut { maxChanOut = outDegree } return nil }); err != nil { return nil, err } // If we don't have any channels, then reset the minChannelSize to zero // to avoid outputting NaN in encoded JSOn. if numChannels == 0 { minChannelSize = 0 } // TODO(roasbeef): graph diameter // TODO(roasbeef): also add oldest channel? // * also add median channel size netInfo := &lnrpc.NetworkInfo{ MaxOutDegree: maxChanOut, AvgOutDegree: float64(numChannels) / float64(numNodes), NumNodes: numNodes, NumChannels: numChannels, TotalNetworkCapacity: int64(totalNetworkCapacity), AvgChannelSize: float64(totalNetworkCapacity) / float64(numChannels), MinChannelSize: int64(minChannelSize), MaxChannelSize: int64(maxChannelSize), } // Similarly, if we don't have any channels, then we'll also set the // average channel size to zero in order to avoid weird JSON encoding // outputs. if numChannels == 0 { netInfo.AvgChannelSize = 0 } return netInfo, nil } // StopDaemon will send a shutdown request to the interrupt handler, triggering // a graceful shutdown of the daemon. func (r *rpcServer) StopDaemon(context.Context, *lnrpc.StopRequest) (*lnrpc.StopResponse, error) { shutdownRequestChannel <- struct{}{} return &lnrpc.StopResponse{}, nil } // SubscribeChannelGraph launches a streaming RPC that allows the caller to // receive notifications upon any changes the channel graph topology from the // review of the responding node. Events notified include: new nodes coming // online, nodes updating their authenticated attributes, new channels being // advertised, updates in the routing policy for a directional channel edge, // and finally when prior channels are closed on-chain. func (r *rpcServer) SubscribeChannelGraph(req *lnrpc.GraphTopologySubscription, updateStream lnrpc.Lightning_SubscribeChannelGraphServer) error { // First, we start by subscribing to a new intent to receive // notifications from the channel router. client, err := r.server.chanRouter.SubscribeTopology() if err != nil { return err } // Ensure that the resources for the topology update client is cleaned // up once either the server, or client exists. defer client.Cancel() for { select { // A new update has been sent by the channel router, we'll // marshal it into the form expected by the gRPC client, then // send it off. case topChange, ok := <-client.TopologyChanges: // If the second value from the channel read is nil, // then this means that the channel router is exiting // or the notification client was cancelled. So we'll // exit early. if !ok { return errors.New("server shutting down") } // Convert the struct from the channel router into the // form expected by the gRPC service then send it off // to the client. graphUpdate := marshallTopologyChange(topChange) if err := updateStream.Send(graphUpdate); err != nil { return err } // The server is quitting, so we'll exit immediately. Returning // nil will close the clients read end of the stream. case <-r.quit: return nil } } } // marshallTopologyChange performs a mapping from the topology change sturct // returned by the router to the form of notifications expected by the current // gRPC service. func marshallTopologyChange(topChange *routing.TopologyChange) *lnrpc.GraphTopologyUpdate { // encodeKey is a simple helper function that converts a live public // key into a hex-encoded version of the compressed serialization for // the public key. encodeKey := func(k *btcec.PublicKey) string { return hex.EncodeToString(k.SerializeCompressed()) } nodeUpdates := make([]*lnrpc.NodeUpdate, len(topChange.NodeUpdates)) for i, nodeUpdate := range topChange.NodeUpdates { addrs := make([]string, len(nodeUpdate.Addresses)) for i, addr := range nodeUpdate.Addresses { addrs[i] = addr.String() } nodeUpdates[i] = &lnrpc.NodeUpdate{ Addresses: addrs, IdentityKey: encodeKey(nodeUpdate.IdentityKey), GlobalFeatures: nodeUpdate.GlobalFeatures, Alias: nodeUpdate.Alias, } } channelUpdates := make([]*lnrpc.ChannelEdgeUpdate, len(topChange.ChannelEdgeUpdates)) for i, channelUpdate := range topChange.ChannelEdgeUpdates { channelUpdates[i] = &lnrpc.ChannelEdgeUpdate{ ChanId: channelUpdate.ChanID, ChanPoint: &lnrpc.ChannelPoint{ FundingTxid: channelUpdate.ChanPoint.Hash[:], OutputIndex: channelUpdate.ChanPoint.Index, }, Capacity: int64(channelUpdate.Capacity), RoutingPolicy: &lnrpc.RoutingPolicy{ TimeLockDelta: uint32(channelUpdate.TimeLockDelta), MinHtlc: int64(channelUpdate.MinHTLC), FeeBaseMsat: int64(channelUpdate.BaseFee), FeeRateMilliMsat: int64(channelUpdate.FeeRate), }, AdvertisingNode: encodeKey(channelUpdate.AdvertisingNode), ConnectingNode: encodeKey(channelUpdate.ConnectingNode), } } closedChans := make([]*lnrpc.ClosedChannelUpdate, len(topChange.ClosedChannels)) for i, closedChan := range topChange.ClosedChannels { closedChans[i] = &lnrpc.ClosedChannelUpdate{ ChanId: closedChan.ChanID, Capacity: int64(closedChan.Capacity), ClosedHeight: closedChan.ClosedHeight, ChanPoint: &lnrpc.ChannelPoint{ FundingTxid: closedChan.ChanPoint.Hash[:], OutputIndex: closedChan.ChanPoint.Index, }, } } return &lnrpc.GraphTopologyUpdate{ NodeUpdates: nodeUpdates, ChannelUpdates: channelUpdates, ClosedChans: closedChans, } } // ListPayments returns a list of all outgoing payments. func (r *rpcServer) ListPayments(context.Context, *lnrpc.ListPaymentsRequest) (*lnrpc.ListPaymentsResponse, error) { rpcsLog.Debugf("[ListPayments]") payments, err := r.server.chanDB.FetchAllPayments() if err != nil && err != channeldb.ErrNoPaymentsCreated { return nil, err } paymentsResp := &lnrpc.ListPaymentsResponse{ Payments: make([]*lnrpc.Payment, len(payments)), } for i, payment := range payments { path := make([]string, len(payment.Path)) for i, hop := range payment.Path { path[i] = hex.EncodeToString(hop[:]) } paymentsResp.Payments[i] = &lnrpc.Payment{ PaymentHash: hex.EncodeToString(payment.PaymentHash[:]), Value: int64(payment.Terms.Value), CreationDate: payment.CreationDate.Unix(), Path: path, } } return paymentsResp, nil } // DeleteAllPayments deletes all outgoing payments from DB. func (r *rpcServer) DeleteAllPayments(context.Context, *lnrpc.DeleteAllPaymentsRequest) (*lnrpc.DeleteAllPaymentsResponse, error) { rpcsLog.Debugf("[DeleteAllPayments]") if err := r.server.chanDB.DeleteAllPayments(); err != nil { return nil, err } return &lnrpc.DeleteAllPaymentsResponse{}, nil } // SetAlias... func (r *rpcServer) SetAlias(context.Context, *lnrpc.SetAliasRequest) (*lnrpc.SetAliasResponse, error) { return nil, nil } // DebugLevel allows a caller to programmatically set the logging verbosity of // lnd. The logging can be targeted according to a coarse daemon-wide logging // level, or in a granular fashion to specify the logging for a target // sub-system. func (r *rpcServer) DebugLevel(ctx context.Context, req *lnrpc.DebugLevelRequest) (*lnrpc.DebugLevelResponse, error) { // If show is set, then we simply print out the list of available // sub-systems. if req.Show { return &lnrpc.DebugLevelResponse{ SubSystems: strings.Join(supportedSubsystems(), " "), }, nil } rpcsLog.Infof("[debuglevel] changing debug level to: %v", req.LevelSpec) // Otherwise, we'll attempt to set the logging level using the // specified level spec. if err := parseAndSetDebugLevels(req.LevelSpec); err != nil { return nil, err } return &lnrpc.DebugLevelResponse{}, nil } // DecodePayReq takes an encoded payment request string and attempts to decode // it, returning a full description of the conditions encoded within the // payment request. func (r *rpcServer) DecodePayReq(ctx context.Context, req *lnrpc.PayReqString) (*lnrpc.PayReq, error) { // Fist we'll attempt to decode the payment request string, if the // request is invalid or the checksum doesn't match, then we'll exit // here with an error. payReq, err := zpay32.Decode(req.PayReq) if err != nil { return nil, err } dest := payReq.Destination.SerializeCompressed() return &lnrpc.PayReq{ Destination: hex.EncodeToString(dest), PaymentHash: hex.EncodeToString(payReq.PaymentHash[:]), NumSatoshis: int64(payReq.Amount), }, nil }