package lnwallet import ( "encoding/hex" "errors" "fmt" "math" "sync" "sync/atomic" "github.com/davecgh/go-spew/spew" "github.com/lightningnetwork/lnd/chainntnfs" "github.com/lightningnetwork/lnd/channeldb" "github.com/lightningnetwork/lnd/elkrem" "github.com/roasbeef/btcd/btcjson" "github.com/roasbeef/btcd/btcec" "github.com/roasbeef/btcd/txscript" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" "github.com/roasbeef/btcutil/coinset" "github.com/roasbeef/btcutil/txsort" "github.com/roasbeef/btcwallet/chain" "github.com/roasbeef/btcwallet/waddrmgr" btcwallet "github.com/roasbeef/btcwallet/wallet" ) const ( // The size of the buffered queue of requests to the wallet from the // outside word. msgBufferSize = 100 ) var ( // Error types ErrInsufficientFunds = errors.New("not enough available outputs to " + "create funding transaction") // Namespace bucket keys. lightningNamespaceKey = []byte("ln-wallet") waddrmgrNamespaceKey = []byte("waddrmgr") wtxmgrNamespaceKey = []byte("wtxmgr") ) // initFundingReserveReq is the first message sent to initiate the workflow // required to open a payment channel with a remote peer. The initial required // paramters are configurable accross channels. These paramters are to be chosen // depending on the fee climate within the network, and time value of funds to // be locked up within the channel. Upon success a ChannelReservation will be // created in order to track the lifetime of this pending channel. Outputs // selected will be 'locked', making them unavailable, for any other pending // reservations. Therefore, all channels in reservation limbo will be periodically // after a timeout period in order to avoid "exhaustion" attacks. // NOTE: The workflow currently assumes fully balanced symmetric channels. // Meaning both parties must encumber the same amount of funds. // TODO(roasbeef): zombie reservation sweeper goroutine. type initFundingReserveMsg struct { // The number of confirmations required before the channel is considered // open. numConfs uint16 // The amount of funds requested for this channel. fundingAmount btcutil.Amount // The total capacity of the channel which includes the amount of funds // the remote party contributes (if any). capacity btcutil.Amount // The minimum accepted satoshis/KB fee for the funding transaction. In // order to ensure timely confirmation, it is recomened that this fee // should be generous, paying some multiple of the accepted base fee // rate of the network. // TODO(roasbeef): integrate fee estimation project... minFeeRate btcutil.Amount // The ID of the remote node we would like to open a channel with. // TODO(roasbeef): switch to just reg pubkey? nodeID [32]byte // The delay on the "pay-to-self" output(s) of the commitment transaction. csvDelay uint32 // A channel in which all errors will be sent accross. Will be nil if // this initial set is succesful. // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error // A ChannelReservation with our contributions filled in will be sent // accross this channel in the case of a succesfully reservation // initiation. In the case of an error, this will read a nil pointer. // NOTE: In order to avoid deadlocks, this channel MUST be buffered. resp chan *ChannelReservation } // fundingReserveCancelMsg is a message reserved for cancelling an existing // channel reservation identified by its reservation ID. Cancelling a reservation // frees its locked outputs up, for inclusion within further reservations. type fundingReserveCancelMsg struct { pendingFundingID uint64 // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error // Buffered } // addContributionMsg represents a message executing the second phase of the // channel reservation workflow. This message carries the counterparty's // "contribution" to the payment channel. In the case that this message is // processed without generating any errors, then channel reservation will then // be able to construct the funding tx, both commitment transactions, and // finally generate signatures for all our inputs to the funding transaction, // and for the remote node's version of the commitment transaction. type addContributionMsg struct { pendingFundingID uint64 // TODO(roasbeef): Should also carry SPV proofs in we're in SPV mode contribution *ChannelContribution // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error } // addSingleContributionMsg represents a message executing the second phase of // a single funder channel reservation workflow. This messages carries the // counterparty's "contribution" to the payment channel. As this message is // sent when on the responding side to a single funder workflow, no further // action apart from storing the provided contribution is carried out. type addSingleContributionMsg struct { pendingFundingID uint64 contribution *ChannelContribution // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error } // addCounterPartySigsMsg represents the final message required to complete, // and 'open' a payment channel. This message carries the counterparty's // signatures for each of their inputs to the funding transaction, and also a // signature allowing us to spend our version of the commitment transaction. // If we're able to verify all the signatures are valid, the funding transaction // will be broadcast to the network. After the funding transaction gains a // configurable number of confirmations, the channel is officially considered // 'open'. type addCounterPartySigsMsg struct { pendingFundingID uint64 // Should be order of sorted inputs that are theirs. Sorting is done // in accordance to BIP-69: // https://github.com/bitcoin/bips/blob/master/bip-0069.mediawiki. theirFundingInputScripts []*InputScript // This should be 1/2 of the signatures needed to succesfully spend our // version of the commitment transaction. theirCommitmentSig []byte // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error } // addSingleFunderSigsMsg represents the next-to-last message required to // complete a single-funder channel workflow. Once the initiator is able to // construct the funding transaction, they send both the outpoint and a // signature for our version of the commitment transaction. Once this message // is processed we (the responder) are able to construct both commitment // transactions, signing the remote party's version. type addSingleFunderSigsMsg struct { pendingFundingID uint64 // fundingOutpoint is the outpoint of the completed funding // transaction as assembled by the workflow initiator. fundingOutpoint *wire.OutPoint // revokeKey is the revocation public key derived by the remote node to // be used within the initial version of the commitment transaction we // construct for them. revokeKey *btcec.PublicKey // This should be 1/2 of the signatures needed to succesfully spend our // version of the commitment transaction. theirCommitmentSig []byte // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error } // channelOpenMsg is the final message sent to finalize a single funder channel // workflow to which we are the responder to. This message is sent once the // remote peer deems the channel open, meaning it has reached a sufficient // number of confirmations in the blockchain. type channelOpenMsg struct { pendingFundingID uint64 // TODO(roasbeef): move verification up to upper layer, yeh? spvProof []byte // NOTE: In order to avoid deadlocks, this channel MUST be buffered. err chan error } // LightningWallet is a domain specific, yet general Bitcoin wallet capable of // executing workflow required to interact with the Lightning Network. It is // domain specific in the sense that it understands all the fancy scripts used // within the Lightning Network, channel lifetimes, etc. However, it embedds a // general purpose Bitcoin wallet within it. Therefore, it is also able to serve // as a regular Bitcoin wallet which uses HD keys. The wallet is highly concurrent // internally. All communication, and requests towards the wallet are // dispatched as messages over channels, ensuring thread safety across all // operations. Interaction has been designed independant of any peer-to-peer // communication protocol, allowing the wallet to be self-contained and embeddable // within future projects interacting with the Lightning Network. // NOTE: At the moment the wallet requires a btcd full node, as it's dependant // on btcd's websockets notifications as even triggers during the lifetime of // a channel. However, once the chainntnfs package is complete, the wallet // will be compatible with multiple RPC/notification services such as Electrum, // Bitcoin Core + ZeroMQ, etc. Eventually, the wallet won't require a full-node // at all, as SPV support is integrated inot btcwallet. type LightningWallet struct { // This mutex is to be held when generating external keys to be used // as multi-sig, and commitment keys within the channel. KeyGenMtx sync.RWMutex // This mutex MUST be held when performing coin selection in order to // avoid inadvertently creating multiple funding transaction which // double spend inputs accross each other. coinSelectMtx sync.RWMutex // A wrapper around a namespace within boltdb reserved for ln-based // wallet meta-data. See the 'channeldb' package for further // information. channelDB *channeldb.DB // Used by in order to obtain notifications about funding transaction // reaching a specified confirmation depth, and to catch // counterparty's broadcasting revoked commitment states. chainNotifier chainntnfs.ChainNotifier // The core wallet, all non Lightning Network specific interaction is // proxied to the internal wallet. *btcwallet.Wallet // An active RPC connection to a full-node. In the case of a btcd node, // websockets are used for notifications. If using Bitcoin Core, // notifications are either generated via long-polling or the usage of // ZeroMQ. // TODO(roasbeef): make into interface need: getrawtransaction + gettxout // * getrawtransaction -> verify proof of channel links // * gettxout -> verify inputs to funding tx exist and are unspent rpc *chain.RPCClient // All messages to the wallet are to be sent accross this channel. msgChan chan interface{} // Incomplete payment channels are stored in the map below. An intent // to create a payment channel is tracked as a "reservation" within // limbo. Once the final signatures have been exchanged, a reservation // is removed from limbo. Each reservation is tracked by a unique // monotonically integer. All requests concerning the channel MUST // carry a valid, active funding ID. fundingLimbo map[uint64]*ChannelReservation nextFundingID uint64 limboMtx sync.RWMutex // TODO(roasbeef): zombie garbage collection routine to solve // lost-object/starvation problem/attack. cfg *Config started int32 shutdown int32 quit chan struct{} wg sync.WaitGroup // TODO(roasbeef): handle wallet lock/unlock } // NewLightningWallet creates/opens and initializes a LightningWallet instance. // If the wallet has never been created (according to the passed dataDir), first-time // setup is executed. // // NOTE: The passed channeldb, and ChainNotifier should already be fully // initialized/started before being passed as a function arugment. func NewLightningWallet(config *Config, cdb *channeldb.DB, notifier chainntnfs.ChainNotifier) (*LightningWallet, error) { // Ensure the wallet exists or create it when the create flag is set. netDir := networkDir(config.DataDir, config.NetParams) var pubPass []byte if config.PublicPass == nil { pubPass = defaultPubPassphrase } else { pubPass = config.PublicPass } loader := btcwallet.NewLoader(config.NetParams, netDir) walletExists, err := loader.WalletExists() if err != nil { return nil, err } var createID bool var wallet *btcwallet.Wallet if !walletExists { // Wallet has never been created, perform initial set up. wallet, err = loader.CreateNewWallet(pubPass, config.PrivatePass, config.HdSeed) if err != nil { return nil, err } createID = true } else { // Wallet has been created and been initialized at this point, open it // along with all the required DB namepsaces, and the DB itself. wallet, err = loader.OpenExistingWallet(pubPass, false) if err != nil { return nil, err } } if err := wallet.Manager.Unlock(config.PrivatePass); err != nil { return nil, err } // If we just created the wallet, then reserve, and store a key for // our ID within the Lightning Network. if createID { account := uint32(waddrmgr.DefaultAccountNum) adrs, err := wallet.Manager.NextInternalAddresses(account, 1, waddrmgr.WitnessPubKey) if err != nil { return nil, err } idPubkeyHash := adrs[0].Address().ScriptAddress() if err := cdb.PutIdKey(idPubkeyHash); err != nil { return nil, err } walletLog.Infof("stored identity key pubkey hash in channeldb") } // Create a special websockets rpc client for btcd which will be used // by the wallet for notifications, calls, etc. rpcc, err := chain.NewRPCClient(config.NetParams, config.RpcHost, config.RpcUser, config.RpcPass, config.CACert, false, 20) if err != nil { return nil, err } return &LightningWallet{ chainNotifier: notifier, rpc: rpcc, Wallet: wallet, channelDB: cdb, msgChan: make(chan interface{}, msgBufferSize), // TODO(roasbeef): make this atomic.Uint32 instead? Which is // faster, locks or CAS? I'm guessing CAS because assembly: // * https://golang.org/src/sync/atomic/asm_amd64.s nextFundingID: 0, cfg: config, fundingLimbo: make(map[uint64]*ChannelReservation), quit: make(chan struct{}), }, nil } // Startup establishes a connection to the RPC source, and spins up all // goroutines required to handle incoming messages. func (l *LightningWallet) Startup() error { // Already started? if atomic.AddInt32(&l.started, 1) != 1 { return nil } // Establish an RPC connection in additino to starting the goroutines // in the underlying wallet. if err := l.rpc.Start(); err != nil { return err } l.Start() // Pass the rpc client into the wallet so it can sync up to the // current main chain. l.SynchronizeRPC(l.rpc) l.wg.Add(1) // TODO(roasbeef): multiple request handlers? go l.requestHandler() return nil } // Shutdown gracefully stops the wallet, and all active goroutines. func (l *LightningWallet) Shutdown() error { if atomic.AddInt32(&l.shutdown, 1) != 1 { return nil } // Signal the underlying wallet controller to shutdown, waiting until // all active goroutines have been shutdown. l.Stop() l.WaitForShutdown() l.rpc.Shutdown() close(l.quit) l.wg.Wait() return nil } // requestHandler is the primary goroutine(s) resposible for handling, and // dispatching relies to all messages. func (l *LightningWallet) requestHandler() { out: for { select { case m := <-l.msgChan: switch msg := m.(type) { case *initFundingReserveMsg: l.handleFundingReserveRequest(msg) case *fundingReserveCancelMsg: l.handleFundingCancelRequest(msg) case *addSingleContributionMsg: l.handleSingleContribution(msg) case *addContributionMsg: l.handleContributionMsg(msg) case *addSingleFunderSigsMsg: l.handleSingleFunderSigs(msg) case *addCounterPartySigsMsg: l.handleFundingCounterPartySigs(msg) case *channelOpenMsg: l.handleChannelOpen(msg) } case <-l.quit: // TODO: do some clean up break out } } l.wg.Done() } // InitChannelReservation kicks off the 3-step workflow required to succesfully // open a payment channel with a remote node. As part of the funding // reservation, the inputs selected for the funding transaction are 'locked'. // This ensures that multiple channel reservations aren't double spending the // same inputs in the funding transaction. If reservation initialization is // succesful, a ChannelReservation containing our completed contribution is // returned. Our contribution contains all the items neccessary to allow the // counter party to build the funding transaction, and both versions of the // commitment transaction. Otherwise, an error occured a nil pointer along with // an error are returned. // // Once a ChannelReservation has been obtained, two additional steps must be // processed before a payment channel can be considered 'open'. The second step // validates, and processes the counterparty's channel contribution. The third, // and final step verifies all signatures for the inputs of the funding // transaction, and that the signature we records for our version of the // commitment transaction is valid. func (l *LightningWallet) InitChannelReservation(capacity, ourFundAmt btcutil.Amount, theirID [32]byte, numConfs uint16, csvDelay uint32) (*ChannelReservation, error) { errChan := make(chan error, 1) respChan := make(chan *ChannelReservation, 1) l.msgChan <- &initFundingReserveMsg{ capacity: capacity, numConfs: numConfs, fundingAmount: ourFundAmt, csvDelay: csvDelay, nodeID: theirID, err: errChan, resp: respChan, } return <-respChan, <-errChan } // handleFundingReserveRequest processes a message intending to create, and // validate a funding reservation request. func (l *LightningWallet) handleFundingReserveRequest(req *initFundingReserveMsg) { // Create a limbo and record entry for this newly pending funding request. l.limboMtx.Lock() id := l.nextFundingID reservation := newChannelReservation(req.capacity, req.fundingAmount, req.minFeeRate, l, id, req.numConfs) l.nextFundingID++ l.fundingLimbo[id] = reservation l.limboMtx.Unlock() // Grab the mutex on the ChannelReservation to ensure thead-safety reservation.Lock() defer reservation.Unlock() reservation.partialState.TheirLNID = req.nodeID ourContribution := reservation.ourContribution ourContribution.CsvDelay = req.csvDelay reservation.partialState.LocalCsvDelay = req.csvDelay // If we're on the receiving end of a single funder channel then we // don't need to perform any coin selection. Otherwise, attempt to // obtain enough coins to meet the required funding amount. if req.fundingAmount != 0 { // TODO(roasbeef): consult model for proper fee rate feeRate := uint64(10) if err := l.selectCoinsAndChange(feeRate, req.fundingAmount, ourContribution); err != nil { req.err <- err req.resp <- nil return } } // Grab two fresh keys from our HD chain, one will be used for the // multi-sig funding transaction, and the other for the commitment // transaction. multiSigKey, err := l.getNextRawKey() if err != nil { req.err <- err req.resp <- nil return } commitKey, err := l.getNextRawKey() if err != nil { req.err <- err req.resp <- nil return } reservation.partialState.OurMultiSigKey = multiSigKey ourContribution.MultiSigKey = multiSigKey.PubKey() reservation.partialState.OurCommitKey = commitKey ourContribution.CommitKey = commitKey.PubKey() // Generate a fresh address to be used in the case of a cooperative // channel close. deliveryAddress, err := l.NewAddress(waddrmgr.DefaultAccountNum, waddrmgr.WitnessPubKey) if err != nil { req.err <- err req.resp <- nil return } deliveryScript, err := txscript.PayToAddrScript(deliveryAddress) if err != nil { req.err <- err req.resp <- nil return } reservation.partialState.OurDeliveryScript = deliveryScript ourContribution.DeliveryAddress = deliveryAddress // Funding reservation request succesfully handled. The funding inputs // will be marked as unavailable until the reservation is either // completed, or cancecled. req.resp <- reservation req.err <- nil } // handleFundingReserveCancel cancels an existing channel reservation. As part // of the cancellation, outputs previously selected as inputs for the funding // transaction via coin selection are freed allowing future reservations to // include them. func (l *LightningWallet) handleFundingCancelRequest(req *fundingReserveCancelMsg) { // TODO(roasbeef): holding lock too long l.limboMtx.Lock() defer l.limboMtx.Unlock() pendingReservation, ok := l.fundingLimbo[req.pendingFundingID] if !ok { // TODO(roasbeef): make new error, "unkown funding state" or something req.err <- fmt.Errorf("attempted to cancel non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() // Mark all previously locked outpoints as usuable for future funding // requests. for _, unusedInput := range pendingReservation.ourContribution.Inputs { l.UnlockOutpoint(unusedInput.PreviousOutPoint) } // TODO(roasbeef): is it even worth it to keep track of unsed keys? // TODO(roasbeef): Is it possible to mark the unused change also as // available? delete(l.fundingLimbo, req.pendingFundingID) req.err <- nil } // handleFundingCounterPartyFunds processes the second workflow step for the // lifetime of a channel reservation. Upon completion, the reservation will // carry a completed funding transaction (minus the counterparty's input // signatures), both versions of the commitment transaction, and our signature // for their version of the commitment transaction. func (l *LightningWallet) handleContributionMsg(req *addContributionMsg) { l.limboMtx.Lock() pendingReservation, ok := l.fundingLimbo[req.pendingFundingID] l.limboMtx.Unlock() if !ok { req.err <- fmt.Errorf("attempted to update non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() // Create a blank, fresh transaction. Soon to be a complete funding // transaction which will allow opening a lightning channel. pendingReservation.fundingTx = wire.NewMsgTx() fundingTx := pendingReservation.fundingTx // Some temporary variables to cut down on the resolution verbosity. pendingReservation.theirContribution = req.contribution theirContribution := req.contribution ourContribution := pendingReservation.ourContribution // Add all multi-party inputs and outputs to the transaction. for _, ourInput := range ourContribution.Inputs { fundingTx.AddTxIn(ourInput) } for _, theirInput := range theirContribution.Inputs { fundingTx.AddTxIn(theirInput) } for _, ourChangeOutput := range ourContribution.ChangeOutputs { fundingTx.AddTxOut(ourChangeOutput) } for _, theirChangeOutput := range theirContribution.ChangeOutputs { fundingTx.AddTxOut(theirChangeOutput) } ourKey := pendingReservation.partialState.OurMultiSigKey theirKey := theirContribution.MultiSigKey // Finally, add the 2-of-2 multi-sig output which will set up the lightning // channel. channelCapacity := int64(pendingReservation.partialState.Capacity) redeemScript, multiSigOut, err := genFundingPkScript(ourKey.PubKey().SerializeCompressed(), theirKey.SerializeCompressed(), channelCapacity) if err != nil { req.err <- err return } pendingReservation.partialState.FundingRedeemScript = redeemScript // Register intent for notifications related to the funding output. // This'll allow us to properly track the number of confirmations the // funding tx has once it has been broadcasted. // TODO(roasbeef): remove lastBlock := l.Manager.SyncedTo() scriptAddr, err := l.Manager.ImportScript(redeemScript, &lastBlock) if err != nil { req.err <- err return } if err := l.rpc.NotifyReceived([]btcutil.Address{scriptAddr.Address()}); err != nil { req.err <- err return } // Sort the transaction. Since both side agree to a cannonical // ordering, by sorting we no longer need to send the entire // transaction. Only signatures will be exchanged. fundingTx.AddTxOut(multiSigOut) txsort.InPlaceSort(pendingReservation.fundingTx) // Next, sign all inputs that are ours, collecting the signatures in // order of the inputs. pendingReservation.ourFundingInputScripts = make([]*InputScript, 0, len(ourContribution.Inputs)) hashCache := txscript.NewTxSigHashes(fundingTx) for i, txIn := range fundingTx.TxIn { // Does the wallet know about the txin? txDetail, _ := l.TxStore.TxDetails(&txIn.PreviousOutPoint.Hash) if txDetail == nil { continue } // Is this our txin? prevIndex := txIn.PreviousOutPoint.Index prevOut := txDetail.TxRecord.MsgTx.TxOut[prevIndex] _, addrs, _, _ := txscript.ExtractPkScriptAddrs(prevOut.PkScript, l.cfg.NetParams) apkh := addrs[0] ai, err := l.Manager.Address(apkh) if err != nil { req.err <- fmt.Errorf("cannot get address info: %v", err) return } pka := ai.(waddrmgr.ManagedPubKeyAddress) privKey, err := pka.PrivKey() if err != nil { req.err <- fmt.Errorf("cannot get private key: %v", err) return } var witnessProgram []byte inputScript := &InputScript{} // If we're spending p2wkh output nested within a p2sh output, // then we'll need to attach a sigScript in addition to witness // data. if pka.IsNestedWitness() { pubKey := privKey.PubKey() pubKeyHash := btcutil.Hash160(pubKey.SerializeCompressed()) // Next, we'll generate a valid sigScript that'll allow us to spend // the p2sh output. The sigScript will contain only a single push of // the p2wkh witness program corresponding to the matching public key // of this address. p2wkhAddr, err := btcutil.NewAddressWitnessPubKeyHash(pubKeyHash, l.cfg.NetParams) if err != nil { req.err <- fmt.Errorf("unable to create p2wkh addr: %v", err) return } witnessProgram, err = txscript.PayToAddrScript(p2wkhAddr) if err != nil { req.err <- fmt.Errorf("unable to create witness program: %v", err) return } bldr := txscript.NewScriptBuilder() bldr.AddData(witnessProgram) sigScript, err := bldr.Script() if err != nil { req.err <- fmt.Errorf("unable to create scriptsig: %v", err) return } txIn.SignatureScript = sigScript inputScript.ScriptSig = sigScript } else { witnessProgram = prevOut.PkScript } // Generate a valid witness stack for the input. inputValue := prevOut.Value witnessScript, err := txscript.WitnessScript(fundingTx, hashCache, i, inputValue, witnessProgram, txscript.SigHashAll, privKey, true) if err != nil { req.err <- fmt.Errorf("cannot create witnessscript: %s", err) return } txIn.Witness = witnessScript inputScript.Witness = witnessScript pendingReservation.ourFundingInputScripts = append( pendingReservation.ourFundingInputScripts, inputScript, ) } // Locate the index of the multi-sig outpoint in order to record it // since the outputs are cannonically sorted. If this is a sigle funder // workflow, then we'll also need to send this to the remote node. fundingTxID := fundingTx.TxSha() _, multiSigIndex := findScriptOutputIndex(fundingTx, multiSigOut.PkScript) fundingOutpoint := wire.NewOutPoint(&fundingTxID, multiSigIndex) pendingReservation.partialState.FundingOutpoint = fundingOutpoint // Initialize an empty sha-chain for them, tracking the current pending // revocation hash (we don't yet know the pre-image so we can't add it // to the chain). e := &elkrem.ElkremReceiver{} pendingReservation.partialState.RemoteElkrem = e pendingReservation.partialState.TheirCurrentRevocation = theirContribution.RevocationKey // Now that we have their commitment key, we can create the revocation // key for the first version of our commitment transaction. To do so, // we'll first create our elkrem root, then grab the first pre-iamge // from it. elkremRoot := deriveElkremRoot(ourKey, theirKey) elkremSender := elkrem.NewElkremSender(elkremRoot) pendingReservation.partialState.LocalElkrem = elkremSender firstPreimage, err := elkremSender.AtIndex(0) if err != nil { req.err <- err return } theirCommitKey := theirContribution.CommitKey ourRevokeKey := deriveRevocationPubkey(theirCommitKey, firstPreimage[:]) // Create the txIn to our commitment transaction; required to construct // the commitment transactions. fundingTxIn := wire.NewTxIn(wire.NewOutPoint(&fundingTxID, multiSigIndex), nil, nil) // With the funding tx complete, create both commitment transactions. // TODO(roasbeef): much cleanup + de-duplication pendingReservation.fundingLockTime = theirContribution.CsvDelay ourBalance := ourContribution.FundingAmount theirBalance := theirContribution.FundingAmount ourCommitKey := ourContribution.CommitKey ourCommitTx, err := createCommitTx(fundingTxIn, ourCommitKey, theirCommitKey, ourRevokeKey, ourContribution.CsvDelay, ourBalance, theirBalance) if err != nil { req.err <- err return } theirCommitTx, err := createCommitTx(fundingTxIn, theirCommitKey, ourCommitKey, theirContribution.RevocationKey, theirContribution.CsvDelay, theirBalance, ourBalance) if err != nil { req.err <- err return } // Sort both transactions according to the agreed upon cannonical // ordering. This lets us skip sending the entire transaction over, // instead we'll just send signatures. txsort.InPlaceSort(ourCommitTx) txsort.InPlaceSort(theirCommitTx) deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress) if err != nil { req.err <- err return } // Record newly available information witin the open channel state. pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay pendingReservation.partialState.TheirDeliveryScript = deliveryScript pendingReservation.partialState.ChanID = fundingOutpoint pendingReservation.partialState.TheirCommitKey = theirCommitKey pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey pendingReservation.partialState.OurCommitTx = ourCommitTx pendingReservation.ourContribution.RevocationKey = ourRevokeKey // Generate a signature for their version of the initial commitment // transaction. hashCache = txscript.NewTxSigHashes(theirCommitTx) channelBalance := pendingReservation.partialState.Capacity sigTheirCommit, err := txscript.RawTxInWitnessSignature(theirCommitTx, hashCache, 0, int64(channelBalance), redeemScript, txscript.SigHashAll, ourKey) if err != nil { req.err <- err return } pendingReservation.ourCommitmentSig = sigTheirCommit req.err <- nil } // handleSingleContribution is called as the second step to a single funder // workflow to which we are the responder. It simply saves the remote peer's // contribution to the channel, as solely the remote peer will contribute any // funds to the channel. func (l *LightningWallet) handleSingleContribution(req *addSingleContributionMsg) { l.limboMtx.Lock() pendingReservation, ok := l.fundingLimbo[req.pendingFundingID] l.limboMtx.Unlock() if !ok { req.err <- fmt.Errorf("attempted to update non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() // Simply record the counterparty's contribution into the pending // reservation data as they'll be solely funding the channel entirely. pendingReservation.theirContribution = req.contribution theirContribution := pendingReservation.theirContribution // Additionally, we can now also record the redeem script of the // funding transaction. // TODO(roasbeef): switch to proper pubkey derivation ourKey := pendingReservation.partialState.OurMultiSigKey theirKey := theirContribution.MultiSigKey channelCapacity := int64(pendingReservation.partialState.Capacity) redeemScript, _, err := genFundingPkScript(ourKey.PubKey().SerializeCompressed(), theirKey.SerializeCompressed(), channelCapacity) if err != nil { req.err <- err return } pendingReservation.partialState.FundingRedeemScript = redeemScript // Now that we know their commitment key, we can create the revocation // key for our version of the initial commitment transaction. elkremRoot := deriveElkremRoot(ourKey, theirKey) elkremSender := elkrem.NewElkremSender(elkremRoot) firstPreimage, err := elkremSender.AtIndex(0) if err != nil { req.err <- err return } pendingReservation.partialState.LocalElkrem = elkremSender theirCommitKey := theirContribution.CommitKey ourRevokeKey := deriveRevocationPubkey(theirCommitKey, firstPreimage[:]) // Initialize an empty sha-chain for them, tracking the current pending // revocation hash (we don't yet know the pre-image so we can't add it // to the chain). remoteElkrem := &elkrem.ElkremReceiver{} pendingReservation.partialState.RemoteElkrem = remoteElkrem // Record the counterpaty's remaining contributions to the channel, // converting their delivery address into a public key script. deliveryScript, err := txscript.PayToAddrScript(theirContribution.DeliveryAddress) if err != nil { req.err <- err return } pendingReservation.partialState.RemoteCsvDelay = theirContribution.CsvDelay pendingReservation.partialState.TheirDeliveryScript = deliveryScript pendingReservation.partialState.TheirCommitKey = theirContribution.CommitKey pendingReservation.partialState.TheirMultiSigKey = theirContribution.MultiSigKey pendingReservation.ourContribution.RevocationKey = ourRevokeKey req.err <- nil return } // handleFundingCounterPartySigs is the final step in the channel reservation // workflow. During this setp, we validate *all* the received signatures for // inputs to the funding transaction. If any of these are invalid, we bail, // and forcibly cancel this funding request. Additionally, we ensure that the // signature we received from the counterparty for our version of the commitment // transaction allows us to spend from the funding output with the addition of // our signature. func (l *LightningWallet) handleFundingCounterPartySigs(msg *addCounterPartySigsMsg) { l.limboMtx.RLock() pendingReservation, ok := l.fundingLimbo[msg.pendingFundingID] l.limboMtx.RUnlock() if !ok { msg.err <- fmt.Errorf("attempted to update non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() // Now we can complete the funding transaction by adding their // signatures to their inputs. pendingReservation.theirFundingInputScripts = msg.theirFundingInputScripts inputScripts := msg.theirFundingInputScripts fundingTx := pendingReservation.fundingTx sigIndex := 0 fundingHashCache := txscript.NewTxSigHashes(fundingTx) for i, txin := range fundingTx.TxIn { if len(inputScripts) != 0 && len(txin.Witness) == 0 { // Attach the input scripts so we can verify it below. txin.Witness = inputScripts[sigIndex].Witness txin.SignatureScript = inputScripts[sigIndex].ScriptSig // Fetch the alleged previous output along with the // pkscript referenced by this input. prevOut := txin.PreviousOutPoint output, err := l.rpc.GetTxOut(&prevOut.Hash, prevOut.Index, false) if output == nil { msg.err <- fmt.Errorf("input to funding tx does not exist: %v", err) return } pkScript, err := hex.DecodeString(output.ScriptPubKey.Hex) if err != nil { msg.err <- err return } // Sadly, gettxout returns the output value in BTC // instead of satoshis. inputValue := int64(output.Value) * 1e8 // Ensure that the witness+sigScript combo is valid. vm, err := txscript.NewEngine(pkScript, fundingTx, i, txscript.StandardVerifyFlags, nil, fundingHashCache, inputValue) if err != nil { // TODO(roasbeef): cancel at this stage if invalid sigs? msg.err <- fmt.Errorf("cannot create script engine: %s", err) return } if err = vm.Execute(); err != nil { msg.err <- fmt.Errorf("cannot validate transaction: %s", err) return } sigIndex++ } } // At this point, we can also record and verify their signature for our // commitment transaction. pendingReservation.theirCommitmentSig = msg.theirCommitmentSig commitTx := pendingReservation.partialState.OurCommitTx theirKey := pendingReservation.theirContribution.MultiSigKey ourKey := pendingReservation.partialState.OurMultiSigKey // Re-generate both the redeemScript and p2sh output. We sign the // redeemScript script, but include the p2sh output as the subscript // for verification. redeemScript := pendingReservation.partialState.FundingRedeemScript p2wsh, err := witnessScriptHash(redeemScript) if err != nil { msg.err <- err return } // First, we sign our copy of the commitment transaction ourselves. channelValue := int64(pendingReservation.partialState.Capacity) hashCache := txscript.NewTxSigHashes(commitTx) ourCommitSig, err := txscript.RawTxInWitnessSignature(commitTx, hashCache, 0, channelValue, redeemScript, txscript.SigHashAll, ourKey) if err != nil { msg.err <- err return } // Next, create the spending scriptSig, and then verify that the script // is complete, allowing us to spend from the funding transaction. theirCommitSig := msg.theirCommitmentSig ourKeySer := ourKey.PubKey().SerializeCompressed() theirKeySer := theirKey.SerializeCompressed() witness := spendMultiSig(redeemScript, ourKeySer, ourCommitSig, theirKeySer, theirCommitSig) // Finally, create an instance of a Script VM, and ensure that the // Script executes succesfully. commitTx.TxIn[0].Witness = witness vm, err := txscript.NewEngine(p2wsh, commitTx, 0, txscript.StandardVerifyFlags, nil, nil, channelValue) if err != nil { msg.err <- err return } if err := vm.Execute(); err != nil { msg.err <- fmt.Errorf("counterparty's commitment signature is invalid: %v", err) return } // Strip and store the signature to ensure that our commitment // transaction doesn't stay hot. commitTx.TxIn[0].Witness = nil pendingReservation.partialState.OurCommitSig = theirCommitSig // Funding complete, this entry can be removed from limbo. l.limboMtx.Lock() delete(l.fundingLimbo, pendingReservation.reservationID) // TODO(roasbeef): unlock outputs here, Store.InsertTx will handle marking // input in unconfirmed tx, so future coin selects don't pick it up // * also record location of change address so can use AddCredit l.limboMtx.Unlock() walletLog.Infof("Broadcasting funding tx for ChannelPoint(%v): %v", pendingReservation.partialState.FundingOutpoint, spew.Sdump(fundingTx)) // Broacast the finalized funding transaction to the network. if err := l.PublishTransaction(fundingTx); err != nil { msg.err <- err return } // Add the complete funding transaction to the DB, in it's open bucket // which will be used for the lifetime of this channel. if err := pendingReservation.partialState.FullSync(); err != nil { msg.err <- err return } // Create a goroutine to watch the chain so we can open the channel once // the funding tx has enough confirmations. go l.openChannelAfterConfirmations(pendingReservation) msg.err <- nil } // handleSingleFunderSigs is called once the remote peer who initiated the // single funder workflow has assembled the funding transaction, and generated // a signature for our version of the commitment transaction. This method // progresses the workflow by generating a signature for the remote peer's // version of the commitment transaction. func (l *LightningWallet) handleSingleFunderSigs(req *addSingleFunderSigsMsg) { l.limboMtx.RLock() pendingReservation, ok := l.fundingLimbo[req.pendingFundingID] l.limboMtx.RUnlock() if !ok { req.err <- fmt.Errorf("attempted to update non-existant funding state") return } // Grab the mutex on the ChannelReservation to ensure thead-safety pendingReservation.Lock() defer pendingReservation.Unlock() pendingReservation.partialState.FundingOutpoint = req.fundingOutpoint pendingReservation.partialState.TheirCurrentRevocation = req.revokeKey pendingReservation.partialState.ChanID = req.fundingOutpoint fundingTxIn := wire.NewTxIn(req.fundingOutpoint, nil, nil) // Now that we have the funding outpoint, we can generate both versions // of the commitment transaction, and generate a signature for the // remote node's commitment transactions. ourCommitKey := pendingReservation.ourContribution.CommitKey theirCommitKey := pendingReservation.theirContribution.CommitKey ourBalance := pendingReservation.ourContribution.FundingAmount theirBalance := pendingReservation.theirContribution.FundingAmount ourCommitTx, err := createCommitTx(fundingTxIn, ourCommitKey, theirCommitKey, pendingReservation.ourContribution.RevocationKey, pendingReservation.ourContribution.CsvDelay, ourBalance, theirBalance) if err != nil { req.err <- err return } theirCommitTx, err := createCommitTx(fundingTxIn, theirCommitKey, ourCommitKey, req.revokeKey, pendingReservation.theirContribution.CsvDelay, theirBalance, ourBalance) if err != nil { req.err <- err return } // Sort both transactions according to the agreed upon cannonical // ordering. This ensures that both parties sign the same sighash // without further synchronization. txsort.InPlaceSort(ourCommitTx) pendingReservation.partialState.OurCommitTx = ourCommitTx txsort.InPlaceSort(theirCommitTx) // Verify that their signature of valid for our current commitment // transaction. Re-generate both the redeemScript and p2sh output. We // sign the redeemScript script, but include the p2sh output as the // subscript for verification. // TODO(roasbeef): replace with regular sighash calculation once the PR // is merged. redeemScript := pendingReservation.partialState.FundingRedeemScript p2wsh, err := witnessScriptHash(redeemScript) if err != nil { req.err <- err return } // TODO(roasbeef): remove all duplication after merge. // First, we sign our copy of the commitment transaction ourselves. channelValue := int64(pendingReservation.partialState.Capacity) hashCache := txscript.NewTxSigHashes(ourCommitTx) theirKey := pendingReservation.theirContribution.MultiSigKey ourKey := pendingReservation.partialState.OurMultiSigKey ourCommitSig, err := txscript.RawTxInWitnessSignature(ourCommitTx, hashCache, 0, channelValue, redeemScript, txscript.SigHashAll, ourKey) if err != nil { req.err <- err return } // Next, create the spending scriptSig, and then verify that the script // is complete, allowing us to spend from the funding transaction. ourKeySer := ourKey.PubKey().SerializeCompressed() theirKeySer := theirKey.SerializeCompressed() witness := spendMultiSig(redeemScript, ourKeySer, ourCommitSig, theirKeySer, req.theirCommitmentSig) // Finally, create an instance of a Script VM, and ensure that the // Script executes succesfully. ourCommitTx.TxIn[0].Witness = witness // TODO(roasbeef): replace engine with plain sighash check vm, err := txscript.NewEngine(p2wsh, ourCommitTx, 0, txscript.StandardVerifyFlags, nil, nil, channelValue) if err != nil { req.err <- err return } if err := vm.Execute(); err != nil { req.err <- fmt.Errorf("counterparty's commitment signature is invalid: %v", err) return } // Strip and store the signature to ensure that our commitment // transaction doesn't stay hot. ourCommitTx.TxIn[0].Witness = nil pendingReservation.partialState.OurCommitSig = req.theirCommitmentSig // With their signature for our version of the commitment transactions // verified, we can now generate a signature for their version, // allowing the funding transaction to be safely broadcast. hashCache = txscript.NewTxSigHashes(theirCommitTx) sigTheirCommit, err := txscript.RawTxInWitnessSignature(theirCommitTx, hashCache, 0, channelValue, redeemScript, txscript.SigHashAll, ourKey) if err != nil { req.err <- err return } pendingReservation.ourCommitmentSig = sigTheirCommit req.err <- nil } // handleChannelOpen completes a single funder reservation to which we are the // responder. This method saves the channel state to disk, finally "opening" // the channel by sending it over to the caller of the reservation via the // channel dispatch channel. func (l *LightningWallet) handleChannelOpen(req *channelOpenMsg) { l.limboMtx.RLock() res, ok := l.fundingLimbo[req.pendingFundingID] l.limboMtx.RUnlock() if !ok { req.err <- fmt.Errorf("attempted to update non-existant funding state") res.chanOpen <- nil return } // Grab the mutex on the ChannelReservation to ensure thead-safety res.Lock() defer res.Unlock() // Funding complete, this entry can be removed from limbo. l.limboMtx.Lock() delete(l.fundingLimbo, res.reservationID) l.limboMtx.Unlock() // Add the complete funding transaction to the DB, in it's open bucket // which will be used for the lifetime of this channel. if err := res.partialState.FullSync(); err != nil { req.err <- err res.chanOpen <- nil return } // Finally, create and officially open the payment channel! // TODO(roasbeef): CreationTime once tx is 'open' channel, _ := NewLightningChannel(l, l.chainNotifier, l.channelDB, res.partialState) res.chanOpen <- channel req.err <- nil } // openChannelAfterConfirmations creates, and opens a payment channel after // the funding transaction created within the passed channel reservation // obtains the specified number of confirmations. func (l *LightningWallet) openChannelAfterConfirmations(res *ChannelReservation) { // Register with the ChainNotifier for a notification once the funding // transaction reaches `numConfs` confirmations. txid := res.fundingTx.TxSha() numConfs := uint32(res.numConfsToOpen) confNtfn, _ := l.chainNotifier.RegisterConfirmationsNtfn(&txid, numConfs) walletLog.Infof("Waiting for funding tx (txid: %v) to reach %v confirmations", txid, numConfs) // Wait until the specified number of confirmations has been reached, // or the wallet signals a shutdown. out: select { case _, ok := <-confNtfn.Confirmed: // Reading a falsey value for the second parameter indicates that // the notifier is in the process of shutting down. Therefore, we // don't count this as the signal that the funding transaction has // been confirmed. if !ok { res.chanOpen <- nil return } break out case <-l.quit: res.chanOpen <- nil return } // Finally, create and officially open the payment channel! // TODO(roasbeef): CreationTime once tx is 'open' channel, _ := NewLightningChannel(l, l.chainNotifier, l.channelDB, res.partialState) res.chanOpen <- channel } // getNextRawKey retrieves the next key within our HD key-chain for use within // as a multi-sig key within the funding transaction, or within the commitment // transaction's outputs. // TODO(roasbeef): on shutdown, write state of pending keys, then read back? func (l *LightningWallet) getNextRawKey() (*btcec.PrivateKey, error) { l.KeyGenMtx.Lock() defer l.KeyGenMtx.Unlock() nextAddr, err := l.Manager.NextExternalAddresses(waddrmgr.DefaultAccountNum, 1, waddrmgr.WitnessPubKey) if err != nil { return nil, err } pkAddr := nextAddr[0].(waddrmgr.ManagedPubKeyAddress) return pkAddr.PrivKey() } // ListUnspentWitness returns a slice of all the unspent outputs the wallet // controls which pay to witness programs either directly or indirectly. func (l *LightningWallet) ListUnspentWitness(minConfs int32) ([]*btcjson.ListUnspentResult, error) { // First, grab all the unfiltered currently unspent outputs. maxConfs := int32(math.MaxInt32) unspentOutputs, err := l.ListUnspent(minConfs, maxConfs, nil) if err != nil { return nil, err } // Next, we'll run through all the regular outputs, only saving those // which are p2wkh outputs or a p2wsh output nested within a p2sh output. witnessOutputs := make([]*btcjson.ListUnspentResult, 0, len(unspentOutputs)) for _, output := range unspentOutputs { pkScript, err := hex.DecodeString(output.ScriptPubKey) if err != nil { return nil, err } // TODO(roasbeef): this assumes all p2sh outputs returned by // the wallet are nested p2sh... if txscript.IsPayToWitnessPubKeyHash(pkScript) || txscript.IsPayToScriptHash(pkScript) { witnessOutputs = append(witnessOutputs, output) } } return witnessOutputs, nil } // selectCoinsAndChange performs coin selection in order to obtain witness // outputs which sum to at least 'numCoins' amount of satoshis. If coin // selection is succesful/possible, then the selected coins are available within // the passed contribution's inputs. If necessary, a change address will also be // generated. // TODO(roasbeef): remove hardcoded fees and req'd confs for outputs. func (l *LightningWallet) selectCoinsAndChange(feeRate uint64, amt btcutil.Amount, contribution *ChannelContribution) error { // We hold the coin select mutex while querying for outputs, and // performing coin selection in order to avoid inadvertent double spends // accross funding transactions. // NOTE: We don't use defer her so we can properly release the lock // when we encounter an error condition. l.coinSelectMtx.Lock() // Find all unlocked unspent witness outputs with greater than 1 // confirmation. // TODO(roasbeef): make num confs a configuration paramter coins, err := l.ListUnspentWitness(1) if err != nil { l.coinSelectMtx.Unlock() return err } // Peform coin selection over our available, unlocked unspent outputs // in order to find enough coins to meet the funding amount requirements. // TODO(roasbeef): take in sat/byte selectedCoins, changeAmt, err := coinSelect(feeRate, amt, coins) if err != nil { l.coinSelectMtx.Unlock() return err } // Lock the selected coins. These coins are now "reserved", this // prevents concurrent funding requests from referring to and this // double-spending the same set of coins. contribution.Inputs = make([]*wire.TxIn, len(selectedCoins)) for i, coin := range selectedCoins { l.lockedOutPoints[*coin] = struct{}{} l.LockOutpoint(*coin) // Empty sig script, we'll actually sign if this reservation is // queued up to be completed (the other side accepts). contribution.Inputs[i] = wire.NewTxIn(coin, nil, nil) } // Record any change output(s) generated as a result of the coin // selection. if changeAmt != 0 { changeAddr, err := l.NewAddress(WitnessPubKey, true) if err != nil { return err } changeScript, err := txscript.PayToAddrScript(changeAddr) if err != nil { return err } contribution.ChangeOutputs = make([]*wire.TxOut, 1) contribution.ChangeOutputs[0] = &wire.TxOut{ Value: int64(changeAmt), PkScript: changeScript, } } l.coinSelectMtx.Unlock() return nil } type WaddrmgrEncryptorDecryptor struct { M *waddrmgr.Manager } func (w *WaddrmgrEncryptorDecryptor) Encrypt(p []byte) ([]byte, error) { return w.M.Encrypt(waddrmgr.CKTPrivate, p) } func (w *WaddrmgrEncryptorDecryptor) Decrypt(c []byte) ([]byte, error) { return w.M.Decrypt(waddrmgr.CKTPrivate, c) // selectInputs selects a slice of inputs necessary to meet the specified // selection amount. If input selectino is unable to suceed to to insuffcient // funds, a non-nil error is returned. Additionally, the total amount of the // selected coins are returned in order for the caller to properly handle // change+fees. func selectInputs(amt btcutil.Amount, coins []*Utxo) (btcutil.Amount, []*wire.OutPoint, error) { var ( selectedUtxos []*wire.OutPoint satSelected btcutil.Amount ) i := 0 for satSelected < amt { // If we're about to go past the number of available coins, // then exit with an error. if i > len(coins)-1 { return 0, nil, ErrInsufficientFunds } // Otherwise, collect this new coin as it may be used for final // coin selection. coin := coins[i] utxo := &wire.OutPoint{ Hash: coin.Hash, Index: coin.Index, } selectedUtxos = append(selectedUtxos, utxo) satSelected += coin.Value i++ } return satSelected, selectedUtxos, nil } func (w *WaddrmgrEncryptorDecryptor) OverheadSize() uint32 { return 24 // coinSelect attemps to select a sufficient amount of coins, including a // change output to fund amt satoshis, adhearing to the specified fee rate. The // specified fee rate should be expressed in sat/byte for coin selection to // function properly. func coinSelect(feeRate uint64, amt btcutil.Amount, coins []*Utxo) ([]*wire.OutPoint, btcutil.Amount, error) { const ( // txOverhead is the overhead of a transaction residing within // the version number and lock time. txOverhead = 8 // p2wkhSpendSize an estimate of the number of bytes it takes // to spend a p2wkh output. // // (p2wkh witness) + txid + index + varint script size + sequence // TODO(roasbeef): div by 3 due to witness size? p2wkhSpendSize = (1 + 73 + 1 + 33) + 32 + 4 + 1 + 4 // p2wkhOutputSize is an estimate of the size of a regualr // p2wkh output. // // 8 (output) + 1 (var int script) + 22 (p2wkh output) p2wkhOutputSize = 8 + 1 + 22 // p2wkhOutputSize is an estimate of the p2wsh funding uotput. p2wshOutputSize = 8 + 1 + 34 ) var estimatedSize int amtNeeded := amt for { // First perform an initial round of coin selection to estimate // the required fee. totalSat, selectedUtxos, err := selectInputs(amtNeeded, coins) if err != nil { return nil, 0, err } // Based on the selected coins, estimate the size of the final // fully signed transaction. estimatedSize = ((len(selectedUtxos) * p2wkhSpendSize) + p2wshOutputSize + txOverhead) // The difference bteween the selected amount and the amount // requested will be used to pay fees, and generate a change // output with the remaining. overShootAmt := totalSat - amtNeeded // Based on the estimated size and fee rate, if the excess // amount isn't enough to pay fees, then increase the requested // coin amount by the estimate required fee, performing another // round of coin selection. requiredFee := btcutil.Amount(uint64(estimatedSize) * feeRate) if overShootAmt < requiredFee { amtNeeded += requiredFee continue } // If the fee is sufficient, then calculate the size of the change output. changeAmt := overShootAmt - requiredFee return selectedUtxos, changeAmt, nil } }