package lnwire import ( "bytes" "encoding/hex" "math" "math/big" "math/rand" "net" "reflect" "testing" "testing/quick" "github.com/roasbeef/btcd/btcec" "github.com/roasbeef/btcd/chaincfg/chainhash" "github.com/roasbeef/btcd/wire" "github.com/roasbeef/btcutil" ) var ( revHash = [32]byte{ 0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab, 0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4, 0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9, 0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53, } shaHash1Bytes, _ = hex.DecodeString("e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855") shaHash1, _ = chainhash.NewHash(shaHash1Bytes) outpoint1 = wire.NewOutPoint(shaHash1, 0) testSig = &btcec.Signature{ R: new(big.Int), S: new(big.Int), } _, _ = testSig.R.SetString("63724406601629180062774974542967536251589935445068131219452686511677818569431", 10) _, _ = testSig.S.SetString("18801056069249825825291287104931333862866033135609736119018462340006816851118", 10) // TODO(roasbeef): randomly generate from three types of addrs a1 = &net.TCPAddr{IP: (net.IP)([]byte{0x7f, 0x0, 0x0, 0x1}), Port: 8333} a2, _ = net.ResolveTCPAddr("tcp", "[2001:db8:85a3:0:0:8a2e:370:7334]:80") testAddrs = []net.Addr{a1, a2} ) func randPubKey() (*btcec.PublicKey, error) { priv, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { return nil, err } return priv.PubKey(), nil } func randFeatureVector(r *rand.Rand) *FeatureVector { numFeatures := r.Int31n(131123) features := make([]Feature, numFeatures) for i := int32(0); i < numFeatures; i++ { features[i] = Feature{ Flag: featureFlag(rand.Int31n(2) + 1), } } return NewFeatureVector(features) } func TestMaxOutPointIndex(t *testing.T) { op := wire.OutPoint{ Index: math.MaxUint32, } var b bytes.Buffer if err := writeElement(&b, op); err == nil { t.Fatalf("write of outPoint should fail, index exceeds 16-bits") } } func TestEmptyMessageUnknownType(t *testing.T) { fakeType := MessageType(math.MaxUint16) if _, err := makeEmptyMessage(fakeType); err == nil { t.Fatalf("should not be able to make an empty message of an " + "unknown type") } } // TestLightningWireProtocol uses the testing/quick package to create a series // of fuzz tests to attempt to break a primary scenario which is implemented as // property based testing scenario. func TestLightningWireProtocol(t *testing.T) { // mainScenario is the primary test that will programmatically be // executed for all registered wire messages. The quick-checker within // testing/quick will attempt to find an input to this function, s.t // the function returns false, if so then we've found an input that // violates our model of the system. mainScenario := func(msg Message) bool { // Give a new message, we'll serialize the message into a new // bytes buffer. var b bytes.Buffer if _, err := WriteMessage(&b, msg, 0); err != nil { t.Fatalf("unable to write msg: %v", err) return false } // Next, we'll ensure that the serialized payload (subtracting // the 2 bytes for the message type) is _below_ the specified // max payload size for this message. payloadLen := uint32(b.Len()) - 2 if payloadLen > msg.MaxPayloadLength(0) { t.Fatalf("msg payload constraint violated: %v > %v", payloadLen, msg.MaxPayloadLength(0)) return false } // Finally, we'll deserialize the message from the written // buffer, and finally assert that the messages are equal. newMsg, err := ReadMessage(&b, 0) if err != nil { t.Fatalf("unable to read msg: %v", err) return false } if !reflect.DeepEqual(msg, newMsg) { t.Fatalf("messages don't match after re-encoding: %v "+ "vs %v", msg, newMsg) return false } return true } // customTypeGen is a map of functions that are able to randomly // generate a given type. These functions are needed for types which // are too complex for the testing/quick package to automatically // generate. customTypeGen := map[MessageType]func([]reflect.Value, *rand.Rand){ MsgInit: func(v []reflect.Value, r *rand.Rand) { req := NewInitMessage( randFeatureVector(r), randFeatureVector(r), ) req.GlobalFeatures.featuresMap = nil req.LocalFeatures.featuresMap = nil v[0] = reflect.ValueOf(*req) }, MsgSingleFundingRequest: func(v []reflect.Value, r *rand.Rand) { req := SingleFundingRequest{ ChannelType: uint8(r.Int63()), CoinType: uint64(r.Int63()), FeePerKw: btcutil.Amount(r.Int63()), FundingAmount: btcutil.Amount(r.Int63()), PushSatoshis: btcutil.Amount(r.Int63()), CsvDelay: uint32(r.Int31()), DustLimit: btcutil.Amount(r.Int63()), ConfirmationDepth: uint32(r.Int31()), } if _, err := r.Read(req.PendingChannelID[:]); err != nil { t.Fatalf("unable to generate pending chan id: %v", err) return } var script [34]byte if _, err := r.Read(script[:]); err != nil { t.Fatalf("unable to generate pending chan id: %v", err) return } req.DeliveryPkScript = script[:] var err error req.ChannelDerivationPoint, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req.CommitmentKey, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } v[0] = reflect.ValueOf(req) }, MsgSingleFundingResponse: func(v []reflect.Value, r *rand.Rand) { req := SingleFundingResponse{ CsvDelay: uint32(r.Int31()), DustLimit: btcutil.Amount(r.Int63()), ConfirmationDepth: uint32(r.Int31()), } if _, err := r.Read(req.PendingChannelID[:]); err != nil { t.Fatalf("unable to generate pending chan id: %v", err) return } var script [34]byte if _, err := r.Read(script[:]); err != nil { t.Fatalf("unable to generate pending chan id: %v", err) return } req.DeliveryPkScript = script[:] var err error req.ChannelDerivationPoint, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req.CommitmentKey, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req.RevocationKey, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } v[0] = reflect.ValueOf(req) }, MsgSingleFundingComplete: func(v []reflect.Value, r *rand.Rand) { req := SingleFundingComplete{} if _, err := r.Read(req.PendingChannelID[:]); err != nil { t.Fatalf("unable to generate pending chan id: %v", err) return } if _, err := r.Read(req.FundingOutPoint.Hash[:]); err != nil { t.Fatalf("unable to generate hash: %v", err) return } req.FundingOutPoint.Index = uint32(r.Int31()) % math.MaxUint16 if _, err := r.Read(req.StateHintObsfucator[:]); err != nil { t.Fatalf("unable to read state hint: %v", err) return } req.CommitSignature = testSig var err error req.RevocationKey, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } v[0] = reflect.ValueOf(req) }, MsgSingleFundingSignComplete: func(v []reflect.Value, r *rand.Rand) { var c [32]byte if _, err := r.Read(c[:]); err != nil { t.Fatalf("unable to generate chan id: %v", err) return } req := NewSingleFundingSignComplete(ChannelID(c), testSig) v[0] = reflect.ValueOf(*req) }, MsgFundingLocked: func(v []reflect.Value, r *rand.Rand) { var c [32]byte if _, err := r.Read(c[:]); err != nil { t.Fatalf("unable to generate chan id: %v", err) return } pubKey, err := randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req := NewFundingLocked(ChannelID(c), pubKey) v[0] = reflect.ValueOf(*req) }, MsgCloseRequest: func(v []reflect.Value, r *rand.Rand) { var chanID [32]byte if _, err := r.Read(chanID[:]); err != nil { t.Fatalf("unable to generate chan id: %v", err) return } req := NewCloseRequest(ChannelID(chanID), testSig) req.Fee = btcutil.Amount(rand.Int63()) req.RequesterCloseSig = testSig v[0] = reflect.ValueOf(*req) }, MsgCloseComplete: func(v []reflect.Value, r *rand.Rand) { req := CloseComplete{} if _, err := r.Read(req.ChannelPoint.Hash[:]); err != nil { t.Fatalf("unable to generate hash: %v", err) return } req.ChannelPoint.Index = uint32(r.Int31()) % math.MaxUint16 req.ResponderCloseSig = testSig v[0] = reflect.ValueOf(req) }, MsgCommitSig: func(v []reflect.Value, r *rand.Rand) { req := NewCommitSig() if _, err := r.Read(req.ChanID[:]); err != nil { t.Fatalf("unable to generate chan id: %v", err) return } req.CommitSig = testSig v[0] = reflect.ValueOf(*req) }, MsgRevokeAndAck: func(v []reflect.Value, r *rand.Rand) { req := NewRevokeAndAck() if _, err := r.Read(req.ChanID[:]); err != nil { t.Fatalf("unable to generate chan id: %v", err) return } if _, err := r.Read(req.Revocation[:]); err != nil { t.Fatalf("unable to generate bytes: %v", err) return } if _, err := r.Read(req.NextRevocationHash[:]); err != nil { t.Fatalf("unable to generate bytes: %v", err) return } var err error req.NextRevocationKey, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } v[0] = reflect.ValueOf(*req) }, MsgChannelAnnouncement: func(v []reflect.Value, r *rand.Rand) { req := ChannelAnnouncement{ ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())), } req.NodeSig1 = testSig req.NodeSig2 = testSig req.BitcoinSig1 = testSig req.BitcoinSig2 = testSig var err error req.NodeID1, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req.NodeID2, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req.BitcoinKey1, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } req.BitcoinKey2, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } v[0] = reflect.ValueOf(req) }, MsgNodeAnnouncement: func(v []reflect.Value, r *rand.Rand) { var a [32]byte if _, err := r.Read(a[:]); err != nil { t.Fatalf("unable to generate alias: %v", err) return } req := NodeAnnouncement{ Signature: testSig, Timestamp: uint32(r.Int31()), Alias: newAlias(a[:]), RGBColor: RGB{ red: uint8(r.Int31()), green: uint8(r.Int31()), blue: uint8(r.Int31()), }, Features: randFeatureVector(r), Addresses: testAddrs, } req.Features.featuresMap = nil var err error req.NodeID, err = randPubKey() if err != nil { t.Fatalf("unable to generate key: %v", err) return } v[0] = reflect.ValueOf(req) }, MsgChannelUpdate: func(v []reflect.Value, r *rand.Rand) { req := ChannelUpdate{ Signature: testSig, ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())), Timestamp: uint32(r.Int31()), Flags: uint16(r.Int31()), TimeLockDelta: uint16(r.Int31()), HtlcMinimumMsat: uint32(r.Int31()), FeeBaseMsat: uint32(r.Int31()), FeeProportionalMillionths: uint32(r.Int31()), } v[0] = reflect.ValueOf(req) }, MsgAnnounceSignatures: func(v []reflect.Value, r *rand.Rand) { req := AnnounceSignatures{ ShortChannelID: NewShortChanIDFromInt(uint64(r.Int63())), NodeSignature: testSig, BitcoinSignature: testSig, } if _, err := r.Read(req.ChannelID[:]); err != nil { t.Fatalf("unable to generate chan id: %v", err) return } v[0] = reflect.ValueOf(req) }, } // With the above types defined, we'll now generate a slice of // scenarios to feed into quick.Check. The function scans in input // space of the target function under test, so we'll need to create a // series of wrapper functions to force it to iterate over the target // types, but re-use the mainScenario defined above. tests := []struct { msgType MessageType scenario interface{} }{ { msgType: MsgInit, scenario: func(m Init) bool { return mainScenario(&m) }, }, { msgType: MsgError, scenario: func(m Error) bool { return mainScenario(&m) }, }, { msgType: MsgPing, scenario: func(m Ping) bool { return mainScenario(&m) }, }, { msgType: MsgPong, scenario: func(m Pong) bool { return mainScenario(&m) }, }, { msgType: MsgSingleFundingRequest, scenario: func(m SingleFundingRequest) bool { return mainScenario(&m) }, }, { msgType: MsgSingleFundingResponse, scenario: func(m SingleFundingResponse) bool { return mainScenario(&m) }, }, { msgType: MsgSingleFundingComplete, scenario: func(m SingleFundingComplete) bool { return mainScenario(&m) }, }, { msgType: MsgSingleFundingSignComplete, scenario: func(m SingleFundingSignComplete) bool { return mainScenario(&m) }, }, { msgType: MsgFundingLocked, scenario: func(m FundingLocked) bool { return mainScenario(&m) }, }, { msgType: MsgCloseRequest, scenario: func(m CloseRequest) bool { return mainScenario(&m) }, }, { msgType: MsgCloseComplete, scenario: func(m CloseComplete) bool { return mainScenario(&m) }, }, { msgType: MsgUpdateAddHTLC, scenario: func(m UpdateAddHTLC) bool { return mainScenario(&m) }, }, { msgType: MsgUpdateFufillHTLC, scenario: func(m UpdateFufillHTLC) bool { return mainScenario(&m) }, }, { msgType: MsgUpdateFailHTLC, scenario: func(m UpdateFailHTLC) bool { return mainScenario(&m) }, }, { msgType: MsgCommitSig, scenario: func(m CommitSig) bool { return mainScenario(&m) }, }, { msgType: MsgRevokeAndAck, scenario: func(m RevokeAndAck) bool { return mainScenario(&m) }, }, { msgType: MsgChannelAnnouncement, scenario: func(m ChannelAnnouncement) bool { return mainScenario(&m) }, }, { msgType: MsgNodeAnnouncement, scenario: func(m NodeAnnouncement) bool { return mainScenario(&m) }, }, { msgType: MsgChannelUpdate, scenario: func(m ChannelUpdate) bool { return mainScenario(&m) }, }, { msgType: MsgAnnounceSignatures, scenario: func(m AnnounceSignatures) bool { return mainScenario(&m) }, }, } for _, test := range tests { var config *quick.Config // If the type defined is within the custom type gen map above, // then we'll modify the default config to use this Value // function that knows how to generate the proper types. if valueGen, ok := customTypeGen[test.msgType]; ok { config = &quick.Config{ Values: valueGen, } } t.Logf("Running fuzz tests for msgType=%v", test.msgType) if err := quick.Check(test.scenario, config); err != nil { t.Fatalf("fuzz checks for msg=%v failed: %v", test.msgType, err) } } }