package tor import ( "bytes" "crypto/hmac" "crypto/rand" "crypto/sha256" "encoding/hex" "errors" "fmt" "io/ioutil" "net/textproto" "os" "strconv" "strings" "sync/atomic" ) const ( // success is the Tor Control response code representing a successful // request. success = 250 // nonceLen is the length of a nonce generated by either the controller // or the Tor server nonceLen = 32 // cookieLen is the length of the authentication cookie. cookieLen = 32 // ProtocolInfoVersion is the `protocolinfo` version currently supported // by the Tor server. ProtocolInfoVersion = 1 // MinTorVersion is the minimum supported version that the Tor server // must be running on. This is needed in order to create v3 onion // services through Tor's control port. MinTorVersion = "0.3.3.6" // authSafeCookie is the name of the SAFECOOKIE authentication method. authSafeCookie = "SAFECOOKIE" // authHashedPassword is the name of the HASHEDPASSWORD authentication // method. authHashedPassword = "HASHEDPASSWORD" // authNull is the name of the NULL authentication method. authNull = "NULL" ) var ( // serverKey is the key used when computing the HMAC-SHA256 of a message // from the server. serverKey = []byte("Tor safe cookie authentication " + "server-to-controller hash") // controllerKey is the key used when computing the HMAC-SHA256 of a // message from the controller. controllerKey = []byte("Tor safe cookie authentication " + "controller-to-server hash") ) // Controller is an implementation of the Tor Control protocol. This is used in // order to communicate with a Tor server. Its only supported method of // authentication is the SAFECOOKIE method. // // NOTE: The connection to the Tor server must be authenticated before // proceeding to send commands. Otherwise, the connection will be closed. // // TODO: // * if adding support for more commands, extend this with a command queue? // * place under sub-package? // * support async replies from the server type Controller struct { // started is used atomically in order to prevent multiple calls to // Start. started int32 // stopped is used atomically in order to prevent multiple calls to // Stop. stopped int32 // conn is the underlying connection between the controller and the // Tor server. It provides read and write methods to simplify the // text-based messages within the connection. conn *textproto.Conn // controlAddr is the host:port the Tor server is listening locally for // controller connections on. controlAddr string // password, if non-empty, signals that the controller should attempt to // authenticate itself with the backing Tor daemon through the // HASHEDPASSWORD authentication method with this value. password string // version is the current version of the Tor server. version string // targetIPAddress is the IP address which we tell the Tor server to use // to connect to the LND node. This is required when the Tor server // runs on another host, otherwise the service will not be reachable. targetIPAddress string } // NewController returns a new Tor controller that will be able to interact with // a Tor server. func NewController(controlAddr string, targetIPAddress string, password string) *Controller { return &Controller{ controlAddr: controlAddr, targetIPAddress: targetIPAddress, password: password, } } // Start establishes and authenticates the connection between the controller and // a Tor server. Once done, the controller will be able to send commands and // expect responses. func (c *Controller) Start() error { if !atomic.CompareAndSwapInt32(&c.started, 0, 1) { return nil } conn, err := textproto.Dial("tcp", c.controlAddr) if err != nil { return fmt.Errorf("unable to connect to Tor server: %v", err) } c.conn = conn return c.authenticate() } // Stop closes the connection between the controller and the Tor server. func (c *Controller) Stop() error { if !atomic.CompareAndSwapInt32(&c.stopped, 0, 1) { return nil } return c.conn.Close() } // sendCommand sends a command to the Tor server and returns its response, as a // single space-delimited string, and code. func (c *Controller) sendCommand(command string) (int, string, error) { if err := c.conn.Writer.PrintfLine(command); err != nil { return 0, "", err } // We'll use ReadResponse as it has built-in support for multi-line // text protocol responses. code, reply, err := c.conn.Reader.ReadResponse(success) if err != nil { return code, reply, err } return code, reply, nil } // parseTorReply parses the reply from the Tor server after receiving a command // from a controller. This will parse the relevant reply parameters into a map // of keys and values. func parseTorReply(reply string) map[string]string { params := make(map[string]string) // Replies can either span single or multiple lines, so we'll default // to stripping whitespace and newlines in order to retrieve the // individual contents of it. The -1 indicates that we want this to span // across all instances of a newline. contents := strings.Split(strings.Replace(reply, "\n", " ", -1), " ") for _, content := range contents { // Each parameter within the reply should be of the form // "KEY=VALUE". If the parameter doesn't contain "=", then we // can assume it does not provide any other relevant information // already known. keyValue := strings.SplitN(content, "=", 2) if len(keyValue) != 2 { continue } key := keyValue[0] value := keyValue[1] params[key] = value } return params } // authenticate authenticates the connection between the controller and the // Tor server using either of the following supported authentication methods // depending on its configuration: SAFECOOKIE, HASHEDPASSWORD, and NULL. func (c *Controller) authenticate() error { protocolInfo, err := c.protocolInfo() if err != nil { return err } // With the version retrieved, we'll cache it now in case it needs to be // used later on. c.version = protocolInfo.version() switch { // If a password was provided, then we should attempt to use the // HASHEDPASSWORD authentication method. case c.password != "": if !protocolInfo.supportsAuthMethod(authHashedPassword) { return fmt.Errorf("%v authentication method not "+ "supported", authHashedPassword) } return c.authenticateViaHashedPassword() // Otherwise, attempt to authentication via the SAFECOOKIE method as it // provides the most security. case protocolInfo.supportsAuthMethod(authSafeCookie): return c.authenticateViaSafeCookie(protocolInfo) // Fallback to the NULL method if any others aren't supported. case protocolInfo.supportsAuthMethod(authNull): return c.authenticateViaNull() // No supported authentication methods, fail. default: return errors.New("the Tor server must be configured with " + "NULL, SAFECOOKIE, or HASHEDPASSWORD authentication") } } // authenticateViaNull authenticates the controller with the Tor server using // the NULL authentication method. func (c *Controller) authenticateViaNull() error { _, _, err := c.sendCommand("AUTHENTICATE") return err } // authenticateViaHashedPassword authenticates the controller with the Tor // server using the HASHEDPASSWORD authentication method. func (c *Controller) authenticateViaHashedPassword() error { cmd := fmt.Sprintf("AUTHENTICATE \"%s\"", c.password) _, _, err := c.sendCommand(cmd) return err } // authenticateViaSafeCookie authenticates the controller with the Tor server // using the SAFECOOKIE authentication method. func (c *Controller) authenticateViaSafeCookie(info protocolInfo) error { // Before proceeding to authenticate the connection, we'll retrieve // the authentication cookie of the Tor server. This will be used // throughout the authentication routine. We do this before as once the // authentication routine has begun, it is not possible to retrieve it // mid-way. cookie, err := c.getAuthCookie(info) if err != nil { return fmt.Errorf("unable to retrieve authentication cookie: "+ "%v", err) } // Authenticating using the SAFECOOKIE authentication method is a two // step process. We'll kick off the authentication routine by sending // the AUTHCHALLENGE command followed by a hex-encoded 32-byte nonce. clientNonce := make([]byte, nonceLen) if _, err := rand.Read(clientNonce); err != nil { return fmt.Errorf("unable to generate client nonce: %v", err) } cmd := fmt.Sprintf("AUTHCHALLENGE SAFECOOKIE %x", clientNonce) _, reply, err := c.sendCommand(cmd) if err != nil { return err } // If successful, the reply from the server should be of the following // format: // // "250 AUTHCHALLENGE" // SP "SERVERHASH=" ServerHash // SP "SERVERNONCE=" ServerNonce // CRLF // // We're interested in retrieving the SERVERHASH and SERVERNONCE // parameters, so we'll parse our reply to do so. replyParams := parseTorReply(reply) // Once retrieved, we'll ensure these values are of proper length when // decoded. serverHash, ok := replyParams["SERVERHASH"] if !ok { return errors.New("server hash not found in reply") } decodedServerHash, err := hex.DecodeString(serverHash) if err != nil { return fmt.Errorf("unable to decode server hash: %v", err) } if len(decodedServerHash) != sha256.Size { return errors.New("invalid server hash length") } serverNonce, ok := replyParams["SERVERNONCE"] if !ok { return errors.New("server nonce not found in reply") } decodedServerNonce, err := hex.DecodeString(serverNonce) if err != nil { return fmt.Errorf("unable to decode server nonce: %v", err) } if len(decodedServerNonce) != nonceLen { return errors.New("invalid server nonce length") } // The server hash above was constructed by computing the HMAC-SHA256 // of the message composed of the cookie, client nonce, and server // nonce. We'll redo this computation ourselves to ensure the integrity // and authentication of the message. hmacMessage := bytes.Join( [][]byte{cookie, clientNonce, decodedServerNonce}, []byte{}, ) computedServerHash := computeHMAC256(serverKey, hmacMessage) if !hmac.Equal(computedServerHash, decodedServerHash) { return fmt.Errorf("expected server hash %x, got %x", decodedServerHash, computedServerHash) } // If the MAC check was successful, we'll proceed with the last step of // the authentication routine. We'll now send the AUTHENTICATE command // followed by a hex-encoded client hash constructed by computing the // HMAC-SHA256 of the same message, but this time using the controller's // key. clientHash := computeHMAC256(controllerKey, hmacMessage) if len(clientHash) != sha256.Size { return errors.New("invalid client hash length") } cmd = fmt.Sprintf("AUTHENTICATE %x", clientHash) if _, _, err := c.sendCommand(cmd); err != nil { return err } return nil } // getAuthCookie retrieves the authentication cookie in bytes from the Tor // server. Cookie authentication must be enabled for this to work. func (c *Controller) getAuthCookie(info protocolInfo) ([]byte, error) { // Retrieve the cookie file path from the PROTOCOLINFO reply. cookieFilePath, ok := info["COOKIEFILE"] if !ok { return nil, errors.New("COOKIEFILE not found in PROTOCOLINFO " + "reply") } cookieFilePath = strings.Trim(cookieFilePath, "\"") // Read the cookie from the file and ensure it has the correct length. cookie, err := ioutil.ReadFile(cookieFilePath) if err != nil { return nil, err } if len(cookie) != cookieLen { return nil, errors.New("invalid authentication cookie length") } return cookie, nil } // computeHMAC256 computes the HMAC-SHA256 of a key and message. func computeHMAC256(key, message []byte) []byte { mac := hmac.New(sha256.New, key) mac.Write(message) return mac.Sum(nil) } // supportsV3 is a helper function that parses the current version of the Tor // server and determines whether it supports creationg v3 onion services through // Tor's control port. The version string should be of the format: // major.minor.revision.build func supportsV3(version string) error { // We'll split the minimum Tor version that's supported and the given // version in order to individually compare each number. parts := strings.Split(version, ".") if len(parts) != 4 { return errors.New("version string is not of the format " + "major.minor.revision.build") } // It's possible that the build number (the last part of the version // string) includes a pre-release string, e.g. rc, beta, etc., so we'll // parse that as well. build := strings.Split(parts[len(parts)-1], "-") parts[len(parts)-1] = build[0] // Ensure that each part of the version string corresponds to a number. for _, part := range parts { if _, err := strconv.Atoi(part); err != nil { return err } } // Once we've determined we have a proper version string of the format // major.minor.revision.build, we can just do a string comparison to // determine if it satisfies the minimum version supported. if version < MinTorVersion { return fmt.Errorf("version %v below minimum version supported "+ "%v", version, MinTorVersion) } return nil } // protocolInfo is encompasses the details of a response to a PROTOCOLINFO // command. type protocolInfo map[string]string // version returns the Tor version as reported by the server. func (i protocolInfo) version() string { version := i["Tor"] return strings.Trim(version, "\"") } // supportsAuthMethod determines whether the Tor server supports the given // authentication method. func (i protocolInfo) supportsAuthMethod(method string) bool { methods, ok := i["METHODS"] if !ok { return false } return strings.Contains(methods, method) } // protocolInfo sends a "PROTOCOLINFO" command to the Tor server and returns its // response. func (c *Controller) protocolInfo() (protocolInfo, error) { cmd := fmt.Sprintf("PROTOCOLINFO %d", ProtocolInfoVersion) _, reply, err := c.sendCommand(cmd) if err != nil { return nil, err } return protocolInfo(parseTorReply(reply)), nil } // OnionType denotes the type of the onion service. type OnionType int const ( // V2 denotes that the onion service is V2. V2 OnionType = iota // V3 denotes that the onion service is V3. V3 ) // AddOnionConfig houses all of the required parameters in order to successfully // create a new onion service or restore an existing one. type AddOnionConfig struct { // Type denotes the type of the onion service that should be created. Type OnionType // VirtualPort is the externally reachable port of the onion address. VirtualPort int // TargetPorts is the set of ports that the service will be listening on // locally. The Tor server will use choose a random port from this set // to forward the traffic from the virtual port. // // NOTE: If nil/empty, the virtual port will be used as the only target // port. TargetPorts []int // PrivateKeyPath is the full path to where the onion service's private // key is stored. This can be used to restore an existing onion service. PrivateKeyPath string } // AddOnion creates an onion service and returns its onion address. Once // created, the new onion service will remain active until the connection // between the controller and the Tor server is closed. func (c *Controller) AddOnion(cfg AddOnionConfig) (*OnionAddr, error) { // Before sending the request to create an onion service to the Tor // server, we'll make sure that it supports V3 onion services if that // was the type requested. if cfg.Type == V3 { if err := supportsV3(c.version); err != nil { return nil, err } } // We'll start off by checking if the file containing the private key // exists. If it does not, then we should request the server to create // a new onion service and return its private key. Otherwise, we'll // request the server to recreate the onion server from our private key. var keyParam string if _, err := os.Stat(cfg.PrivateKeyPath); os.IsNotExist(err) { switch cfg.Type { case V2: keyParam = "NEW:RSA1024" case V3: keyParam = "NEW:ED25519-V3" } } else { privateKey, err := ioutil.ReadFile(cfg.PrivateKeyPath) if err != nil { return nil, err } keyParam = string(privateKey) } // Now, we'll create a mapping from the virtual port to each target // port. If no target ports were specified, we'll use the virtual port // to provide a one-to-one mapping. var portParam string // Helper function which appends the correct Port param depending on // whether the user chose to use a custom target IP address or not. pushPortParam := func(targetPort int) { if c.targetIPAddress == "" { portParam += fmt.Sprintf("Port=%d,%d ", cfg.VirtualPort, targetPort) } else { portParam += fmt.Sprintf("Port=%d,%s:%d ", cfg.VirtualPort, c.targetIPAddress, targetPort) } } if len(cfg.TargetPorts) == 0 { pushPortParam(cfg.VirtualPort) } else { for _, targetPort := range cfg.TargetPorts { pushPortParam(targetPort) } } // Send the command to create the onion service to the Tor server and // await its response. cmd := fmt.Sprintf("ADD_ONION %s %s", keyParam, portParam) _, reply, err := c.sendCommand(cmd) if err != nil { return nil, err } // If successful, the reply from the server should be of the following // format, depending on whether a private key has been requested: // // C: ADD_ONION RSA1024:[Blob Redacted] Port=80,8080 // S: 250-ServiceID=testonion1234567 // S: 250 OK // // C: ADD_ONION NEW:RSA1024 Port=80,8080 // S: 250-ServiceID=testonion1234567 // S: 250-PrivateKey=RSA1024:[Blob Redacted] // S: 250 OK // // We're interested in retrieving the service ID, which is the public // name of the service, and the private key if requested. replyParams := parseTorReply(reply) serviceID, ok := replyParams["ServiceID"] if !ok { return nil, errors.New("service id not found in reply") } // If a new onion service was created, we'll write its private key to // disk under strict permissions in the event that it needs to be // recreated later on. if privateKey, ok := replyParams["PrivateKey"]; ok { err := ioutil.WriteFile( cfg.PrivateKeyPath, []byte(privateKey), 0600, ) if err != nil { return nil, fmt.Errorf("unable to write private key "+ "to file: %v", err) } } // Finally, we'll return the onion address composed of the service ID, // along with the onion suffix, and the port this onion service can be // reached at externally. return &OnionAddr{ OnionService: serviceID + ".onion", Port: cfg.VirtualPort, }, nil }