package sweep import ( "fmt" "sort" "strings" "github.com/btcsuite/btcd/blockchain" "github.com/btcsuite/btcd/txscript" "github.com/btcsuite/btcd/wire" "github.com/btcsuite/btcutil" "github.com/btcsuite/btcwallet/wallet/txrules" "github.com/lightningnetwork/lnd/input" "github.com/lightningnetwork/lnd/lnwallet/chainfee" ) var ( // DefaultMaxInputsPerTx specifies the default maximum number of inputs // allowed in a single sweep tx. If more need to be swept, multiple txes // are created and published. DefaultMaxInputsPerTx = 100 ) // inputSet is a set of inputs that can be used as the basis to generate a tx // on. type inputSet []input.Input // generateInputPartitionings goes through all given inputs and constructs sets // of inputs that can be used to generate a sensible transaction. Each set // contains up to the configured maximum number of inputs. Negative yield // inputs are skipped. No input sets with a total value after fees below the // dust limit are returned. func generateInputPartitionings(sweepableInputs []input.Input, relayFeePerKW, feePerKW chainfee.SatPerKWeight, maxInputsPerTx int) ([]inputSet, error) { // Calculate dust limit based on the P2WPKH output script of the sweep // txes. dustLimit := txrules.GetDustThreshold( input.P2WPKHSize, btcutil.Amount(relayFeePerKW.FeePerKVByte()), ) // Sort input by yield. We will start constructing input sets starting // with the highest yield inputs. This is to prevent the construction // of a set with an output below the dust limit, causing the sweep // process to stop, while there are still higher value inputs // available. It also allows us to stop evaluating more inputs when the // first input in this ordering is encountered with a negative yield. // // Yield is calculated as the difference between value and added fee // for this input. The fee calculation excludes fee components that are // common to all inputs, as those wouldn't influence the order. The // single component that is differentiating is witness size. // // For witness size, the upper limit is taken. The actual size depends // on the signature length, which is not known yet at this point. yields := make(map[wire.OutPoint]int64) for _, input := range sweepableInputs { size, _, err := input.WitnessType().SizeUpperBound() if err != nil { return nil, fmt.Errorf( "failed adding input weight: %v", err) } yields[*input.OutPoint()] = input.SignDesc().Output.Value - int64(feePerKW.FeeForWeight(int64(size))) } sort.Slice(sweepableInputs, func(i, j int) bool { return yields[*sweepableInputs[i].OutPoint()] > yields[*sweepableInputs[j].OutPoint()] }) // Select blocks of inputs up to the configured maximum number. var sets []inputSet for len(sweepableInputs) > 0 { // Get the maximum number of inputs from sweepableInputs that // we can use to create a positive yielding set from. count, outputValue := getPositiveYieldInputs( sweepableInputs, maxInputsPerTx, feePerKW, ) // If there are no positive yield inputs left, we can stop // here. if count == 0 { return sets, nil } // If the output value of this block of inputs does not reach // the dust limit, stop sweeping. Because of the sorting, // continuing with the remaining inputs will only lead to sets // with a even lower output value. if outputValue < dustLimit { log.Debugf("Set value %v below dust limit of %v", outputValue, dustLimit) return sets, nil } log.Infof("Candidate sweep set of size=%v, has yield=%v", count, outputValue) sets = append(sets, sweepableInputs[:count]) sweepableInputs = sweepableInputs[count:] } return sets, nil } // getPositiveYieldInputs returns the maximum of a number n for which holds // that the inputs [0,n) of sweepableInputs have a positive yield. // Additionally, the total values of these inputs minus the fee is returned. // // TODO(roasbeef): Consider including some negative yield inputs too to clean // up the utxo set even if it costs us some fees up front. In the spirit of // minimizing any negative externalities we cause for the Bitcoin system as a // whole. func getPositiveYieldInputs(sweepableInputs []input.Input, maxInputs int, feePerKW chainfee.SatPerKWeight) (int, btcutil.Amount) { var weightEstimate input.TxWeightEstimator // Add the sweep tx output to the weight estimate. weightEstimate.AddP2WKHOutput() var total, outputValue btcutil.Amount for idx, input := range sweepableInputs { // Can ignore error, because it has already been checked when // calculating the yields. size, isNestedP2SH, _ := input.WitnessType().SizeUpperBound() // Keep a running weight estimate of the input set. if isNestedP2SH { weightEstimate.AddNestedP2WSHInput(size) } else { weightEstimate.AddWitnessInput(size) } newTotal := total + btcutil.Amount(input.SignDesc().Output.Value) weight := weightEstimate.Weight() fee := feePerKW.FeeForWeight(int64(weight)) // Calculate the output value if the current input would be // added to the set. newOutputValue := newTotal - fee // If adding this input makes the total output value of the set // decrease, this is a negative yield input. It shouldn't be // added to the set. We return the current index as the number // of inputs, so the current input is being excluded. if newOutputValue <= outputValue { return idx, outputValue } // Update running values. total = newTotal outputValue = newOutputValue // Stop if max inputs is reached. if idx == maxInputs-1 { return maxInputs, outputValue } } // We could add all inputs to the set, so return them all. return len(sweepableInputs), outputValue } // createSweepTx builds a signed tx spending the inputs to a the output script. func createSweepTx(inputs []input.Input, outputPkScript []byte, currentBlockHeight uint32, feePerKw chainfee.SatPerKWeight, signer input.Signer) (*wire.MsgTx, error) { inputs, txWeight := getWeightEstimate(inputs) log.Infof("Creating sweep transaction for %v inputs (%s) "+ "using %v sat/kw", len(inputs), inputTypeSummary(inputs), int64(feePerKw)) txFee := feePerKw.FeeForWeight(txWeight) // Sum up the total value contained in the inputs. var totalSum btcutil.Amount for _, o := range inputs { totalSum += btcutil.Amount(o.SignDesc().Output.Value) } // Sweep as much possible, after subtracting txn fees. sweepAmt := int64(totalSum - txFee) // Create the sweep transaction that we will be building. We use // version 2 as it is required for CSV. The txn will sweep the amount // after fees to the pkscript generated above. sweepTx := wire.NewMsgTx(2) sweepTx.AddTxOut(&wire.TxOut{ PkScript: outputPkScript, Value: sweepAmt, }) sweepTx.LockTime = currentBlockHeight // Add all inputs to the sweep transaction. Ensure that for each // csvInput, we set the sequence number properly. for _, input := range inputs { sweepTx.AddTxIn(&wire.TxIn{ PreviousOutPoint: *input.OutPoint(), Sequence: input.BlocksToMaturity(), }) } // Before signing the transaction, check to ensure that it meets some // basic validity requirements. // // TODO(conner): add more control to sanity checks, allowing us to // delay spending "problem" outputs, e.g. possibly batching with other // classes if fees are too low. btx := btcutil.NewTx(sweepTx) if err := blockchain.CheckTransactionSanity(btx); err != nil { return nil, err } hashCache := txscript.NewTxSigHashes(sweepTx) // With all the inputs in place, use each output's unique input script // function to generate the final witness required for spending. addInputScript := func(idx int, tso input.Input) error { inputScript, err := tso.CraftInputScript( signer, sweepTx, hashCache, idx, ) if err != nil { return err } sweepTx.TxIn[idx].Witness = inputScript.Witness if len(inputScript.SigScript) != 0 { sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript } return nil } // Finally we'll attach a valid input script to each csv and cltv input // within the sweeping transaction. for i, input := range inputs { if err := addInputScript(i, input); err != nil { return nil, err } } return sweepTx, nil } // getWeightEstimate returns a weight estimate for the given inputs. // Additionally, it returns counts for the number of csv and cltv inputs. func getWeightEstimate(inputs []input.Input) ([]input.Input, int64) { // We initialize a weight estimator so we can accurately asses the // amount of fees we need to pay for this sweep transaction. // // TODO(roasbeef): can be more intelligent about buffering outputs to // be more efficient on-chain. var weightEstimate input.TxWeightEstimator // Our sweep transaction will pay to a single segwit p2wkh address, // ensure it contributes to our weight estimate. weightEstimate.AddP2WKHOutput() // For each output, use its witness type to determine the estimate // weight of its witness, and add it to the proper set of spendable // outputs. var sweepInputs []input.Input for i := range inputs { inp := inputs[i] wt := inp.WitnessType() err := wt.AddWeightEstimation(&weightEstimate) if err != nil { log.Warn(err) // Skip inputs for which no weight estimate can be // given. continue } sweepInputs = append(sweepInputs, inp) } return sweepInputs, int64(weightEstimate.Weight()) } // inputSummary returns a string containing a human readable summary about the // witness types of a list of inputs. func inputTypeSummary(inputs []input.Input) string { // Count each input by the string representation of its witness type. // We also keep track of the keys so we can later sort by them to get // a stable output. counts := make(map[string]uint32) keys := make([]string, 0, len(inputs)) for _, i := range inputs { key := i.WitnessType().String() _, ok := counts[key] if !ok { counts[key] = 0 keys = append(keys, key) } counts[key]++ } sort.Strings(keys) // Return a nice string representation of the counts by comma joining a // slice. var parts []string for _, witnessType := range keys { part := fmt.Sprintf("%d %s", counts[witnessType], witnessType) parts = append(parts, part) } return strings.Join(parts, ", ") }