package routing import ( "testing" "time" "github.com/lightningnetwork/lnd/lnwire" "github.com/lightningnetwork/lnd/routing/route" ) const ( // Define node identifiers node1 = 1 node2 = 2 node3 = 3 // untriedNode is a node id for which we don't record any results in // this test. This can be used to assert the probability for untried // ndoes. untriedNode = 255 // Define test estimator parameters. aprioriHopProb = 0.6 aprioriWeight = 0.75 aprioriPrevSucProb = 0.95 ) type estimatorTestContext struct { t *testing.T estimator *probabilityEstimator // results contains a list of last results. Every element in the list // corresponds to the last result towards a node. The list index equals // the node id. So the first element in the list is the result towards // node 0. results map[int]TimedPairResult } func newEstimatorTestContext(t *testing.T) *estimatorTestContext { return &estimatorTestContext{ t: t, estimator: &probabilityEstimator{ ProbabilityEstimatorCfg: ProbabilityEstimatorCfg{ AprioriHopProbability: aprioriHopProb, AprioriWeight: aprioriWeight, PenaltyHalfLife: time.Hour, }, prevSuccessProbability: aprioriPrevSucProb, }, } } // assertPairProbability asserts that the calculated success probability is // correct. func (c *estimatorTestContext) assertPairProbability(now time.Time, toNode byte, amt lnwire.MilliSatoshi, expectedProb float64) { c.t.Helper() results := make(NodeResults) for i, r := range c.results { results[route.Vertex{byte(i)}] = r } const tolerance = 0.01 p := c.estimator.getPairProbability(now, results, route.Vertex{toNode}, amt) diff := p - expectedProb if diff > tolerance || diff < -tolerance { c.t.Fatalf("expected probability %v for node %v, but got %v", expectedProb, toNode, p) } } // TestProbabilityEstimatorNoResults tests the probability estimation when no // results are available. func TestProbabilityEstimatorNoResults(t *testing.T) { ctx := newEstimatorTestContext(t) ctx.assertPairProbability(testTime, 0, 0, aprioriHopProb) } // TestProbabilityEstimatorOneSuccess tests the probability estimation for nodes // that have a single success result. func TestProbabilityEstimatorOneSuccess(t *testing.T) { ctx := newEstimatorTestContext(t) ctx.results = map[int]TimedPairResult{ node1: { SuccessAmt: lnwire.MilliSatoshi(1000), }, } // Because of the previous success, this channel keep reporting a high // probability. ctx.assertPairProbability( testTime, node1, 100, aprioriPrevSucProb, ) // Untried channels are also influenced by the success. With a // aprioriWeight of 0.75, the a priori probability is assigned weight 3. expectedP := (3*aprioriHopProb + 1*aprioriPrevSucProb) / 4 ctx.assertPairProbability(testTime, untriedNode, 100, expectedP) } // TestProbabilityEstimatorOneFailure tests the probability estimation for nodes // that have a single failure. func TestProbabilityEstimatorOneFailure(t *testing.T) { ctx := newEstimatorTestContext(t) ctx.results = map[int]TimedPairResult{ node1: { FailTime: testTime.Add(-time.Hour), FailAmt: lnwire.MilliSatoshi(50), }, } // For an untried node, we expected the node probability. The weight for // the failure after one hour is 0.5. This makes the node probability // 0.51: expectedNodeProb := (3*aprioriHopProb + 0.5*0) / 3.5 ctx.assertPairProbability(testTime, untriedNode, 100, expectedNodeProb) // The pair probability decays back to the node probability. With the // weight at 0.5, we expected a pair probability of 0.5 * 0.51 = 0.25. ctx.assertPairProbability(testTime, node1, 100, expectedNodeProb/2) } // TestProbabilityEstimatorMix tests the probability estimation for nodes for // which a mix of successes and failures is recorded. func TestProbabilityEstimatorMix(t *testing.T) { ctx := newEstimatorTestContext(t) ctx.results = map[int]TimedPairResult{ node1: { SuccessAmt: lnwire.MilliSatoshi(1000), }, node2: { FailTime: testTime.Add(-2 * time.Hour), FailAmt: lnwire.MilliSatoshi(50), }, node3: { FailTime: testTime.Add(-3 * time.Hour), FailAmt: lnwire.MilliSatoshi(50), }, } // We expect the probability for a previously successful channel to // remain high. ctx.assertPairProbability(testTime, node1, 100, prevSuccessProbability) // For an untried node, we expected the node probability to be returned. // This is a weighted average of the results above and the a priori // probability: 0.62. expectedNodeProb := (3*aprioriHopProb + 1*prevSuccessProbability) / (3 + 1 + 0.25 + 0.125) ctx.assertPairProbability(testTime, untriedNode, 100, expectedNodeProb) // For the previously failed connection with node 1, we expect 0.75 * // the node probability = 0.47. ctx.assertPairProbability(testTime, node2, 100, expectedNodeProb*0.75) }