In this commit, we fix an existing flake on Travis related to the new
set of on-chain HTLC tests. In this timing flake, Bob would broadcast
his sweeping transaction, but *mid block mining*. As a result, the
output would never be properly swept, needing an additional block to be
mined. We’ll now wait for both Bob’s sweeping transaction, and Carol’s
sweep transaction to be confirmed before we attempt our assertions.
In this commit, we fix an existing bug in the implementation of the
resolution of the htlcOutgoingContestResolver. Before this commit, we
would _always_ watch the claim outpoint. However, if this is on the
remote party’s commitment transaction, then we would end up watching
the wrong output. We’ll now properly detect this by modifying which
output we watch, based on if we have a second level transaction or not.
In this commit, we add 6 new integration tests to test the various
actions that may need to be performed when either side goes on-chain to
fully resolve HTLC’s. Many of the tests are mirrors of each other as
they test sweeping/resolving HTLC’s from both commitment transactions.
In this commit, we introduce a new interface, the ContractResolver. The
duty of a ContractResolver is to watch a contract on-chain, for all
possible transitions, and exit finally when the contract has been fully
resolved. Resolvers themselves can be recursive: meaning producing
another resolver to hand off the duties require to fully resolve a
contract.
Each resolver also has a ResolverKit which contains all the function
closures and interfaces that the resolver need to properly do its job.
The 5 types of resolvers are:
* outgoing HTLC timeout
* outgoing HTLC contested
* incoming HTLC know presage
* incoming HTLC contested (don’t yet know)
* commitment sweep
In the future, more advanced resolver types can be added as required.