This commit modifies the channel close negotiation workflow to instead
take not of the fat that with the new funding workflow, the delivery
scripts are no longer pre-committed to at the start of the funding
workflow. Instead, both sides present their delivery addresses at the
start of the shutdown process, then use those to create the final
cooperative closure transaction.
To accommodate for this new change, we now have an intermediate staging
area where we store the delivery scripts for both sides.
In this commit daemon have been changed to set the proper hooks in the
channel link and switch subsystems so that they could send and receive
encrypted onion errors.
In current commit big shift have been made in direction of unit testable
payments scenarios. Previosly two additional structures have been added
which had been spreaded in the lnd package before, and now we apply
them in the lnd itself:
1. ChannelLink - is an interface which represents the subsystem for
managing the incoming htlc requests, applying the changes to the
channel, and also propagating/forwarding it to htlc switch.
2. Switch - is a central messaging bus for all incoming/outgoing htlc's.
The goal of the switch is forward the incoming/outgoing htlc messages
from one channel to another, and also propagate the settle/fail htlc
messages back to original requester.
With this abtractions the folowing schema becomes nearly complete:
abstraction
^
|
| - - - - - - - - - - - - Lightning - - - - - - - - - - - - -
|
| (Switch) (Switch) (Switch)
| Alice <-- channel link --> Bob <-- channel link --> Carol
|
| - - - - - - - - - - - - - TCP - - - - - - - - - - - - - - -
|
| (Peer) (Peer) (Peer)
| Alice <----- tcp conn --> Bob <---- tcp conn -----> Carol
This commit adds a set of additional comments around the new channel
closure workflow and also includes two minor fixes:
* The error when parsing a signature previously wasn’t checked and is
now.
* As a result, we should only track the new signature iff it parses
correctly and we agree to the details as specified w.r.t to the fee
for the final closing transaction.
Additionally, as set of TODO’s has been added detailing the additional
work that needs to be done before the closing workflow is fully
compliant with the specification.
This commit changes the cooperative channel close workflow to comply
with the latest spec. This adds steps to handle and send shutdown
messages as well as moving responsibility for sending the channel close
message from the initiator to the responder.
This commit fixes an issue that would at times cause the htlcManager
which manages the link that’s the final hop to settle in an HTLC flow.
Previously, a case would arise wherein a set of HTLC’s were settled to,
but not properly committed to in the commitment transaction of the
remote node. This wasn’t an issue with HTLC’s which were added but
uncleared, as that batch was tracked independently.
In order to fix this issue, we now track pending HTLC settles
independently. This is a temporary fix, as has been noted in a TODO
within this commit.
This commit fixed an issue in the htlcManager goroutine which manages
channel state updates. Due to lack of a mutex protecting the two maps
written in the goroutine launched to forward HTLC’s to the switch.
This issue was detected by golang’s runtime which is able to detect
invalid concurrent map writes.
This commit adds the FeeEstimator interface, which can be used for
future fee calculation implementations. Currently, there is only the
StaticFeeEstimator implementation, which returns the same fee rate for
any transaction.
This commit reverts a prior commit
178f26b8d5ef14b437b9d8d1755bd238212b4dec that introduced a scenario
that could cause a state desynchronization and/or a few extraneous
commitment updates. To avoid such cases, the commitment tick timer is
now only started after _receiving_ a commitment update.
This commit fixes a panic bug in the watiForChanToClose method caused
by a logic error leading to the return value of the function at times
being a nil pointer in the case that an error occurred. We now avoid
such an error by _always_ returning from the function if there’s an
error, but conditionally (in a diff if-clause) sending an error over
the error channel.
This commit fixes a bug which could at times cause channels to be
unusable upon connection. The bug would manifest like the following:
two peers would connect, one loads their channels faster than the
other, this would result in the winning peer attempting to extend their
revocation window. However, if the other peer hadn’t yet loaded the
channel, then this would appear to them to be an unknown channel.
We properly fix this issue by ensure all channels are loaded _before_
any of the goroutines needed for the operation of the peer are
launched.
Within this commit the peer will now properly manage the channel close
life cycle within the database. This entails marking the channel as
pending closed either once the closing transaction has been broadcast
or the close request message has been sent to the other side.
Once the closing transaction has been confirmed, the transaction will
be marked as fully closed within the database. A helper function has
been added to factor out “waiting for a transaction to confirm” when
handling moth local and remote cooperative closure flows.
Finally, we no longer delete the channel state within wipeChannel as
this will now be managed distinctly by callers.
The prior methods we employed to handle persistent connections could
result in the following situation: both peers come up, and
_concurrently_ establish connection to each other. With the prior
logic, at this point, both connections would be terminated as each peer
would go to kill the connection of the other peer. In order to resolve
this issue in this commit, we’ve re-written the way we handle
persistent connections.
The eliminate the issue described above, in the case of concurrent peer
connection, we now use a deterministic method to decide _which_
connection should be closed. The following rule governs which
connection should be closed: the connection of the peer with the
“smaller” public key should be closed. With this rule we now avoid the
issue described above.
Additionally, each peer now gains a peerTerminationWatcher which waits
until a peer has been disconnected, and then cleans up all resources
allocated to the peer, notifies relevant sub-systems of its demise, and
finally handles re-connecting to the peer if it's persistent. This
replaces the goroutine that was spawned in the old version of
peer.Disconnect().
This commit adds a new method to the peer struct: WaitForDisconnect().
This method is put in place to be used by wallers to synchronize the
ending of a peer’s lifetime. A follow up commit will utilize this new
method to re-write the way we handle persistent peer connections.
This commit modifies both readMessage and writeMessage to be further
message oriented. This means that message will be read and written _as
a whole_ rather than piece wise. This also fixes two bugs: the
readHandler could be blocked due to an sync read, and the writeHandler
would unnecessarily chunk up wire messages into distinct crypto
messages rather than writing it in one swoop.
Also with these series of changes, we’re now able to properly parse
messages that have been padded out with additional data as is allowed
by the current specification draft.
This commit implements the new ping/pong messages along with their new
behavior. The new set of ping/pong messages allow clients to generate
fake cover traffic as the ping messages tells the pong message how many
bytes to included and can also be padded itself.
This commit fixes a deadlock bug within the readHandler of the peer.
Previously, once a channel was pending opening, _no_ other message
would be processed by the readHandler as it would be blocked waiting
for the channel to open. On testnet this would be manifsted as a node
locking up, until the channel was detected as being open.
We fix this bug by tracking which channel streams are active. If a
channel stream is active, then we can send the update directly to it.
Otherwise, we launch a goroutine that’ll block until the channel is
open, then in a synchronized manner, update the channel stream as being
active and send the update to the channel.
This commit modifies the way the fundingManager tracks pending funding
workflows internally. Rather than using the old auto-incrementing
64-bit pending channel ID’s, we now use a 32-byte pending channel ID
which is generated using a CSPRG. Additionally, once the final funding
message has been sent, we now de-multiplex the FundingLocked message
according to the new Channel ID’s which replace the old ChannelPoint’s
and are exactly 32-bytes long.
This map was added very early on as a possible path to implement proper
retransmission. However, we now have a proper persistent retransmission
sub-system being proposed as a PR, therefore we no longer have any use
for this.
This commit patches a whole in our optimistic channel synchronization
logic by making the logCommitTimer a persistent ticker rather than one
that is activated after receiving a commitment, and disabled once we
send a new commitment ourself. In the setting of batched full-duplex
channel updates, the prior approach could at times result in a benign
state desync caused by one side being one commitment ahead of the other
because one of the nodes failed to, or was unable to provide the other
with a state update during the workflow.
This commit simplifies the channel state update handling by doing away
with the commitmentState.pendingUpdate method all together. The newly
added LightningChannel.FullySynced method replace the prior state and
also replaced all other uses of PendingUpdates.
By moving to using channel.FullySynced() we also eliminate class of
desynchronization error caused by a node failing to provide the other
side with the latest commitment state.
Change the name of fields of messages which are belong to the discovery
subsystem in a such way so they were the same with the names that are
defined in the specification.
Add usage of the 'discovery' package in the lnd, now discovery service
will be handle all lnwire announcement messages and send them to the
remote party.
This commit modifies the logic around the opening p2p handshake to
enforce a strict timeout around the receipt of the responding init
message. Before this commit, it was possible for the daemon and certain
RPC calls to deadlock as if a peer connected, but didn’t respond with
an init msg, then we’d be sitting there waiting for them to respond.
With this commit, we’ll now time out, kill the connection and then
possible attempt to re-connect if the connection was persistent.
This commit fixes a prior bug which would cause the set of HTLC’s on a
node’s commitment to potentially overflow if an HTLC was accepted or
attempted to be forwarded that but the commitment transaction over the
maximum allowed HTLC’s on a commitment transaction. This would cause
the HTLC to silently be rejected or cause a connection disconnect. In
either case, this would cause the two states to be desynchronized any
pending HTLC’s to be ignored.
We fix this issue by introducing the concept of a bounded channel,
which is a channel in which the number of items send and recevied over
the channel must be balanced in order to allow a new send to succeed
w/o blocking. We achieve this by using a chan struct{} as a semaphore
and decrement it each time a packet it sent, increasing the semaphore
one a packet is received. This creates a channel that we can use to
ensure the switch never sends more than N HTLC’s to a link before any
of the HTLC’s have been settled.
With this bug fix, it’s now once again possible to trigger sustained
bursts of payments through lnd nodes.
This commit fixes a bug in the opening handshake between to peers. The
bug would arise when on or many channels were active between a node
establishing a new connection. The htlcManager goroutines will
immediately attempt to extend the revocation window once they’re
active. However, at this time, the init message may not yet have been
sent as the two executions are in distinct goroutines.
We fix this bug by manually writing the init message directly to the
socket, rather than traveling through the queueHandler goroutine. With
this, we ensure that the init message is _always_ sent first.