This commit partially rectifies a quick hack that was previously thrown
in to address an issue discovered due to possible state inconsistencies
between an active channel object and the daemon’s breachAbrbiter.
A prior commit has modified the interaction between the peer and the
breachArbiter to eliminate the state in consistency. Therefore, we no
longer need to access the database to ensure that we’re observing the
latest channel state in order to correctly make a decision about
whether a broadcast commitment transaction is a breach or not.
This commit modifies the attributes of the LightningChannel struct to
publicly expose the funding keys used within the channel for the local
and remote party. Exposing these keys publicly will allow callers to
use the keys involved to generate authenticated channel advertisements
for the routing layer.
This commit modifies the channel closing logic to remove the hard coded
bools indicating which side is attempting the closure. With the recent
changes, the initiator must always pay the channel closure fees.
This information is recently stored on disk, therefore we can use the
boolean to ensure that the closure transaction is created properly no
matter who initiates the close.
This fixes a bug.
This commit introduces a new sub-system into the daemon whose job it is
to vigilantly watch for any potential channel breaches throughout the
up-time of the daemon. The logic which was moved from the utxoNursery
in a prior commit now resides within the breachArbiter.
Upon start-up the breachArbiter will query the database for all active
channels, launching a goroutine for each channel in order to be able to
take action if a channel breach is detected. The breachArbiter is also
responsible for notifying the htlcSwitch about channel breaches in
order to black-list the breached linked during any multi-hop forwarding
decisions.
This commit adds detection of contract breaches within the commitment
state-machine for a channel. A contract breach is defined as the event
wherein a channel counter-party broadcasts a previously revoked
commitment transaction. Such an event immediately closes a channel as
the funds are now in a state of dispute.
Once a breach is detected, a snapshot of the breached state is
retrieved from the database’s revocation log. This snapshot is then
used to generate the revocation leaf used within this particular state
along with all the other information ncessary to sweep ALL active funds
within the channel. This information is encapsulated within the
BreachRetribution struct which is sent over a new channel dedicated to
sending/receiving BreachRetributions.
This commit modifies the logic within the state machine to properly
populate the new field of `OutputIndex` which the HTLC stored within a
channel delta.
With this change, in the future we’ll be able to quickly locate a
particular HTLC output in the scenario that the commitment transaction
has been broadcast on-chain and we need to sweep it. Allocating a few
extra bytes on-disk saves us from the guess-and-check logic+code
required otherwise.
This commit adds some necessary locking to ensure that all updates to
the internal state of the commitment state machine are fully serial and
thread-safe. This change is required to ensure future actions w.r.t
taking action once a revoked commitment transaction has been broadcast
are not carried out while the channel’s state is being updated.
This commit modifies the channel state machine slightly to encode the
current state number using 30-bits of the sequence number within the
commitment transaction’s only input.
Such a modification reduces up the processing time required to punish
the counter party for breaching the contract established within the
channel by broadcasting an older revoked state.
This fixes#58 with a minor modification to what was originally
suggested.
This commit modifies the lnwallet code and related tests in order to
adhere to the recent field-name change to channeldb.OpenChannel.
Instead of having the field ‘TheirLNID’ which is the sha256 of the
node’s public key, we now instead use the public key directly in all
contexts.
This commit consists of a mass variable renaming to call the pkScript being executed for segwit outputs the `witnessScript` instead of `redeemScript`. The latter naming convention is generally considered to be reserved for the context of BIP 16 execution. With segwit to be deployed soon, we should be using the correct terminology uniformly through the codebase.
In addition some minor typos throughout the codebase has been fixed.
This commit introduces the concept of a manually initiated “force”
closer within the channel state machine. A force closure is a closure
initiated by a local subsystem which broadcasts the current commitment
state directly on-chain rather than attempting to cooperatively
negotiate a closure with the remote party.
A force closure returns a ForceCloseSummary which includes all the
details required for claiming all rightfully owned outputs within the
broadcast commitment transaction.
Additionally two new publicly exported channels are introduced, one
which is closed due a locally initiated force closure, and the other
which is closed once we detect that the remote party has executed a
unilateral closure by broadcasting their version of the commitment
transaction.
This commit adds full persistence logic of the current lowest
un-revoked height within each commitment chain. The newly added
channeldb methods for record state transitions within both commitment
chains are now utilized. This un-settled HTLC state is now read upon
initialization, with the proper log entries inserted into the state
update log which reflect the garbage collected log right before the
restart.
A new set of tests have been added to exercise a few edge cases around
HTLC persistence to ensure the in-memory log is properly restored based
on the on-disk snapshot.
This commit performs a major refactor of the current wallet,
reservation, and channel code in order to call into a WalletController
implementation rather than directly into btcwallet.
The current set of wallets tests have been modified in order to test
against *all* registered WalletController implementations rather than
only btcwallet. As a result, all future WalletControllers primary need
to ensure that their implementation passes the current set of tests
(which will be expanded into the future), providing an easy path of
integration assurance.
Rather than directly holding the private keys throughout funding and
channel creation, the burden of securing keys has been shifted to the
specified WalletController and Signer interfaces. All signing is done
via the Signer interface rather than directly, increasing flexibility
dramatically.
During channel funding, rather than creating a txscript.Engine to
verify commitment signatures, regular ECDSA sig verification is now
used instead. This is faster and more efficient.
Finally certain fields/methods within ChannelReservation and
LightningChannel have been exposed publicly in order to restrict the
amount of modifications the prior tests needed to undergo in order to
support testing directly agains the WalletController interface.
This commit refactors the code within lnwallet interacting with the
ChainNotifier to accept, and call against the implementation rather
than a single concrete implementation.
LightningWallet no longer creates it’s own BtcdNotifier implementation
doing construction, now instead accepting a pre-started `ChainNotifier`
interface. All imports have been updated to reflect the new naming
scheme.
This commit adds a basic test for cooperative channel closure. The
current test ensures correctness of the cooperative closure procedure
initiated by either the channel initiator, or the channel responder.
This commit adds a new method, “PendingUpdates” to the channel state
machine which is intended to be a source to give callers a hint as to
when an additional commitment signature should be sent independent of
any request/response book keeping.
This commit patrons the state update logs properly within the channel
state machine. This change fixes a number of bugs caused by treating a
central log as two logically distinct logs. Rather than having a bit
indicating if the entry is incoming/outgoing, an entry is added to a
remote or local log depending on which modification method is used.
As a result the code is much easier to follow due to separation of
concerts.
Finally, when attempting to sign a new update with an exhausted
renovation window a distinct error is returned in order to allow higher
level callers to properly back-off and handle the protocol event.
This commit fixes a slight bug in the channel state machine’s code
executed when processing a revocation messages. With this commit after
processing a revocation, log entries which we should forward to the
downstream or upstream peer for settling/adding HTLC’s are now properly
returned.
The testa have also been updated to ensure to correct htlc’s are
returned “for forwarding”.
We no longer track HTLC’s by their r-hash within the log into the
index, as we may have multiple HTLC’s that can be redeemed by the same
pre-image. Instead we now use a separate index which is keyed by a
log-index.
Additionally, the SettleHTLC method now also returns the index of the
HTLC being settled which allows the remote party to quickly locate the
HTLC within their log.
This commit also introduces a few trace/debug log messages which will
likely be pruned in the near future
This commit finishes the initial draft of the commitment state machine.
A full re-write of the prior protocol which combines aspects of the
former ‘lnstate’ package has replaced the prior un-finished
stop-and-wait protocol.
This new protocol is designed to operate in an asynchronous environment
and to facilitate non-blocking batched and pipelined updates to the
committed channel states. The protocol is also de-synchronized meaning
that either side can propose new commitment states independent of the
actions of the other party.
The state machine implemented is very similar to that of c-lightning,
however we allow multiple unrevoked commentates in order to minimize
blocking, and also to reduce latency across several hops in a
bi-directional setting.
The current implementation consists of 3 main data structures: a
commitment chain which consist of unrevoked commitment transactions
(one for each side), and a (mostly) append-only log of HTLC updates
shared between both sides. New commitments proposed index into the log
denoting which updates they include, this allows both parties to
progress chains independent of one another. Revoked commitments, reduce
the length of the chain by one, and free up space within the revocation
window.
At this point only basic tests are in place for the state machine,
however more extensive testing infrastructure along with formal proofs
using PlusCall are planned.
This commit updates the previous HTLC and commitment scripts to their
current latest evolution.
The HTLC scripts have been optimized for space savings, the
functionality itself has remained relatively unchanged. A trade off was
made to add additional bytes into the sigScript in order to avoid
extraneous CHECKSIG’s. The rationale is that an extra 1-2 bytes in the
sigScript to guide execution, are worthwhile since they’re in the
witness, and witness data may be pruned in the near future.
The primary change is within the commitment transaction itself. Instead
of using revocation hashes, we now use signature based revocation. This
saves space in the Script, and optimizes away an extra hashing
operation. Elkrem/shachain is still used but, we now use the pre-images
to homomorphically derive a public key which the other party will be
able to sign with, once we disclose the pre-image itself.
Finally, we have switched to using SHA-256 everywhere uniformly for
both revocation hashes, and payment hashes. The rationale is that the
output of ripemd160 is too small for modern security margins, and that
other coins/chains are more likely to have SHA-256 implemented, than
ripemd160.
A set of tests has also been included which contain (mostly) exhaustive
tests of all possible redemption paths for both commitment and HTLC.
This unifies some inconstancies across the code-base with hashes being
32 vs 20 bytes. All hashes, whether payment or revocation are now
uniformly 32 bytes everywhere. As a result, only OP_SHA256 will be used
within commitment and HTLC scripts. The rationale for using sha256
instead of hash160 for the HTLC payment pre-image is that alternative
chains are more likely to have sha256 implemented, rather than
ripemd160.
A forthcoming commit will update the current commitment, and HTLC
scripts.
A cooperative closure of a LightningChannel proceeds in two steps.
First, the party who wishes to close the channel sends a signature for
the closing transaction. Next, the responder reconstructs the closing
transaction identically as the initiator did using a canonical
input/output ordering, and the currently settled balance within the
channel. At this point, the responder then broadcasts the closure
transaction. It is the responsibility of the initiator to watch for
this transaction broadcast within the network to clean up any resources
they committed to the active channel.
* Hooks into the ChainNotifier infrastructure to receive a notification
once the funding transaction gets enough notifications.
* Still need to set up the notification grouting within a
LightningChannel to watch for uncooperative closures, and broadcasts
and revoked channel states.
* Updates to the channel are made atomic, and consistent via a proxy
object: “ChannelUpdate” which encapsulates an update transaction. Only
one update transaction may be outstanding at any time.
* Update transactions are initiated via AddHTLC or SettleHTLC.
* Once a transaction has been begun, in order to complete the update
the transaction must first be presented with a signature from the
counter-party for our new version of the commitment tx
(VerifyNewCommitmentSigs), and finally to atomically commit the
transaction, the counterparty’s pre-image to their previous revocation
hash must be validate (Commit).
* moved sorting of transaction outside of createCommitTx also us to add
HTLC’s before sorting
* On the fence about the proxy object design, will re-visit once we
start to implement the p2p code.
* Initial draft of brain dump of chandler. Nothing yet set in stone.
* Will most likely move the storage of all structs to a more “column”
oriented approach. Such that, small updates like incrementing the total
satoshi sent don’t result in the entire struct being serialized and
written.
* Some skeleton structs for other possible data we might want to store
are also included.
* Seem valuable to record as much data as possible for record keeping,
visualization, debugging, etc. Will need to set up a time+space+dirty
cache to ensure performance isn’t impacted too much.