This tests make sure we don't reset our expected fee upate after signing
our next commitment. This test would fail without the previous set of
commits.
Instead of special casing the UpdateFee messages, we instead add them to
the update logs like any other HTLC update message. This lets us avoid
having to keep an extra set of variables to keep track of the fee
updates, and instead reuse the commit/ack logic used for other updates.
This fixes a bug where we would reset the pendingFeeUpdate variable
after signing our next commitment, which would make us calculate the new
fee incorrectly if the remote sent a commitment concurrently.
When restoring state logs, we also make sure to re-add any fee updates.
When compacting the update logs we remove any fee updates when they
remove height is passed. We do this since we'll assume fee updates are
added and removed at the same commit height, as they will apply for all
commitments following the fee update.
This commit adds conversion between the lnwire.UpdateFee message and the
new FeeUpdate PaymentDescriptor. We re-purpose the existing Amount field
in the PaymentDescriptor stuct to hold the feerate.
This commit adds a new updateType that can be used for
PaymentDescriptors: FeeUpdate. We repurpose the fields of the existing
PaymentDescriptor struct such that we can easily re-use the commit/ack
logic used for other update types also for fee updates.
In this commit, we add a new flag to the sendcoins command that allows
callers to sweep all funds out of the daemon's wallet. This CANNOT be
set at the same time that an amount is specified.
In this commit, we implement the new feature which allows sendcoins to
sweep all the coins in the wallet. We use the new sweep.CraftSweepAllTx
method, and also use WithCoinSelectLock to ensure that we don't trigger
any double-spend errors triggered by coin selection race conditions.
In this commit, we add a new method WithCoinSelectLock. This method will
allow us to fix bugs in the project atm that can arise if a channel
funding is attempted (either manually or by autopilot) while a users is
attempting to send an on-chain transaction. If this happens
concurrently, then both contexts will grab the set of UTXOs and attempt
to lock them one by one. However, since they didn't obtain an exclusive
snapshot of the UTXO set of the wallet, they may both attempt to lock
the same input.
We also ensure that calls to SendMany cannot run into this issue by
using the WithCoinSelectLock synchronization when attempting to instruct
the internal wallet to send payments.
In this commit, we add a new function, CraftSweepAllTx. This function
allows callers to craft a transaction which sweeps ALL outputs from the
wallet to a single target address. It can either be used for UTXO
consolidation (at the cost of privacy by co-mingling inputs), or simply
to sweep all funds out of a wallet for various reasons.
In an attempt to ensure this method is loosely coupled and testable, for
all behavior structs, we create brand new interface to accept. This
ensures that we only rely on the minimal number of methods needed to
perform our duty.
In this commit, we update the `getInputWitnessSizeUpperBound` and all
its callers to be aware of nested p2sh witness inputs. We do so by
adding another bool which is true if the output is a nested p2sh output.
If so, then in order to properly estimate the total weight, the caller
needs to factor in the non-witness data of the additional sigScript data
push.
In this commit, we extend the WitnessGenerator type to now return an
InputScript. This allows it to be more encompassing, as now callers can
expect a sigScript to be populated if the input being swept requires a
sigScript field.
Along the way, we've also renamed input.BuildWitness to
input.CraftInputScript. We also take a step towards allowing the
sweeper to sweep transactions for n2pwkh outputs. We do so by modifying
the BuiltWitness method to instead return an InputScript. Additionally,
when populating inputs if a sigScript is present, it will now be
populated.
In this commit, we extract the existing determineFeePerKw method on the
RPC server into a new file in the sweep package. Along the way, we
consolidate code by introducing a new FeePreference struct, which allows
the caller to express their fee preference either in blocks to
confirmation, or a direct fee rate. This move takes a small step to
father decoupling calls in the main RPC server.
Since NodeScores no longer returns fully populated AttachmentDirectives,
we make this explicit by defining a new type NodeScore that includes a
subset of what the AttachmentDirective does.
We create a new type NodeScore which is a tuple (NodeID, score). The
weightedChoice and chooseN algorithms are altered to expect this type.
This is done in order to simplify the types we are using, since we were
only using a subset of the fields in AttachmentDirective.
Since we want to combine scores from multiple heuristics, things get
complicated if the heuristics report their own individual channel sizes.
Therefore we change the NodeScores interface slightly, letting the agent
specify the wanted channel size, and let the heuristic score the nodes
accordingly.
We let the agent call ChannelBudget on its constraints directly, and
not go through the heuristic. This is needed since when we want to have
multiple active heuristics concurrently, it won't make sense anymore to
ask each of the heuristics.
The mockConstraints are also updated to act as the mockHeuristic did
before, by making it possible to control the responses it gives by
sending them on the contained channels.
To decouple the autopilot heuristic from the constraints, we start by
abstracting them behind an interface to make them easier to mock. We
also rename them HeuristicConstraints->AgentConstraints to make it clear
that they are now constraints the agent must adhere to.