Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
Align naming better with the lightning spec. Not the full name of the
failure (FailIncorrectOrUnknownPaymentDetails) is used, because this
would cause too many long lines in the code.
With the introduction of the WatchtowerClient RPC subserver, the lnd
configuration flag to specify private watchtowers for the client is no
longer needed and can lead to confusion upon users. Therefore, we remove
the flag completely, and only rely on the watchtower client being active
through a new --wtclient.active flag.
This commit makes the outgoing link pipeline the settle to the
switch as soon as it receives it. Previously, it would wait for a
revocation before sending it, which caused increased latency on
payments as well as possibly never settling on the incoming link.
A duplicate settle is still sent to the switch, but it is handled
gracefully. A new AckEventTicker was added to the switch which
acknowledges any pending settle / fail entries in an outgoing
link's fwd pkgs in batch. This was needed in order to reduce the
number of db txn's which would have been incurred by acking whenever
we receive a duplicate settle without batching.
This flake was caused by the rpcserver receiving a CloseChannel request
before Alice's channel event subscription request, causing Alice to miss one
notification. As a result, we move Alice's subscription to the beginning of the
test.
Additionally, we add a check to ensure the opening notifications are
received in the right order.
Earlier versions of ListPayments only included completed payments. We
return to this behavior by ignore all other payments if the nonSucceeded
boolean is not set in the request.
testHoldInvoicePersistence tests that a sender to a hold-invoice, can be
restarted before the payment gets settled, and still be able to receive
the preimage.
Previously every payment had its own local mission control state which
was in effect only for that payment. In this commit most of the local
state is removed and payments all tap into the global mission control
probability estimator.
Furthermore the decay time of pruned edges and nodes is extended, so
that observations about the network can better benefit future payment
processes.
Last, the probability function is transformed from a binary output to a
gradual curve, allowing for a better trade off between candidate routes.
This commit gives the current chainbackend the ability to connect and
disconnect the chain backend at will. We do this to let the chain
backend initiate the connection to the miner, not the other way around.
This is a preparation for using Neutrino as a backend, as it only allows
making outbound connections.
We must also move the setup of the chainbackend to after to miner, to
know the address to connect to.
This race was possible due to us making a subscription request before
the ChannelRouter has started. We address it by creating a dummy
subscription before proceeding to the real one to ensure we can do so
successfully. We use a dummy one in order to not consume an update from
the real one. This addresses the common "timed out waiting for opened
channel" flake within the integration test suite since the subscription
was never properly created, so we'd never be notified of when new graph
updates were received.
In this commit, we modify the `RestoreNodeWithSeed` and `RestartNode`
methods to also accept an SCB. This will be useful in new integration
tests to properly exercise the various restore/restart scenarios using
static channel backups.
In this commit, we convert the Unlock method to accept the
`lnrpc.UnlockWalletRequest`. This makes things a bit more generic as we
no longer need to continue to add params to the method each time a new
field is added to the Unlock method.