This commit creates a wrapper struct, grouping all parameters that
influence the final hop during route construction. This is a preliminary
step for passing in the receiver's invoice feature bits, which will be
used to select an appropriate payment or payload type.
This commit prepares for more manipulation of custom records. A list of
tlv.Record types is more difficult to use than the more basic
map[uint64][]byte.
Furthermore fields and variables are renamed to make them more
consistent.
With the introduction of the max CLTV limit parameter, nodes are able to
reject HTLCs that exceed it. This should also be applied to path
finding, otherwise HTLCs crafted by the same node that exceed it never
left the switch. This wasn't a big deal since the previous max CLTV
limit was ~5000 blocks. Once it was lowered to 1008, the issue became
more apparent. Therefore, all of our path finding attempts now have a
restriction of said limit in in order to properly carry out HTLCs to the
network.
In the process of moving to use the new package, we no longer need to
fetch the outpoint directly, and instead only need to pass the funding
transaction into the new verification logic.
In this commit, we update the router and link to support users
updating the max HTLC policy for their channels. By updating these internal
systems before updating the RPC server and lncli, we protect users from
being shown an option that doesn't actually work.
This commit modifies paymentLifecycle so that it not only feeds
failures into mission control, but successes as well.
This allows for more accurate probability estimates. Previously,
the success probability for a successful pair and a pair with
no history was equal. There was no force that pushed towards
previously successful routes.
In this commit, we extend the path finding to be able to recognize when
a node needs the new TLV format, or the legacy format based on the
feature bits they expose. We also extend the `LightningPayment` struct
to allow the caller to specify an arbitrary set of TLV records which can
be used for a number of use-cases including various variants of
spontaneous payments.
This commit converts several functions from returning a bool and a
failure reason to a nillable failure reason as return parameter. This
will take away confusion about the interpretation of the two separate
values.
Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
The current approach iterates all channels in the graph in order to
filter those in need. This approach is time consuming, several seconds
on my mobile device for ~40,000 channels, while during this time the
db is locked in a transaction.
The proposed change is to use an existing functionality that utilize the
fact that channel update are saved indexed by date. This method enables
us to go over only a small subset of the channels, only those that
were updated before the "channel expiry" time and further filter
them for our need.
The same graph that took several seconds to prune was pruned, after
the change, in several milliseconds.
In addition for testing purposes I added Initiator field to the
testChannel structure to reflect the channeldEdgePolicy direction.
If nodes return a channel policy related failure, they may get a second
chance. Our graph may not be up to date. Previously this logic was
contained in the payment session.
This commit moves that into global mission control and thereby removes
the last mission control state that was kept on the payment level.
Because mission control is not aware of the relation between payment
attempts and payments, the second chance logic is no longer based
tracking second chances given per payment.
Instead a time based approach is used. If a node reports a policy
failure that prevents forwarding to its peer, it will get a second
chance. But it will get it only if the previous second chance was
long enough ago.
Also those second chances are no longer dependent on whether an
associated channel update is valid. It will get the second chance
regardless, to prevent creating a dependency between mission control and
the graph. This would interfer with (future) replay of history, because
the graph may not be the same anymore at that point.
This commit moves the call to PruneGraph outside of the loop
that collates all of the spentOutputs. With this change, if
a node has been offline for a long period of time, resyncing
with the chain no longer takes up as much memory (1MB vs 200MB
in some cases) or time. Previously, PruneGraph was called
for every block and allocated a very large map further down
in the pruneGraphNodes function. Now, pruneGraphNodes is only
called once.
Since nilling the pubkey curve will lead to a nil-pointer exception if
the key is later used for signature verification, we make sure to make a
copy before nilling and spewing.