As a follow-up to #4560 we actually need to hold the reservation mutex
during the full loop where we count the pending reservations. Otherwise
the results might become inaccurate for concurrent funding flows.
Externally funded channels are expected by the user and explicitly
registered through the use of a funding shim and should therefore not
count towards the max pending channel count which is primarily there to
mitigate DoS attacks.
Currenlty the maxHtlcs value is recomputed after receiving
accept_channel. This works when the derivation is deterministic, howver
we now allow the user to manually override this value from open_channel.
As such, we must retain the chosen value in memory throughout the
funding process, otherwise the initiator would revert to the
deterministic derivation and the two endpoints will disagree on the
correct max-htlcs value in their view of the other's policy.
Follow up labelling of external transactions with labels for the
transaction types we create within lnd. Since these labels will live
a life of string matching, a version number and rigid format is added
so that string matching is less painful. We start out with channel ID,
where available, and a transaction "type". External labels, added in a
previous PR, are not updated to this new versioned label because they
are not lnd-initiated transactions. Label matching can check this case,
then check for a version number.
Add label parameter to PublishTransaction in WalletController
interface. A labels package is added to store generic labels that are
used for the different types of transactions that are published by lnd.
To keep commit size down, the two endpoints that require a label
parameter be passed down have a todo added, which will be removed in
subsequent commits.
This addresses a bug in which a funding reservation wasn't cleaned up
properly if the remote peer didn't support upfront shutdown.
Alternatively, we could just cancel the reservation on error, but
instead we move the check above so that we don't attempt coin selection
in the first place.
In case the funding manager detects that a funding flow is requested
to be executed with the help of a PsbtIntent, the normal channel
negotiation with the remote peer is interrupted, as soon as the
accept_channel message was received. With the remote peer's funding
multisig key and our local key, we can derive the funding output
script and its address. This is enough to start the PSBT funding
and signing process which the user will do externally to the daemon.
Add an optional channel status CloseChannel which will be stored on the
hitsorical channel which is persisted at channel close. This status is
used to set the close initiator for channels that do not complete the
funding flow or we abandon. In follow up commits, this status will be
used to record force and breach closes. The value is written to the
historical channel bucket for diplay over rpc.
To be able to write a new channel backup file for pending channels,
we need to include the channel configuration in the pending channel
notification event.
This commit adds PendingOpenChannel to SubscribeChannelEvents stream in
the gRPC API.
This is useful for keeping track of channel openings that Autopilot does.
It can also be used for the non-initator side of a channel opening to keep
track of channel openings.
In this commit, we update the `OpenChannel` method to observe the new
`funding_shim` field in the main open channel request. If this is
specified, and is a channel point shim, then we'll create a custom
`chanfunding.Assembler` for the wallet to use in place of the regular
funding workflow.
With this commit, the "initiator" of an external funding flow can now
delegate the remainder of the channel funding workflow to lnd.
This commit gets upfront shutdown scripts from openchannel and
acceptchannel wire messages sent from our peer and sets upfront
shutdown scripts in our open and accept channel messages when
the remote peer supports option upfront shutdown and we have
the feature enabled.
In this commit, we start to thread the pending channel ID from wire
protocol all the way down into the reservation context. This change will
allow negotiation to take place _outside_ the protocol that may result
in a particular chanfunding.Assembler being dispatched.
In this commit, we create a new chainfee package, that houses all fee
related functionality used within the codebase. The creation of this new
package furthers our long-term goal of extracting functionality from the
bloated `lnwallet` package into new distinct packages. Additionally,
this new packages resolves a class of import cycle that could arise if a
new package that was imported by something in `lnwallet` wanted to use
the existing fee related functions in the prior `lnwallet` package.
In this commit, we convert the existing `channeldb.ChannelType` type
into a _bit field_. This doesn't require us to change the current
serialization or interpretation or the type as it is, since all the
current defined values us a distinct bit. This PR lays the ground work
for any future changes that may introduce new channel types (like anchor
outputs), and also any changes that may modify the existing invariants
around channels (if we're the initiator, we always have the funding
transaction).
Since the funding flow requires messages to go through, make use of
sync version of SendToPeer. Using the async version we would risk that
the message was dropped and the process would stall (it would properly
continue after a restart though).
In this commit, we use the recently added `chanvalidate` package to
verify channels once they have been confirmed in the funding manager. We
expose a new method on the `LightningWallet` struct: `ValidateChannels`
which calls the new shared 1st party verification code.
After the channel is fully confirmed in the funding manager, we'll now
use this newly exposed method to handle all validation. As a result, we
can remove the existing validation code in the funding manager, and rely
on the new code in isolation.
In this commit, we add a new legacy protocol command line flag:
`committweak`. When set, this forces the node to NOT signal usage of the
new commitment format. This allows us to test that we're able to
properly establish channels with legacy nodes. Within the server, we'll
now gate our signalling of this new feature based on the legacy protocol
config. Finally, when accepting/initiating a new channel funding, we'll
now check both the local and remote global feature bits, only using the
new commitment format if both signal the global feature bit.