Since we will use peer flap rate to determine how we rate limit, we
store this value on disk per peer per channel. This allows us to
restart with memory of our peers past behaviour, so we don't give badly
behaving peers have a fresh start on restart. Last flap timestamp is
stored with our flap count so that we can degrade this all time flap
count over time for peers that have not recently flapped.
This commit moves makeTestDB to db.go and exports it so that we'll be
able to use this function in other unit tests to make them testable with
etcd if needed.
Add a new top level bucket which holds closed channels nested by chain
hash which contains additional information about channel closes. We add
resolver resolutions under their own key so that we can extend the
bucket with additional information if required.
This was initially done as there were a few assertions throughout the
codebase requiring a channel's policy to be known. Now that these have
been addressed, we no longer need to store restored channels in the
graph, as their policies where incomplete anyway.
Add an entry to a payments index bucket which maps sequence number
to payment hash when we initiate payments. This allows for more
efficient paginated queries. We create the top level bucket in its
own migration so that we do not need to create it on the fly.
When we retry payments and provide them with a new sequence number, we
delete the index for their existing payment so that we do not have an
index that points to a non-existent payment.
If we delete a payment, we also delete its index entry. This prevents
us from looking up entries from indexes to payments that do not exist.
This commit adds the ExtendedBackend interface which is an extension to
the walletdb.DB interface. This paves the way to using etcd.db.View and
etcd.db.Update in the global View and Update functions without much code
rewrite.
In this commit, we migrate all the code in `channeldb` to only reference
the new `kvdb` package rather than `bbolt` directly.
In many instances, we need to add two version to fetch a bucket as both
read and write when needed. As an example, we add a new
`fetchChanBucketRw` function. This function is identical to
`fetchChanBucket`, but it will be used to fetch the main channel bucket
for all _write_ transactions. We need a new method as you can pass a
write transaction where a read is accepted, but not the other way around
due to the stronger typing of the new `kvdb` package.
In this commit, we create a new package `kvdb`, which is meant to serve
as the basis for any future database abstractions within `lnd`. Rather
than directly use the `walletdb` package (which we base off of), we
instead use a series of type-aliases to re-type the fundamental
types/interfaces of the `walletdb` package. This lets us type
`kvdb.RwTx` instead of `walletdb.ReadWriteTransaction` everywhere.
Additionally, our usage of type-aliases is also intended to create an
easy pathway in the future wherein we can gradually re-defined or
re-implement these types to wean off of the `walletdb` package.
This commit migrates the payments in the database to a new structure
that allows for multiple htlcs per payments. The migration introduces a
new sub-bucket that contains a list of htlcs and moves the old single
htlc into that.
Add an optional channel status CloseChannel which will be stored on the
hitsorical channel which is persisted at channel close. This status is
used to set the close initiator for channels that do not complete the
funding flow or we abandon. In follow up commits, this status will be
used to record force and breach closes. The value is written to the
historical channel bucket for diplay over rpc.
This changes replaces the pending an waiting booleans in fetchChannels
with optional filters which can be more flexibly used. This change
allows filtering of channels without having to reason about the matrix
of possible boolean combinations. A test is added to ensure that the
combinations of these filters act as expected.
This commit removes the migrations from channeldb and references those
in the migrations_01_to_11 package. This creates a one-way dependency on
the migrations. Future changes to channeldb won't be able to break
migrations anymore.
This commit adds a set of htlcs to the Invoice struct and
serializes/deserializes this set to/from disk. It is a preparation for
accurate invoice accounting across restarts of lnd.
A migration is added for the invoice htlcs.
In addition to these changes, separate final cltv delta and expiry
invoice fields are created and populated. Previously it was required
to decode this from the stored payment request. The reason to create
a combined commit is to prevent multiple migrations.
This commit specifies two bbolt options when opening the underlying
channel and watchtower databases so that there is reduced heap
pressure in case the bbolt database has a lot of free pages in the
B+ tree.
migrateOutgoingPayments moves the OutgoingPayments into a new bucket format
where they all reside in a top-level bucket indexed by the payment hash. In
this sub-bucket we store information relevant to this payment, such as the
payment status.
To avoid that the router resend payments that have the status InFlight (we
cannot resume these payments for pre-migration payments) we delete those
statuses, so only Completed payments remain in the new bucket structure.
During the restore process, it may be possible that we have already
heard about our prior edge from a node on the network (or our channel
peers). As a result, we shouldn't exit if this happens, and instead
should continue with the rest of the restoration process.
In this commit, we modify the `AddrsForNode` method to not fail if no
graph node is found. We do this as when the backup is being
restored/created, it's possible that we don't yet have a
NodeAnnouncement for that node.
In this commit, we move the location where we restore the channel status
to within the `RestoreChannelShells` method itself. Before this commit,
we attempted to use `ApplyChanStatus` which creates a DB transaction and
relies on a fully populated channel state, which in the restoration
case, we don't yet have.
In this commit, we add a zombie edge index to the database. This allows
us to quickly determine across restarts whether we're attempting to
process an edge we've previously deemed as zombie.
In this commit, we introduce a migration for the message store
sub-bucket that will migrate all keys within it to a new key format.
This new key format is composed of the peer's public key, followed by
the short channel ID, followed by the message type. This migration is
needed in order to provide backwards-compatibility with messages that
were previously stored before the introduction of the new key format.
In this commit, we add a new type (ChannelShell) along with a new
method, RestoreChannelShells which allows a caller to insert a series of
channel shells into the database. These channel shells will allow a
restored node to initiate the DLP protocol and recover their set of
existing channels.
When we insert a channel shell, we re-create the original link node, and
also add the outgoing edge to the channel graph. This way we can be sure
that upon start up, we attempt to connect to the remote peers, and that
the normal graph query commands will operate as expected.
In this commit, we add a prefix naming scheme to the ChannelStatus enum
variables. We do this as it enables outside callers to more easily
identify each individual enum variable as a part of the greater
enum-like type.