Update channel updates and subscription itest to check that close
initiator is appropriately set for cooperative and force closes for the
local and remote party.
Add an initiator enum which allows up to display an unknown value for
channels that are not in the historical chan bucket, rather than having
and ambiguous false value also representing no-value. A both option is
added to cover the case where both parties initiated a close on chain.
Add an optional channel status CloseChannel which will be stored on the
hitsorical channel which is persisted at channel close. This status is
used to set the close initiator for channels that do not complete the
funding flow or we abandon. In follow up commits, this status will be
used to record force and breach closes. The value is written to the
historical channel bucket for diplay over rpc.
This commit adds two new channel statuses which indicate the party that
initatited closing the channel. These statuses are set in conjunction
with the existing commit broadcast status so that we do not need to
migrate existing logic to handle multiple types of closes. This status
is set for locally initiated force closes in this commit because they
follow a similar pattern to cooparative closes, marking the commitment
broadcast then proceeding with tx broadcast. Remote force closes are
added in the following commit, as they are handled differently.
By default, Travis-CI does `git clone --depth=50` which limits the
repo to the last 50 commits. Because we do linting against an old
commit, it cannot be found any more. We remove the limit completely
to not run into this problem again.
This commit adds link failure notifications for failures which occur
on our incoming link. These failures may be receives which we failed or
forwards which we could not parse.
Add notifications for local initiated sends settles and forwarding
failures. As with link failures, local send settles and forwarding
failures are reported directly to the router so must have their own
notification handling.
Notify link failures for our own payments. Separate handling code is
required for local payment link failures because we do not pass these
failures back through the switch (like we do for link failures for
forwards), but rather send them straight back to the router. Our own
sends have the payment ID saved in the incoming htlc ID of the packet's
incoming circuit. This change replaces that value with for the sake
of consistent notifying of sends and receives from our node.
This commit adds notifications for htlcs which are forwarded through
our node. Forwards are notified when the htlc is added on our ougoing
link, settles when we send a settle message to the downstream peer.
If a failure occurs, we check whether it occurred at our node, then
notify a link or forwarding failure accordingly.
Note that this change also adds forward event notifications for sends
which are initiated by our node because the handling code for adding
a htlc which originates from our node is the same as that for handling
forwards. Htlcs for our locally initiated sends have our internal pid
set in the incoming htlcs id field, so we extract this value and notify
with a zero htlc id to be consistent with receives (which have zero
outgoing circuits). Subsequent settles or failures are not noitfied
for local sends in this commit, and will be handled in a follow up.
This commit sets more fields on the htlcPacket created to fail adding
a htlc packet to the switch for notification purposes. This new data is
copied by value from the original packet. The packet is then failed
back to the peer that forwarded us the packet, which is handled by
handledownstream packet. The values added to the packet are not used
in the handling of a failed packet.
In this commit, a htlcNotifier interface is added to allow for easy
unit testing. Instances of the HtlcNotifier are added to the server,
switch and link.
This commit adds a HTLCNotifier to htlcswitch which HTLC events
will be piped through to provide clients with subscriptions to
HTLC level events.
The event types added are forward events (which occur for sends
from and forwards through our node), forward failues (when a
send or forward fails down the line), settles for forwards or
receives to our node and link failures which occur when a htlc
is failed at our node (which may occur for a send, receive or
foreward).
Since our HTLC must also be added to the remote commitment, we do the
balance caluclation also from the remote chain perspective and report
our minimum balance from the two commit views as our available balance.
When we send non-dust HTLCs as the non-initiator, the remote party will
have to pay the extra commitment fee. To account for this we figure out
if they can afford paying this fee, if not we report that we only have
balance available for dust HTLCs, since these HTLCs won't increase the
commitment fee.
Since we want to handle the edge case where paying the HTLC fee would
take the initiator below the reserve, we move the subtraction of the
reserve into availableBalance where this calculation will be performed.
This commit adds an extra validation step when adding HTLCs. Previously
we would only validate the remote commitment resulting from adding an
HTLC, which in most cases is enough. However, there are situations where
the dustlimits are different, which could lead to the resulting remote
commitment from adding the HTLC being valid, but not the local
commitment.
Now we also validate the local commitment. A test to trigger the case is
added.
add
To ba able to validate the commitment sanity both for remote and local
commitments, and at the same time predict both our and their add, we let
validateCommitmentSanity take an extra payment descriptor to make this
possible.
In this commit, we update to the latest `btcwallet` version that
includes a fix for how we perform rescans. Before this commit, the
wallet would load ALL the created keys into the wallet to perform a
rescan. This is unnecessary, as many of the keys we create are actually
used in contracts, so the wallet can't spend them directly anyway.
For neutrino nodes, this would've caused them to attempt o match more
items in the filter than necessary, possibly resulting in an increased
number of false positive block fetches.
This commit enables the user to specify he is not interested in
automatically close channels with pending payments that their
corresponding htlcs have timed-out.
By requiring a configurable grace period uptime of our node
before closing such channels, we give a chance to the other node to
properly cancel the htlc and avoid unnecessary on-chain transaction.
In mobile it is very important for the user experience as otherwise
channels will be force closed more frequently.
This commit fixes the TestMaxAcceptedHTLCs, TestMaxPendingAmount,
TestMinHTLC, & TestChanReserve unit tests to pass with the new
ReceiveHTLC logic. Instead of asserting specific failures upon
receiving a new commitment signature, the various assertions were
moved to assert on the error returned from ReceiveHTLC.
This commit checks the commitment sanity when receiving an HTLC so
that if a commitment transaction will overflow from an ADD, it is
caught earlier rather than in ReceiveNewCommitment.
Allows certain sweep inputs to be kept in separate transactions at all
times. This is a preparation for anchor outputs. Before the commitment
tx confirms, there are three potential anchors that can be cpfp'ed. We
want to cpfp them all, but if done in the same transaction, the
transaction would guaranteed to be invalid. Exponential backoff would
eventually get the txes published, but having exclusive groups makes the
process faster.