In this commit, we fix a minor discrepancy with the spec. We should
return a FinalFailExpiryTooSoon error, rather than a
FinalFailIncorrectCltvExpiry error, when the last HTLC of a route (exit
hop) has an expiration height that is deemed too soon by the final
destination of the HTLC.
In this commit, we remove the per channel `sigPool` within the
`lnwallet.LightningChannel` struct. With this change, we ensure that as
the number of channels grows, the number of gouroutines idling in the
sigPool stays constant. It's the case that currently on the daemon, most
channels are likely inactive, with only a hand full actually
consistently carrying out channel updates. As a result, this change
should reduce the amount of idle CPU usage, as we have less active
goroutines in select loops.
In order to make this change, the `SigPool` itself has been publicly
exported such that outside callers can make a `SigPool` and pass it into
newly created channels. Since the sig pool now lives outside the
channel, we were also able to do away with the Stop() method on the
channel all together.
Finally, the server is the sub-system that is currently responsible for
managing the `SigPool` within lnd.
In this commit we add a check to HtlcSatifiesPolicy to verify that the
time lock for the outgoing htlc that is requested in the onion packet
isn't too far in the future.
Without this check, anyone could force an unreasonably long time lock on
the forwarding node.
This commit removes the concept of "circuit deletion
forgivness" from the link. This was originally
implemented due to the strict semantics of the original
DeleteCircuit implementation, which would fail if we tried
to delete unknown circuits. Forgivness is used on startup
to ignore this error in case the circuits had already been
deleted before shutting down.
Now that the circuit deletion has been relaxed, this
behavior is no longer necessary, as requests to delete
unknown (or previously deleted) circuits will be ignored.
This is necessary for future changes regarding switch
cleanup, which may attempt to cleanup already deleted
circuits.
This commit modifies the default BatchTicker
implementation such that it will generate a
new ticker with each call to Start(). This
allows us to create a new ticker after
releasing an old one due to the batch
being empty.
In this commit, we prevent the htlcManager from
being woken up by the batchTicker when there is no
work to be done. Profiling has shown a significant
portion of CPU time idling, since the batch ticker
endlessly demands resources. We resolve this by only
selecting on the batch ticker when we have a
non-empty batch of downstream packets from the
switch.
This commit corrects our exit hop logic to return
FailFinalExpiryTooSoon if the following check is true:
pd.Timeout-expiryGraceDelta <= heightNow
Previously we returned FailFinalIncorrectCltvExpiry, which
should only be returned if the packet was misconstructed.
In this commit, we modify the InvoiceDatabase slightly to allow the link
to record what the final payment about for an invoice was. It may be the
case that the invoice actually had no specified value, or that the payer
paid more than necessary. As a result, it's important that our on-disk
records properly reflect this.
To fix this issue, the SettleInvoice method now also accepts the final
amount paid.
Fixes#856.
This commit corrects the distribution used to
schedule a link's randomized backoff for fee
updates. Currently, our algorithm biases the
lowest value in the range, with probability
equal to lower/upper, or the ratio of the lower
bound to the upper. This distribution is skewed
more heavily as lower approaches upper.
The solution is to sample a random value in the
range upper-lower, then add this to our lower
bound. The effect is a uniformly distributed
timeout in [lower, upper).
In this commit, we modify the existing logic that would attempt to read
the min CLTV information from the invoice directly. With this route, we
avoid any sort of DB index modifications, as this information is already
stored within the payment request, which is already available to the
outside callers. By modifying the InvoiceDatabase interface, we avoid
having to make the switch aware of what the "primary" chain is.
In this commit, we fix a lingering bug within the link when we're the
exit node for a particular payment. Before this commit, we would assert
that the invoice gives us enough of a delta based on our current routing
policy. However, if the invoice was generated with a lower delta, or
we've changed from the default routing policy, then this would case us
to fail back any payments sent to us.
We fix this by instead using the newly available final CLTV delta
information within the extracted invoice.
Fixes#1431.
In this commit, we extract the time lock policy verification logic from
the processRemoteAdds method to the HtlcSatifiesPolicy method. With this
change, we fix a lingering bug within the link: we'll no longer verify
time lock polices within the incoming link, instead we'll verify it at
forwarding time like we should. This is a bug left over from the switch
of what the CLTV delta denotes in the channel update message we made
within the spec sometime last year.
In this commit, we extend the existing HtlcSatifiesPolicy method to also
accept timelock and height information. This is required as an upcoming
commit will fix an existing bug in the forwarding logic wherein we use
the time lock policies of the incoming node rather than that of the
outgoing node.
In this commit, we move the block height dependency from the links in
the switch to the switch itself. This is possible due to a recent change
on the links no longer depending on the block height to update their
commitment fees.
We'll now only have the switch be alerted of new blocks coming in and
links will retrieve the height from it atomically.
In this commit, we modify the behavior of links updating their
commitment fees. Rather than attempting to update the commitment fee for
each link every time a new block comes in, we'll use a timer with a
random interval between 10 and 60 minutes for each link to determine
when to update their corresponding commitment fee. This prevents us from
oscillating the fee rate for our various commitment transactions.
This commit removes a possible deadlock in the switch,
which can be triggered under certain failure conditions.
Previously, we would acquire the link's read lock for
the duration of HtlcSatisfiesPolicy, though we only
need to use it grab the current policy. The deadlock could
be caused in the cases where we attempt to log the failure,
which access the read-protected ShortChanID method.
In this commit, we add and enforce a min fee rate for commitment
transactions created, and also any updates we propose to the remote
party. It's important to note that this is only a temporary patch, as
nodes can dynamically raise their min fee rate whenever their mempool is
saturated.
Fixes#1330.
Adds a new closure OnChannelFailure to the link config, which is called
when the link fails. This function closure should use the given
LinkFailureError to properly force close the channel, send an error to
the peer, and disconnect the peer.
This commit makes the call to forwardBatch after locking
in Adds synchronous. This ensures that circuits for any Add
packets are added to the switch in the same order that they
are prescribed in the channel state. Though it is very unlikely
this case would arise, it may happen under more greater loads.
In addition, this also makes some trivial optimizations wrt. to
not spawning unnecessary goroutines if no settle/fail packets
are locked in.
In this commit, we ensure that any time we send a TempChannelFailure
that's destined for a multi-hop source sender, then we'll always package
the latest channel update along with it.
In this commit, we fix a race in the set of TestChannelLinkTrimCircuits*
tests. Before this commit, we would trim the circuits in the htlcManager
goroutine. However, this was problematic as the scheduling order of
goroutines isn't predictable. Instead, we'll now trim the circuits in
the Start method.
Additionally, we fix a series of off-by-2 bugs in the tests themselves.
This commit inserts an initial set of HodlFlags into
their correct places within the switch. In lieu of the
existing HtlcHodl mode, it is been replaced with a
configurable HodlMask, which is a bitvector representing
the desired breakpoints. This will allow for fine grained
testing of the switch's internals, since we can create
arbitrary delays inside a otherwise asynchronous system.
In this commit, we fix a very old, lingering bug within the link. When
accepting an HTLC we are meant to validate the fee against the
constraints of the *outgoing* link. This is due to the fact that we're
offering a payment transit service on our outgoing link. Before this
commit, we would use the policies of the *incoming* link. This would at
times lead to odd routing errors as we would go to route, get an error
update and then route again, repeating the process.
With this commit, we'll properly use the incoming link for timelock
related constraints, and the outgoing link for fee related constraints.
We do this by introducing a new HtlcSatisfiesPolicy method in the link.
This method should return a non-nil error if the link can carry the HTLC
as it satisfies its current forwarding policy. We'll use this method now
at *forwarding* time to ensure that we only forward to links that
actually accept the policy. This fixes a number of bugs that existed
before that could result in a link accepting an HTLC that actually
violated its policy. In the case that the policy is violated for *all*
links, we take care to return the error returned by the *target* link so
the caller can update their sending accordingly.
In this commit, we also remove the prior linkControl channel in the
channelLink. Instead, of sending a message to update the internal link
policy, we'll use a mutex in place. This simplifies the code, and also
adds some necessary refactoring in anticipation of the next follow up
commit.
In this commit, we fix a slight bug in lnd. Before this commit, we would
send the error to the remote peer, but in an async manner. As a result,
it was possible for the connections to be closed _before_ the error
actually reached the remote party. The fix is simple: wait for the error
to be returned when sending the message. This ensures that the error
reaches the remote party before we kill the connection.
In this commit, we relax the constraints on accepting an exit hop
payment a bit. We'll now accept any incoming payment that _at least_
pays the invoice amount. This puts us further inline with the
specification, which recommends that nodes accept overpayment by a
certain margin.
Fixes#1002.
In this commit, we remove a ton of unnecessary indentation in the
processRemoteAdds method. Before this commit, we had a switch statement
on the type of the entry. This was required before when the method was
generic, but now since we already know that it’s an Add, we no longer
require such a statement.
In this commit, we remove the DecodeHopIterator method from the
ChannelLinkConfig struct. We do this as we no longer use this method,
since we only ever use the DecodeHopIterators method now.
In this commit, we fix a bug that was uncovered by the recent change to
lnwire.MilliSatoshi. Rather than manually compute the diff in fees,
we’ll directly compare the fee that is given against the fee that we
expect.
In this commit, we fix an existing bug that would result in some
payments getting “stuck”. This would happen if one side restarted
before the channel was fully locked in. In this case, since upon
re-connection, the link will get added to the switch with a *short
channel ID of zero*. If A then tries to make a multi-hop payment
through B, B will fail to forward the payment, as it’ll mistakenly
think that the payment originated from a local-subsystem as the channel
ID is zero. A short channel ID of zero is used to map local payments
back to their caller.
With fix this by allowing the funding manager to dynamically update the
short channel ID of a link after it discovers the short channel ID.
In this commit, we fix a second instance of reported “stuck” payments
by users.
This commit introduces a new Ticker interface, that can be used
to control when the batch timer should tick. This is done to be
able to more easily control the ticker during tests. The batch
timer is wrapped in the new BatchTicker struct, and made part
of the config together with BatchSize.
In this commit, we add 6 new integration tests to test the various
actions that may need to be performed when either side goes on-chain to
fully resolve HTLC’s. Many of the tests are mirrors of each other as
they test sweeping/resolving HTLC’s from both commitment transactions.
In this commit, we address a lingering TODO: before this if we had a
set of HTLC’s that we knew the pre-image to on our commitment
transaction after a restart, then we wouldn’t attempt to settle them.
With this new change, we’ll check that we didn’t already retransmit the
settles for them, and check the preimage cache to see if we already
know the preimage. If we do, then we’ll immediately settle them.
In this commit, we add some additional logic to the case when we
receive a pre-image from an upstream peer. We’ll immediately add it to
the witness cache, as an incoming HTLC might be waiting on-chain to
fully resolve the HTLC with knowledge of the newly discovered
pre-image.
Before this commit, if the htlcManager unexpectedly exited (due to a
protocol error, etc), the underlying block epoch notification intent
that was created for it would never be cancelled. This would result in
tens, or hundreds of goroutine leaks as the client would never consume
those notifications.
To fix this, we move cancellation of the block epoch intent from the
Stop() method of the channel link, to the defer statement at the top of
the htlcManager.
In this commit, we add an additional case when handling a failed
commitment signature. If we detect that it’s a InvalidCommitSigError,
then we’ll send over an lnwire.Error message with the full details. We
don’t yet properly dispatch this error on the reciting side, but that
will be done in a follow up a commit.
In this commit, we modify the way the link handles HTLC’s that it
detects is destined for itself. Before this commit if a payment hash
came across for an invoice we’d already settled, then we’d gladly
accept the payment _again_. As we’d like to enforce the norm that an
invoice is NEVER to be used twice, this commit modifies that behavior
to instead reject an incoming payment that attempts to re-use an
invoice.
Fixes#560.
This simplifies the pending payment handling code because it allows it
be handled in nearly the same way as forwarded HTLCs by treating an
empty channel ID as local dispatch.
The src/dest terminology for routing packets is kind of confusing
because the source HTLC may not be the source of the packet for
settles/fails traversing the circuit in the opposite direction. This
changes the nomenclature to incoming/outgoing and always references
the HTLCs themselves.
Previously, some methods on a LightningChannel like SettleHTLC and
FailHTLC would identify HTLCs by payment hash. This would not always
work correctly if there are multiple HTLCs with the same payment hash,
so instead we change these methods to identify HTLCs by their unique
identifiers instead.