This commit modifies the autopilot agent to track
all pending connection requests, and forgo further
attempts if a connection is already present.
Previously, the agent would try and establish
hundreds of requests to a node, especially if the
connections were timing out and not returning.
This resulted in an OOM OMM when cranking up
maxchannels to 200, since there would be close
to 10k pending connections before the program was
terminated. The issue was compounded by periodic
batch timeouts, causing autopilot to try and
process thousands of triggers for failing
connections to the same peer.
With these fixes, autopilot will skip nodes that we
are trying to connect to during heuristic selection.
The CPU and memory utilization have been significantly
reduced as a result.
In this commit, we ensure that we always set the wallet birthday. If the
user has provided a seed, or is creating a new one, then it will be
overwritten below. However, before this commit, if a user started with
the --noencryptwallet flag, then we would _always_ start to rescan from
genesis with the recent bug fix to ensure that we always start after the
birthday.
This commit adds the required feature name to our
set of local known features. This will allow other
peers connecting to us to set the required gossip
queries feature bit. This is required for the
subsequent commits, which instruct the server to
set the bit depending on user configured preferences.
In this commit, we fix a small bug with regards to the persistent peer
connection pruning logic. Before this commit, it'd be the case that we'd
prune a persistent connection to a peer if all links happen to be
inactive. This isn't ideal, as the channels are still open, so we should
always be atttempting to connect to them. We fix this by looking at the
set of channels on-disk instead and prune the persistent connection if
there aren't any.
In this commit, we account for the additional case wherein the
announcement hasn't yet been written with the extra zero byte to
indicate that there aren't any remaining bytes to be read. Before this
commit, we accounted for the case where the announcement was written
with the extra byte, but now we ensure that legacy nodes that upgrade
will be able to boot properly.
In this commit, we add a new limit on the largest number of extra opaque
bytes that we'll allow to be written per vertex/edge. We do this in
order to limit the amount of disk space that we expose, as it's possible
that nodes may start to pad their announcements adding an additional
externalized cost as nodes may need to continue to store and relay these
large announcements.
We will be slowly phasing this out, though abruptly
discontinuing support would be a more extensive change.
For now, we will ensure that this feature is not
recommended to users setting up a new wallet.
In this commit, we add a mirror set of fields to the ones we recently
added to the set of gossip wire messages. With these set of fields in
place, we ensure that we'll be able to properly store and re-validate
gossip messages that contain a set of extra/optional fields.
This commit renames the confusing noencryptwallet
flag to noseedbackup, since this highlights the more
crucial information of the flags behavior to the user.
The description has also been capitalized to urge
the user think twice about what they're doing.
In this commit, we add a new field to all the existing gossip messages:
ExtraOpqueData. We do this, as before this commit, if we came across a
ChannelUpdate message with a set of optional fields, then we wouldn't be
able to properly parse the signatures related to the message. If we
never corrected this behavior, then we would violate the forwards
compatible principle we use when parsing existing messages.
As these messages can now be padded out to the max message size, we've
increased the MaxPayloadLength value for all of these messages.
Fixes#1814.
In this commit, we add an additional degree of isolation to the set of
integration tests. A bug was recently fixed to ensure that the wallet
always starts rescans from _after_ it's birthday. In the past it would
miss some funds that were deposited _right_ before the birthday of the
wallet. Fixing this bug exposed a test flake wherein the btcd node would
itself rescan back and collect some of the funds that were last sent to
the bitcoind node.
In order to fix this, we now ensure that each backend will use a unique
HD seed such that the tests are still deterministic for each backend and
role.
In this commit, we ensure that we de-duplicate the set of channel edges
returned from ChanUpdatesInHorizon. Other subsystems within lnd use this
method to retrieve and send all the channels with updates within a time
series to network peers. However, since the method looks at the edge
update index, which can include up to two entries per edge for each
policy, it's possible that we'd send channel announcements and updates
twice, causing extra bandwidth.
timestamps
In this commit, we ensure policies for edges we create in
TestChanUpdatesInHorizon have different update timestamps. This ensures
that there are two entries per edge in the edge update index. Because of
this, the test will fail because ChanUpdatesInHorizon will return
duplicate channel edges due to looking at all the entries within the
edge update index. This will be addressed in a future commit to allow
the set of tests to pass once again.
In this commit, we introduce a migration to fix some of the recent
issues found w.r.t. the edge update index. The migration attempts to fix
two things:
1) Edge policies include an extra byte at the end due to reading an
extra byte for the node's public key from the serialized node info.
2) Properly prune all stale entries within the edge update index.
As a result of this migration, nodes will have a slightly smaller in
size channeldb. We will also no longer send stale edges to our peers in
response to their gossip queries, which should also fix the fetching
channel announcement for closed channels issue.
In this commit, we extend TestChannelEdgePruningUpdateIndexDeletion test
to include one more update for each edge. By doing this, we can
correctly determine whether old entries were properly pruned from the
index once a new update has arrived.
Due to entries within the edge update index having a nil value, the
tests need to be modified to account for this. Previously, we'd assume
that if we were unable to retrieve a value for a certain key that the
entry was non-existent, which is why the improper pruning bug was not
caught. Instead, we'll assert the number of entries to be the expected
value and populate a lookup map to determine whether the correct entries
exist within it.
In this commit, we fix a lingering issue within the edge update index
where entries were not being properly pruned due to an incorrect
calculation of the offset of an edge's last update time. Since the
offset is being determined from the end to the start, we need to
subtract all the fields after an edge policy's last update time from the
total amount of bytes of the serialized edge policy to determine the
correct offset. This was also slightly off as the edge policy included
an extra byte, which has been fixed in the previous commit.
Instead of continuing the slicing approach however, we'll switch to
deserializing the raw bytes of an edge's policy to ensure this doesn't
happen in the future when/if the serialization methods change or extra
data is included.
In this commit, we fix an off-by-one error when slicing the public key
from the serialized node info byte slice. This would cause us to write
an extra byte to all edge policies. Even though the values were read
correctly, when attempting to calculate the offset of an edge's update
time going backwards, we'd always be incorrect, causing us to not
properly prune the edge update index.