This commit adds a REST interface to the existing gRPC server by
employing a simple http proxy auto-generated from the existing protobuf
files. Currently full-support for any streaming RPC’s are currently
untested. In addition to auto-generating a REST proxy server, a
swagger.json is also generated which allows for gRPC-like native
objects with higher-level clients, and also for auto-generated
documentation.
Due to limitations with accepting raw byte strings as parameters, some
RPC’s have been modified to take both raw-bytes and string arguments.
Additionally a new RPC has been added ‘NewWitnessAddress’ since the
proxy doesn’t currently support enum-based arguments.
Currently the proxy server is embedded within the daemon as an active
HTTP server, however we may want to package the proxy server as a
separate binary in the future. Similarly, we may want to add additional
configuration information which controls the optional inclusion of the
REST proxy.
Atm, just like the current gRPC interface, the REST API is fully
unauthenticated. Before moving to an initial alpha release after making
the necessary changes to meet the spec drafted in Milan, authentication
of the RPC interfaces will be addressed.
This commit introduces the concept of a manually initiated “force”
closer within the channel state machine. A force closure is a closure
initiated by a local subsystem which broadcasts the current commitment
state directly on-chain rather than attempting to cooperatively
negotiate a closure with the remote party.
A force closure returns a ForceCloseSummary which includes all the
details required for claiming all rightfully owned outputs within the
broadcast commitment transaction.
Additionally two new publicly exported channels are introduced, one
which is closed due a locally initiated force closure, and the other
which is closed once we detect that the remote party has executed a
unilateral closure by broadcasting their version of the commitment
transaction.
This commit modifies the daemon’s initialization within the `lndMain`
method to create an instance of the current default ChainNotifier
outside of the LightningWallet.
At this point, since there are no other implementations of the
ChainNotifier, the current concrete implementation BtcdNotifier is used
by default. In the future, once other ChainNotifier implementations are
in place, config parsing should be fed into a factory function which
creates the proper ChainNotifier implementation.
Finally, several imports have been updated to reflect the change in
package name.
This commit modifies the internal workflow for opening or closing a
channel in order to create a path in which RPC clients can receive
updates. Updates are now communicated via channels from the goroutines
spawned by the RPC server to process the request, and the sub-system
within the daemon that actually executes the request.
With this change clients can now receive updates that the request is
pending (final message has been sent to the target client), or that the
request has been completed. Confirmation related updates have not yet
been implemented as that will require some changes to the ChainNotifier
interface.
This commit adds an option to pass in a raw hex-encoded rpc cert via
lnd’s configuration file. Such a change allows for programmatically
creating lnd nodes which can connect to an existing btcd instance
without requiring a file for the rpc cert to be specified.
Additionally, this commit makes the creation of an integration testing
harness easier.
With this commit, support for changing the target network (testnet,
simnet, etc) has been finalized. Previously a command line option was
present to swap networks, but the RPC port wouldn’t automatically be
updated to reflect the network.
This commit adds a new nested main function “lndMain”, within the
packages’s normal main function. This nesting is required in order to
properly execute all queued defer statements in the case of a forced
exit.
To try uspv, do ./lnd -spv
The remote node is hardcoded in shell.go. If you aren't
running a full node on localhost, specify where to connect to.
Nearby nodes will be much faster but random testnet nodes on the
internet should also work.