Earlier versions did not write the log index to disk for fee updates, so
they will be unset. To account for this we set them to to current update
log index.
This reverts commit 4aa52d267f000f84caf912c62fc14a5b8e7cacb5.
It turns out that the other implementations set values for this field
which aren't based on the actual capacity of the channel. As a result,
we'll no reject most of their channel offerings, since they may offer a
value of a max `uint64` or something else hard coded that's above the
size of the channel. As a result, we're reverting this check for now to
maintain proper compatibility.
In this commit, we ensure that if a channel is detected to have local
data loss, then we don't allow a force close attempt, as this may not be
possible, or cause us to play an invalid state.
This commit removes the breach transaction from the
arguments passed to NewBreachRetribution. We already
keep all prior remote commitments on disk in the
commitment log, and load that transaction from disk
inside the method. In practice, the one loaded from
disk will be the same one that is passed in by the
caller, so there should be no change in behavior
as we've already derived the appropriate state number.
This changes makes integration with the watchtower
client simpler, since we no longer need to acquire
the breaching commitment transaction to be able to
construct the BreachRetribution. This simplifies
not only the logic surrounding transient backsups,
but also on startup (and later, retroactively
backing up historic updates).
This tests make sure we don't reset our expected fee upate after signing
our next commitment. This test would fail without the previous set of
commits.
Instead of special casing the UpdateFee messages, we instead add them to
the update logs like any other HTLC update message. This lets us avoid
having to keep an extra set of variables to keep track of the fee
updates, and instead reuse the commit/ack logic used for other updates.
This fixes a bug where we would reset the pendingFeeUpdate variable
after signing our next commitment, which would make us calculate the new
fee incorrectly if the remote sent a commitment concurrently.
When restoring state logs, we also make sure to re-add any fee updates.
When compacting the update logs we remove any fee updates when they
remove height is passed. We do this since we'll assume fee updates are
added and removed at the same commit height, as they will apply for all
commitments following the fee update.
This commit adds conversion between the lnwire.UpdateFee message and the
new FeeUpdate PaymentDescriptor. We re-purpose the existing Amount field
in the PaymentDescriptor stuct to hold the feerate.
This commit adds a new updateType that can be used for
PaymentDescriptors: FeeUpdate. We repurpose the fields of the existing
PaymentDescriptor struct such that we can easily re-use the commit/ack
logic used for other update types also for fee updates.
In this commit, we add a new method WithCoinSelectLock. This method will
allow us to fix bugs in the project atm that can arise if a channel
funding is attempted (either manually or by autopilot) while a users is
attempting to send an on-chain transaction. If this happens
concurrently, then both contexts will grab the set of UTXOs and attempt
to lock them one by one. However, since they didn't obtain an exclusive
snapshot of the UTXO set of the wallet, they may both attempt to lock
the same input.
We also ensure that calls to SendMany cannot run into this issue by
using the WithCoinSelectLock synchronization when attempting to instruct
the internal wallet to send payments.
In this commit, we extend the WitnessGenerator type to now return an
InputScript. This allows it to be more encompassing, as now callers can
expect a sigScript to be populated if the input being swept requires a
sigScript field.
Along the way, we've also renamed input.BuildWitness to
input.CraftInputScript. We also take a step towards allowing the
sweeper to sweep transactions for n2pwkh outputs. We do so by modifying
the BuiltWitness method to instead return an InputScript. Additionally,
when populating inputs if a sigScript is present, it will now be
populated.
In this commit, we remove the per channel `sigPool` within the
`lnwallet.LightningChannel` struct. With this change, we ensure that as
the number of channels grows, the number of gouroutines idling in the
sigPool stays constant. It's the case that currently on the daemon, most
channels are likely inactive, with only a hand full actually
consistently carrying out channel updates. As a result, this change
should reduce the amount of idle CPU usage, as we have less active
goroutines in select loops.
In order to make this change, the `SigPool` itself has been publicly
exported such that outside callers can make a `SigPool` and pass it into
newly created channels. Since the sig pool now lives outside the
channel, we were also able to do away with the Stop() method on the
channel all together.
Finally, the server is the sub-system that is currently responsible for
managing the `SigPool` within lnd.
Returns a brief json summary of each utxo found by calling
ListUnspentWitness in the wallet. The two arguments are the
minimum and maximum number of conrfirmations (0=include
unconfirmed)
One way applications built on top of lnd can estimate sync percentage is
through comparing the current time to the best known timestamp of the
lnd wallet's sync state. Therefore, we should always return this
information even if the the wallet is not synced.
In this commit, we add an additional check to btcwallet's IsSynced
method to ensure that it is not currently undergoing a rescan. We do
this to block upon starting the server and all other dependent
subsystems until the rescan is complete.
In this commit, we add the lightning address scope before the wallet
starts to prevent a race condition between the wallet syncing and adding
the scope itself. This became more apparent with the recent btcwallet
fixes, as several database transactions now occur between the wallet
being started and it syncing.
In this commit, we add a new test to the existing set of wallet tests to
ensure we can properly detect the confirmation of transactions that
spend our change outputs. We do this as a measure to prevent future
regressions from happening where the wallet doesn't request its backend
to be notified of when an on-chain transaction pays to a change address,
like with the recently discovered SendOutputs bug.
As is, this test will not pass until we update the btcwallet dependency
in the next commit.
In this commit, we add an additional check to btcwallet's FetchInputInfo
method to ensure the output is actually under control of the wallet.
Previously, the wallet would assume the output was under its control if
the txid of the output was found within the wallet. This is not a safe
assumption to make however, because if we happened to be the sender of
this transaction, it would be found within the wallet but it's not
actually under our control. To fix this, we explicitly check that there
exists an address in our wallet for this output.
This change was inspired by #1984 - the underlying call to
ListUnspent supports a (min, max) range so it makes sense that
the WalletController interface can also support this; a
default no-maximum can be expressed using a MaxInt32 value.
In this commit, we fix an existing bug wherein we wouldn't set the short
channel ID for the close summary in the database in the case that the
remote party force closed. The fix is simple, ensure that within
NewUnilateralCloseSummary we properly set the short channel ID. A test
has also been added in this commit, which fails without the
modifications to lnwallet/channel.go.
Fixes#2072.
In this commit, we add a new test to ensure that all backends will
properly send out notifications when an unconfirmed transcation that we
send is inserted into the tx store. Before we updated the btcwallet
build commit in dep, this would fail for neutrino but now passes.
In this commit, we fix a bug in the arguments to GetTransactions for the
btcwallet implementation of the WalletController interface. Before this
commit, we wouldn't properly return unconfirmed transactions. The issue
was that we didn't specify the special mempool height of "-1", as the
ending height. The mempool height is actually internally converted to
the highest possible height that can fit into a int32.
In this commit, we set the start to zero, and end to -1 (actually
2^32-1) to properly scan for unconfirmed transactions.
Fixes#1422.
In this commit, we add a new test to the set of lnwallet integration
tests. In this new test, we aim to ensure that all backends are able to
display unconfirmed transactions in ListChainTransactions. As of this
commit, this test fails as no backends will return unconfirmed
transactions properly.
In this commit, we add an additional degree of isolation to the set of
integration tests. A bug was recently fixed to ensure that the wallet
always starts rescans from _after_ it's birthday. In the past it would
miss some funds that were deposited _right_ before the birthday of the
wallet. Fixing this bug exposed a test flake wherein the btcd node would
itself rescan back and collect some of the funds that were last sent to
the bitcoind node.
In order to fix this, we now ensure that each backend will use a unique
HD seed such that the tests are still deterministic for each backend and
role.
In this commit, we fix a slight bug by ensuring that the revocation info
at the final state of the channel, as well as the local chan config is
properly set within the channel close summary created within
NewUnilateralCloseSummary. Before this commit, for all cooperative close
transactions, this state would _only_ include the pubkey itself, which
in some cases may not be sufficient to re-derive the key if needed.
Due to a recent change within the codebase to return estimated fee rates
in sat/kw, this commit ensures that we use this fee rate properly by
calculing a transaction's fees using its weight. This includes all of
the different transactions that are created within lnd (funding, sweeps,
etc.). On-chain transactions still rely on a sat/vbyte fee rate since it's
required by btcwallet.
In this commit, we modify our FeeEstimator interface to return an
estimated fee rate in sat/kw. Recently, due to low fees on the network,
users have been experiencing failures broadcasting transactions due to
not meeting specific fee requirements. This was happening more often
than not, as the estimated fee returned by backend nodes (bitcoind and
btcd) only takes into account vbytes, rather than weight. The fees
returned are also expressed in sat/kb, so we must take care that we do
not lose precision while converting to sat/kw. In the event that this
happens, a fee floor of 253 sat/kw has been added. This fee rate
originates from bitcoind rounding up the conversion from weight to
vbytes.
In this commit, we introduce a nice optimization with regards to lnd's
interaction with a bitcoind backend. Within lnd, we currently have three
different subsystems responsible for watching the chain: chainntnfs,
lnwallet, and routing/chainview. Each of these subsystems has an active
RPC and ZMQ connection to the underlying bitcoind node. This would incur
a toll on the underlying bitcoind node and would cause us to miss ZMQ
events, which are crucial to lnd. We remedy this issue by sharing the
same connection to a bitcoind node between the different clients within
lnd.
In this commit, we update the NewBreachRetribution method to include
pkScripts for htlc outputs. We do this now, as the breach arbiter will
need the raw pkScript when attempting to request spend notifications for
each HTLC.
In this commit, we export WitnessScriptHash and GenMultiSigScript as
external sub-systems may now need to use these methods in order to be
able to watch for confirmations based on the script of a transaction.
This commit adds a check for the LocalUnrevokedCommitPoint sent to us by
the remote during channel reestablishment, ensuring it is the same point
as they have previously sent us.
This commit enumerates the various error cases we can encounter when we
compare our remote commit chain to the view the remote communicates to us
via msg.NextLocalCommitHeight.
We now compare this height to our remote tail and tip height, returning
relevant error in case of a unrecoverable desync, and re-send a
commitment signature (including log updates) in case we owe one.
This commit enumerates the various error cases we can encounter when we
compare our local commit chain to the view the remote communicates to us
via msg.RemoteCommitTailHeight.
We now compare this height to our local tail height (note that there's
never a local "tip" at this point), returning relevant error in case of
a unrecoverable desync, and re-send a revocation in case we owe one.