This commit alters the behavior of the router's logic on
startup, ensuring that the chain view is filtered using
the router's latest prune height. Before, the chain was
filtered using the bestHeight variable, which was
uninitialized, benignly forcing a rescan from genesis.
In tracking down this, we realized that we should
actually be using the prune height, as this is
representative of the channel view loaded from disk.
The best height/hash are now only used during
startup to determine if we are out of sync.
In this method we fix an existing deadlock within the unit tests when
running with the race condition detector on. We don’t need to grab the
mutex within the ProcessChanSyncMsg method as this should be the very
first method called when initializing the channel if a channel state
sync is needed.
In this commit we ensure that the channel is always able to exit by
adding a select statement with a quit case when we’re waiting on the
result of a job that was previously sent into the sigPool.
In this commit, we fix an existing bug that could result in a panic if
we received a ChannelUpdate message with an unknown set of flags. If
the flag wasn’t set to zero or one, then the pubKey parameter would be
still nil when we attempted to validate it, causing an error to occur.
We remedy this by instead returning an error if the flags are unknown.
In a future commit, we will properly handle the set of flags that
indicates the channel should be disabled.
In this commit, we increase the initial amount sent in the multi-hop
error integration test. We must do this now as the Bandwidth() function
now takes into account the total fee paid within the commitment
transaction. This caused an earlier send to fail instead of the once
following send.
To fix this, we simply send less in the initial test case.
This commit removes the testChannelReestablishment integration test as
it is currently incomplete. In order to properly test this, we require
some infrastructure that allows us to kill the connection at will once
a message is sent across the wire.
In this commit we add a quit case to the select statement that’s
entered once a link is created. Before this commit, upon restart it
would be possible that the deamon would never ben able to shutdown as
the link would be waiting for the messages to be sent by the other
side.
In this commit, we fix an existing bug that arose due to incorrectly
crafting the key we use to store channel commitments. Before this
commit, we tried to copy to a slice that hadn’t been allocated yet. As
a result, the key would only have the 0x00 or 0x01 as its value. We fix
this by properly crafting the key using the built-in append function.
In this commit, we fix an existing bug wherein if we closed two
channels, then we were unable to read the channel state afterwards as
we deleted the enclosing bucket.
In this commit, we fix an existing bug wherein we failed to update the
channels state once we accepted a new commitment. As a result, after a
state transition, if the channel state was read from disk, values like
TotalMSatSent wouldn’t be properly updated.
In this commit we add a chainhash field to the retributionInfo struct
as within the database, channels are now further namespaced by their
chain hash, and all ChannelCloseSummary structs now also carry the
chain hash of their respective chain.
In this commit, we update getChanID to be aware of the FundingLocked
message as it will be retransmitted upon reconnect if both nodes think
that they’re at the very first commitment state.
In this commit, we’ve re-written the process of syncing the state of
channels after we reconnect. This re-write ensure correctness, and also
simplified the existing logic which would attempt to launch another
goroutine to handle requests from the switch to ensure that it doesn’t
block. This is no longer necessary as the AddPacket method that the
switch indirectly calls is non-blocking.
In this commit, we modify the existing implementation of the
Bandwidth() method on the default ChannelLink implementation to use
much tighter accounting. Before this commit, there was a bug wherein if
the link restarted with pending un-settled HTLC’s, and one of them was
settled, then the bandwidth wouldn’t properly be updated to reflect
this fact.
To fix this, we’ve done away with the manual accounting and instead
grab the current balances from two sources: the set of active HTLC’s
within the overflow queue, and the report from the link itself which
includes the pending HTLC’s and factors in the amount we’d need to (or
not need to) pay in fees for each HTLC.
In this commit, we’ve modified the link and the switch to start to use
the new mailBox in place of the existing synchronous message send
directly into the link’s upstream/downstream channels. With his change,
we no longer need to spawn a new goroutine each time an HTLC needs to
be forwarded, or a user payment is initiated.
In this commit, we add a new abstraction to the package: the mailBox.
The mailBox is a non-blocking, concurrent safe, in-order queue for
delivering messages to a given channelLink instance. With this
abstraction in place, we can now allow the switch to no longer launch a
new goroutine for each forwarded HTLC, or instantiated user payment.
In this commit, we’ve added a set of unit tests to cover all enumerated
channel sync scenarios, including the case where both nodes deem that
they’re unable to synchronize properly.
In this commit we revert a prior commit
(5240953de02d281be694b2c87d151d6c7dce2cb5) which was added as a stop
gap before we added the proper state needed to recover from cases where
the commitment transactions of both chains had diverged slightly due to
asymmetric dust limits.
In this commit we do away with the existing availableLocalBalance
attribute and instead add a new, more accurate AvailableBalance method.
The new method will compute the available balance within the channel ,
assuming a new state was created at the instance the method was called.
This new method will now properly account for HTLC fees.
AvailableBalance is now called within AddHTLC in order to ensure we
don’t add any HTLC’s that are unable to be paid for from the PoV of the
fees on the commitment transaction.