This commit adds fields for upfront shutdown scripts set
by the local and remote peer to the OpenChannel struct.
These values are optional, so they are added with their
own keys in the chanBucket in the DB.
Refresh channel memory state whenever the short channel id is refreshed.
This is to make the in-memory channel consistent with the disk data.
Fixes#3765.
In this commit, we convert the existing `channeldb.ChannelType` type
into a _bit field_. This doesn't require us to change the current
serialization or interpretation or the type as it is, since all the
current defined values us a distinct bit. This PR lays the ground work
for any future changes that may introduce new channel types (like anchor
outputs), and also any changes that may modify the existing invariants
around channels (if we're the initiator, we always have the funding
transaction).
In this commit, we add a test case for FetchWaitingCloseChannels to
ensure it behaves as intended. Currently, this test fails due to not
fetching channels which are pending to be closed but are also pending to
be opened. This will be fixed in the following commit and should allow
the test to pass.
In this commit, we update the ChannelView method to be compatible with
the new set of interfaces that require the script to be passed in in
addition to the outpoint. In order to do this, we introduce a new
EdgePoint struct which packages together a channel point along with the
funding pkScript. Along the way, we've copied over a utility method from
the lnwallet package to avoid having to deal with an import cycle.
Modifies TestFetchPendingChannels to verify that calls to
MarkAsOpen also modify the in-memory state. Previously we
only tested the persistent state loaded immediately after.
In this commit, we remove references to raw keys from the main
ChannelConfig struct and instead replace it with usage of
keychain.KeyDescriptor. We do this, as the ChannelConfig as it stands
is a near complete static description of a channel. In the future, it
will be possible to export these static descriptions as backups. We
prefer the KeyDescriptor of a plain PublicKey, as the KeyLocator
portion of the struct allows a stateless signer to re-derive the keys
as needed when signing.
In this commit, we make an API change that’s meant to reduce the amount
of garbage we generate when doing pathfinding or syncing nodes with our
latest graph state. Before this commit, we would always have to fully
decode the public key and signatures when reading a edge or vertex
struct. For the edges, we may need several EC operations to fully
decode all the pubkeys. This has been seen to generate a ton of
garbage, as well as slow down path finding a good bit.
To remedy this, we’ll now only ever read the *raw* bytes from disk. In
the event that we actually need to verify a signature (or w/e), only
*then* will we fully decode everything.
In this commit we’ve extended the TestChannelStateTransition method to
exercise the new state transition related messages. This includes
ensuring that when we add a new dangling commitment, and then the
remote party revokes it, then the on-disk state is update accordingly.
In this commit htlc channeldb representation have been augmented
with onion blob field, and (de)serialisaion functions have been changed
to make the onion blob persistant.
This commit removes the RevocationDelay field from the HTLC struct as
with the latest commitment transaction scheme, it is no longer needed.
This is due to the fact the the delay is now observed when an on-chain
HTLC claim is attempted, rather than from Shane the HTLC itself has
been broadcast.
This commit modifies the OpenChannel struct to include the full short
channel ID rather than simply the opening height. This new field will
be needed by an upcoming change to uniformly switch to using short
channel ID’s when forwarding HTLC’s due to the change in per-hop
payloads.
This commit expands the field within the OpenChannel struct in order to
start tracking the height that the funding transaction was initially
broadcast. Other sub-systems within lnd can now use this data to give a
more accurate height hint to the ChainNotifier, or to use during the
funding workflow to decide if a channel should be forgotten after it
fails to confirm for N blocks.
This commit modifies the name of a field in the OpenChannel struct to
better reflect its actual usage within this protocol. The FeePerKw
represents the amount of satoshi to be paid as fees per kilo-weight.
This field is set at the opening of a transaction and will be able to
be updated properly via the usage of the update_fee method.
This commit adds the total time locked balance of a closed channel at
closure time to the CloseChannelSummary struct. With this information,
we now provide sub-systems within the daemon further knowledge which
can aide them in properly handling querying for the state of pending
close transactions, or if they should watch a channel for closure or
not.
This commit modifies the OpenChannel structure on-disk to also track
that opening height of a channel. This change is being made in order to
make and more light client friendly. A follow up commit will modify
several areas of the codebase to use this new functionality.
This commit adds a new method to the channel state: RevocationLogTail.
This new method will return the information concerning the latest
revoked state of the remote party’s commitment chain.
This new data can be used to properly initialize the states of the
in-memory commitment chains on node start up.
When a pending channel is persisted and then reloaded upon system startup
it's necessary to also persist the number of confirmations that will be required
before the pending channel can be opened.
In order to facilitate persistence during the funding process, added
the isPending flag to channels so that when the daemon restarts, we can
properly re-initialize the chain notifier and update the state of
channels that were going through the funding process.
In this commit the initial implementation of revocation hash
generation 'elkrem' was replaced with 'shachain' Rusty Russel
implementation which currently enshrined in the spec. This alghoritm has
the same asymptotic characteristics but has more complex scheme
to determine wish hash we can drop and what needs to be stored
in order to be able to achive full compression.