In this commit, we address a number of edge cases that were unaccounted
for when responding to errors that can be sent back due to an HTLC
routing failure. Namely:
* We’ll no longer stop payment attempts if we’re unable to apply a
channel update, instead, we’ll log the error, prune the channel and
continue.
* We’ll no remember which channels were pruned due to insufficient
fee errors. If we ever get a repeat fee error from a channel, then we
prune it. This ensure that we don’t get stuck in a loop due to a node
continually advertising the same fees.
* We also correct an error in which node we’d prune due to a
temporary or permanent node failure. Before this commit, we would prune
the next node, when we should actually be pruning the node that sent us
the error.
Finally, we also add a new test to exercise the fee insufficient error
handling and channel pruning.
Fixes#865.
In this commit, we add a new field to the LightningPayment struct:
PayAttemptTimeout. This new field allows the caller to control exactly
how much time should be spent attempting to route a payment to the
destination. The default value we’ll use is 60 seconds, but callers are
able to specify a diff value. Once the timeout has passed, we’ll
abandon th e payment attempt, and return an error back to the original
caller.
In this commit, we wrap up the prior ones and introduce config
settings, as well as proper generation for a new invoice-only macaroon.
All prior invoice path rules are also properly enforced of this new
invoice.macaroon.
In this commit, we modify the existing invoice RPC macaroon permissions
to target a more specific entity: “invoices”. As a result of this
commit, once node operators update, they’ll need to regenerate their
readonly.macaroon as it now needs this additional entity encoded within
it.
In the prior commit, we added a new set of permissions and also a new
entity: “invoices”. We’ll add this set of entities to the read and
write permissions accordingly as well to ensure that the existing
macaroons have access to all the items that the invoice.macaroon does.
In this commit, we add a new invoicePermissions slice. This contains
all the permission that a holder of an invoice.macaroon is able to
access, and no others. We also include read and write access to
addresses as this may be useful from the PoV of a merchant or exchange.
In this commit, we fix a goroutine leak that could occur if while we
were loading an error occurred in any of the steps after we created the
channel object, but before it was actually loaded in to the script. If
an error occurs at any step, we ensure that we’ll stop toe channel.
Otherwise, the sigPool goroutines would still be lingering and never be
stopped.
In this commit, we add two new configuration parameters to allow users
to specify the min and max size that the autopilot agent will create.
This is useful as now users can set the values to more or less the same
size, which will allow them to control the size of each created
channel.
Before this commit, if this wasn’t set, then the agent would try to
shove as much money into a channel up until the max chan size. This was
nice on testnet, but on main net, users will likely not want all their
funds to be in a single channel, and instead be distributed across many
channels. With things like AMP, have more channels becomes more
desirable.
In this commit, we raise the min channel size to 20k satoshis. This
will be evaluated before we check for dusty commitments. The goal of
this is to ensure ample room for fees at current, and future fee
levels.
Since https://github.com/lightningnetwork/lnd/pull/506, `defaultchanconfs` is nested under `bitcoin`. Using this parameter at the top level generates a warning message:
```
2018-03-17 23:07:08.273 [WRN] LTND: /home/bitcoin/.lnd/lnd.conf:7: unknown option: defaultchanconfs
```
and using it nested under `bitcoin` does not.
In this commit, fix the inability of some users to connect to the DNS
seed using our direct TCP fallback. We do this as some resolvers filter
out our large SRV requests due to their size (they also include public
keys). Instead, we’ll use a direct TCP resolution in this case.
However, after a recent change, we forgot the period at the end of the
target DNS host. This is an issue as the domain needs to be fully
qualified.
The fix is easy, add a period within our string formatting to target
the proper sub-domain and SRV target.
Fixes#854.
The port numbers used in the ZMQ examples are inconsistent between:
- The initial explanation of ZMQ
```
They must be combined in the same ZMQ socket
address (e.g. `--zmqpubrawblock=tcp://127.0.0.1:28332` and
`--zmqpubrawtx=tcp://127.0.0.1:28332`).
```
- The sample bitcoin.conf
```
zmqpubrawblock=tcp://127.0.0.1:18501
zmqpubrawtx=tcp://127.0.0.1:18501
```
- The lnd command-line example:
```
lnd --bitcoin.active --bitcoin.testnet --debuglevel=debug --bitcoin.node=bitcoind --bitcoind.rpcuser=REPLACEME --bitcoind.rpcpass=REPLACEME --bitcoind.zmqpath=tcp://127.0.0.1:28332 --externalip=X.X.X.X
```
I changed the sample bitcoin.conf port numbers to 28332 so they match the rest of the examples.
In this commit, we update the DNS bootstrapper to match the new query
semantics expected by the new DNS server. We no longer hard code the
target DNS host, and instead, we’ll re-use the same target endpoint as
we only need the soaShim in order to establish a direct TCP connection
for the queries.