This commit makes clients subscribing to channel events that are marked
"sync dispatch" _not_ being deleted from the list of clients when they
call Cancel(). Instead a go routine will be launched that will send an
error on every read of the ProcessACK channel.
This fixes a race in handing off the breach info while lnd was shutting
down. The breach arbiter could end up being shut down (and calling
Cancel()) before while the ChainWatcher was in the process of
dispatching a breach. Since the breach arbiter no longer was among the
registered clients at this point, the ChainWatcher would assume the
breach was handed off successfully, and mark the channel as pending
closed. When lnd now was restarted, the breach arbiter would not know
about the breach, and the ChainWatcher wouldn't attempt to re-dispatch,
as it was already marked as pending closed.
This commit modifies the integration tests to work with the recent
changes to the ChannelArbitrator, where it will only act on commitments
that has been confirmed. Main changes involving when to look for
transactions in the mempool and in blocks, and using the new RPC for
getting channels in the "waiting close" phase when they are waiting for
the commitment to confirm.
This commit adds a new method FetchWaitingCloseChannels to the database,
used for fetching OpenChannels that have a ChanStatus != Default. These
are channels that are borked, or have had a commitment broadcasted, and
is now waiting for it to confirm.
The fetchChannels method is rewritten to return channels exclusively
based on wheter they are pending or waitingClose.
This commit adds MVP unit tests for the following scenarios in the
ChannelArbitrator:
1) A cooperative close is confirmed.
2) A remote force close is confirmed.
3) A local force close is requested and confirmed.
4) A local force close is requested, but a remote force close gets
confirmed.
This commit changes the ChainWatcher to only send a chain event in case
the various spends are _confirmed_ on-chain, not only seen on the
network.
A consequence of this is that we now give the ChainWatcher the
responsibility of marking the channel closed when the closing tx is
confirmed, instead of the ChannelArbitrator.
This commit changes the bool `IsBorked` in OpenChannel to a `ChanStatus`
struct, of type ChannelStatus. This is used to indicated that a channel
that is technically still open, is either borked, or has had a
commitment broadcasted, but is not confirmed on-chain yet.
The ChannelStatus type has the value 1 for the status Borked, meaning it
is backwards compatible with the old database format.
This commit changes the channel arbitrator state machine to only care
about commitment transactions that are being confirmed on-chain
according to the chain_watcher. This is meant to handles the cases where
we would broadcast our commitment, expecting it to get confirmed, but
instead a competing transaction was confirmed.
This commit readies the ChannelArbitrator state machine for the change
that will make the ChainWatcher only notify on confirmed commitments.
The state machine has gotten a new state, StateCommitmentBroadcasted,
which we'll transition to after we have broadcasted our own commitment.
From this state we'll go to the StateContractClosed state regardless of
which commitment the ChainWatcher notifies about, unifying the contract
resolution betweee the local and remote force close.
This commit adds a new method dispatchLocalClose, which will be called
in case our commitment is detected to spend the funding transaction. In
this case LocalUnilateralCloseInfo will be sent on the
LocalUnilateralClosure channel to all subscribers.
The UnilateralClosure channel is renamed to RemoteUnilateralClosure for
consistency.
This commit removes a short circuit checking if the contract resolver
after a unilateral close is empty. After removing this, the state
machine will advance the state from StateDefault->ContractClosed, in
which the stateCallback will be called, logging the state needed to
advance. Since this logged state is empty, the state machine will go
directly to StateFullyResolved, which will trigger the
MarkChannelResolved call. This means the behaviour is kept.
In this commit, we update the TestSendPaymentErrorPathPruning test to
reflect the new behavior w.r.t how we respond to UnknownPeer errors. In
this new test, we expect that we'll find alternative route in light of
us getting an UnknownPeer error "pointing" to our destination node.
In this commit we fix an lingering bug in the Mission Control logic we
execute in response to the FailUnknownNextPeer error. Historically, we
would treat this as the _next_ node not being online. As a result, we
would then prune away the vertex from the current reachable graph all
together. It was recently realized, that this would at times be a bit
_tooo_ aggressive if the channel we attempt to route over was faulty,
down, or the incoming node had connectivity issues with the outgoing
node.
In light of this realization, we'll now instead only prune the _edge_
that we attempted to route over. This ensures that we'll continue to
explore the possible edges. Additionally, this guards us against failure
modes where nodes report FailUnknownNextPeer to other nodes in an
attempt to more closely control our retry logic.
This change is a stop gap on the path to a more intelligent set of
autopilot heuristics.
Fixes#1114.
In this commit, we avoid hitting a possible panic in the case that we
were unable to retrieve the link of a channel from the HTLC switch while
determining which channels should be used as routing hints for an
invoice.
In this commit, we add a `private` field to the `AddInvoice` RPC's
request to denote whether the invoice being created should include
routing hints for private channels to assist the payer in reaching the
destination.
Before this commit, if an invoice encoded multiple `r` fields, we would
decode them as one single route. We fix this by allowing an invoice to
store multiple routes.
In this commit, we modify our path finding algorithm to take an
additional set of edges that are currently not known to us that are
used to temporarily extend our graph with during a payment session.
These edges should assist the sender of a payment in successfully
constructing a path to the destination.
These edges should usually represent private channels, as they are not
publicly advertised to the network for routing.
In this commit, we introduce the ability for payment sessions to store
an additional set of edges that can be used to assist a payment in
successfully reaching its destination.