This commit adds height-based invoice expiry for hodl invoices
that have active htlcs. This allows us to cancel our intentionally
held htlcs before channels are force closed. We only add this for
hodl invoices because we expect regular invoices to automatically
be resolved.
We still keep hodl invoices in the time-based expiry queue,
because we want to expire open invoices that reach their timeout
before any htlcs are added. Since htlcs are added after the
invoice is created, we add new htlcs as they arrive in the
invoice registry. In this commit, we allow adding of duplicate
entries for an invoice to be added to the expiry queue as each
htlc arrives to keep implementation simple. Our cancellation
logic can already handle the case where an entry is already
canceled, so this is ok.
In order to be consistent with other sub systems an error is now
returned from the Stop functions.
This also allows writing a generic cleanup mechanism to stop all
sub systems in case of a failure.
Adds a set of test cases that exercise the spontaneous AMP payment flow
with valid and invalid reconstructions, as well as with single and
multiple HTLCs. This also asserts that spontaneous AMP is gated behind
the existing AcceptKeysend flag.
In this commit, we move to start rejecting any normal payments that
aren't keysend, if they don't also include the MPP invoice payload. With
this change, we require that some sort of e2e secret (either the payment
addr or the keysend pre-image) is present in a payload before we'll
accept the payment.
The second portion of the commit also updates all current tests in the
package. We kept the base `TestSettleInvoice` test in-tact as it still
exercises some useful behavior. However, we've removed all cases that
allow an overpayment, as the new MPP logic doesn't allow overpayment for
various reasons. In addition to this, some of the returned errors are
slightly different, tho the actual behavior is equivalent.
This commit extends invoice garbage collection to also remove invoices
which are canceled when LND is already up and running. When the option
GcCanceledInvoicesOnTheFly is false (default) then invoices are kept and
the behavior is unchanged.
Adds a new configuration flag to lnd that will keep keysend payments in
the accepted state. An application can then inspect the payment
parameters and decide whether to settle or cancel.
The on-the-fly inserted keysend invoices get a configurable expiry time.
This is a safeguard in case the application that should decide on the
keysend payments isn't active.
This commit repalces the htlcResolution struct with an interface.
This interface is implemeted by failure, settle and accept resolution
structs. Only settles and fails are exported because the existing
code that handles htlc resolutions uses a nil resolution to indicate
that a htlc was accepted. The accept resolution is used internally
to report on the resolution result of the accepted htlc, but a nil
resolution is surfaced. Further refactoring of all the functions
that call NotifyExitHopHtlc to handle a htlc accept case (rather than
having a nil check) is required.
This commit adds handling code for the key send custom record. If this
record is present and its hash matches the payment hash, invoice
registry will insert a new invoice into the database "just in time". The
subsequent settle flow is unchanged. The newly inserted invoice is
picked up and settled. Notifications will be broadcast as usual.
This commit moves handling of invoice not found
errors into NotifyExitHopHtlc and exposes a
resolution result to the calling functions. The
intention of this change is to make calling
functions as naive of the invoice registry's
mechanics as possible.
When NotifyExitHopHtlc is called and an invoice
is not found, calling functions can take action
based on the HtlcResolution's InvoiceNotFound
outcome rather than having to add a special error
check on every call to handle the error.
This commit adds the resolution result obtained
while updating an invoice in the registry to
htlcResolution. The field can be used by calling
functions to determine the outcome of the
update and act appropriately.
This commit renames HodlEvent to HtlcResolution
to better reflect the fact that the struct is
only used for htlc settles and cancels, and that
it is not specifically used for hodl invoices.
This commit adds InvoiceExpryWatcher which is a separate class that
receives new invoices (and existing ones upon restart) from InvoiceRegistry
and actively watches their expiry. When an invoice is expired
InvoiceExpiryWatcher will call into InvoiceRegistry to cancel the
invoice and by that notify all subscribers about the state change.
This commit adds Clock and DefaultClock and moves the private
invoices.testClock under the clock package while adding basic
unit tests for it.
Clock is an interface currently encapsulating Now() and TickAfter().
It can be added as an external dependency to any class. This way
tests can stub out time.Now() or time.After().
The DefaultClock class simply returns the real time.Now() and
time.After().
This commit adds a test context for invoice registry and additionally
passed in a payload object to NotifyExitHopHtlc. This makes the test
match the reality better where a payload is always provided.
This commit restructures an invoice's ContractTerms to better encompass
the restrictions placed on settling. For instance, the final ctlv delta
and invoice expiry are moved from the main invoice body (where
additional metadata is stored). Additionally, it moves the State field
outside of the terms since it is rather metadata about the invoice
instead of any terms offered to the sender in the payment request.
Previously the invoice registry wasn't aware of replayed htlcs. This was
dealt with by keeping the invoice accept/settle logic idempotent, so
that a replay wouldn't have an effect.
This mechanism has two limitations:
1. No accurate tracking of the total amount paid to an invoice. The total
amount couldn't just be increased with every htlc received, because it
could be a replay which would lead to counting the htlc amount multiple
times. Therefore the total amount was set to the amount of the first
htlc that was received, even though there may have been multiple htlcs
paying to the invoice.
2. Impossible to check htlc expiry consistently for hodl invoices. When
an htlc is new, its expiry needs to be checked against the invoice cltv
delta. But for a replay, that check must be skipped. The htlc was
accepted in time, the invoice was moved to the accepted state and a
replay some blocks later shouldn't lead to that htlc being cancelled.
Because the invoice registry couldn't recognize replays, it stopped
checking htlc expiry heights when the invoice reached the accepted
state. This prevents hold htlcs from being cancelled after a restart.
But unfortunately this also caused additional htlcs to be accepted on an
already accepted invoice without their expiry being checked.
In this commit, the invoice registry starts to persistently track htlcs
so that replays can be recognized. For replays, an htlc resolution
action is returned early. This fixes both limitations mentioned above.
Currently the invoice registry cannot tell apart the htlcs that pay to
an invoice. Because htlcs may also be replayed on startup, it isn't
possible to determine the total amount paid to an invoice.
This commit is a first step towards fixing that. It reports the circuit
keys of htlcs to the invoice registry, which forms the basis for
accurate invoice accounting.
Previously a check was made for accepted and settled invoices against
the paid amount. This opens up a probe vector where an attacker can pay
to an invoice with an amt that is higher than the invoice amount and
find out if the invoice is already paid or not.
In this commit, we update the `HopIterator` to gain awareness of the new
TLV hop payload. The default `HopIterator` will now hide the details of
the TLV from the caller, and return the same `ForwardingInfo` struct in
a uniform manner. We also add a new method: `ExtraOnionBlob` to allow
the caller to obtain the raw EOB (the serialized TLV stream) to pass
around.
Within the link, we'll now pass the EOB information into the invoice
registry. This allows the registry to parse out any additional
information from the EOB that it needs to settle the payment, such as a
preimage shard in the AMP case.
This commit is the final step in making the link unaware of invoices. It
now purely offers the htlc to the invoice registry and follows
instructions from the invoice registry about how and when to respond to
the htlc.
The change also fixes a bug where upon restart, hodl htlcs were
subjected to the invoice minimum cltv delta requirement again. If the
block height has increased in the mean while, the htlc would be canceled
back.
Furthermore the invoice registry interaction is aligned between link and
contract resolvers.
This commit modifies the invoice registry to handle invoices for which
the preimage is not known yet (hodl invoices). In that case, the
resolution channel passed in from links and resolvers is stored until we
either learn the preimage or want to cancel the htlc.