In this commit, we update the SignDescriptor struct to instead use the
keychain.KeyDescriptor struct inplace of a raw public key. We do this
as this allows for a recovery mode, where the caller doesn’t know what
key was used exactly, but remembers the precise KeyDescriptor. A
stateless signer is still able to re-derive the proper key, as it’s
given the full path.
The new version of the internal core of btcwallet now uses KeyScopes
rather than address types to derive particular addresses. As a result,
in this commit, we update our API usage to ensure that proper addresses
are still derived.
In this commit, we remove two methods from the WalletController
interface which were previously used by the funding reservation process
(NewRawKey) and the p2p network (FetchRootKey) in order to derive
various keys for operation. This methods are no longer necessary as the
KeyRing interface implements the functionality in a deterministic
manner.
In this commit, due to the recent changes within lnd itself, it may be
possible that a wallet already exists when the wallet has been signaled
to be created. As a result, *always* open the wallet ourselves, but
allow an existing wallet to already be in place.
Adds an extra case to the select statement to catch
an error produced by btcd. The error is meant to signal
that an output was previously spent, which can appear
under certain race conditions in spending/broadcasting.
This caused our final itest to fail because it would
not try to recraft the justice txn.
This commit adds wallet_best_block_timestamp to the gRPC interface.
This is done in order to allow clients to calculate progress while
lnd syncs to the blockchain. wallet_best_block_timestamp is exposed
via the GetInfo() rpc call. Additionally, IsSynced() returns the
WalletBestBlockTimestamp as the second value in the tuple
that is returned, providing additional detail when querying about the
status of the sync. The BtcWallet interface has also been updated
accordingly.
This commit was created to support the issue to
[Add progress bar for chain sync] (lightninglabs/lightning-app#10) in
lightning-app
This commit introduces changes to the validateCommitmentSanity
function to fully validate all channel constraints.
validateCommitmentSanity now validates that the
MaxPendingAmount, ChanReserve, MinHTLC, & MaxAcceptedHTLCs
limits are all adhered to during the lifetime of a channel.
When applying a set of updates, the channel constraints are
validated from the point-of-view of either the local or the
remote node, to make sure the updates will be accepted.
Co-authored-by: nsa <elzeigel@gmail.com>
This commit moves common logic used to calculate the state
of a commitment after applying a set of HTLC updates, into
the new method computeView. This method can be used when
calculating the available balance, validating the sanity
of a commitment after applying a set of updates, and also
when creating a new commitment, reducing the duplication
of this logic.
This commit adds a new boolean parameter mutateState to
evalueteHTLCView, that let us call it without neccessarily
mutating the addHeight/removeHeight of the HTLCs, which is
useful when evaluating the commitment validity without
mutating the state.
This commit adds some more comments and checks to
reservation.CommitConstraints, including making
MinHTLC value one of the passed constraints.
RemoteChanConstraints is also moved out of
reservation.
This commit adds a test that trigger a case where the balance
could end up being negative when we used the logIndex when
calculating the channel's available balance. This could
happen when the logs got out of sync, and we would use
the balance from a settled HTLC even though we wouldn't
include it when signing the next state.
Appendix C of BOLT 03 contains a series of test vectors asserting that
commitment, HTLC success, and HTLC timeout transactions are created
correctly. Here the test cases are transcribed to Go structs and
verified.
We also break out some logic need to tests that bypass the constructor
and remove some redundant fields.
Before this commit, if the remaining change was small enough, then it
was possible for us to generate a non-std funding transaction. This is
an issue as the txn would fail to propagate, meaning funds could
potentially be stuck in limbo if users didn't manually drop their
transaction history.
To avoid this scenario, we won't create a change output that is dusty.
Instead, we'll add these as miner fees.
Fixes#690.
In this commit, we add the second level witness script to the
HtlcRetribution struct. We do this as it’s possible that we when
attempt to sweep funds after a channel breach, then the remote party
has already gone to the second layer. In this case, we’ll then need to
update our SignDesc and also the witness, in order to do that we need
this script that’ll get us pass the second layer P2WSH check.
In this commit, we add a new witness type to the set of known types.
This new type will be used when we need to sweep an HTLC that the
remote party has taken to the second level.