In this commit, we fix an existing bug within the EstimateFeePerWeight
method for the BtcdFeeEstimator. If the sat/byte value returned was too
low, then it was possible for us to end up with a zero valued
sat/weight. We correct this issue by detecting, and falling back to the
default fee rate if so.
In this commit, we fix an existing bug within our cooperative channel
closing transaction generation. Before this commit, we wouldn’t account
for the fee already allocated within the commitment transaction. As a
result, we would calculate the evaluated balance considering the fee
incorrectly. In this commit, we fix this by adding the commitment fee
to the balance of the initiator when crafting the closing transaction
In this commit, we fix an existing bug, as only the initiator needs to
validate any new fee updates. If the initiator sends an invalid fee,
then it will be rejected by the responder as it may put them below
their required reserve.
In this commit, we ensure that we reject any UpdateFee messages if
after applying the update, the initiator doesn’t have enough funds to
actually pay for the new commitment state.
A test has been added to exercise this new behavior.
In this commit, we update the retransmission logic to ensure that we
properly retransmit any sent UpdateFee messages as part of a state
transition. When creating a CommitDiff, if we have a pending fee
update, then we’ll add that to the set of logs updates. When restoring
the commit diff from disk, if we encounter an UpdateFee entry, then
we’ll apply that as waiting to be ACK’d and skip adding it as a log
entry.
A new test has been added to excessive this new behavior.
In this commit, we correct the BTC -> SAT conversion in
BtcdFeeEstimator. Previously, we use 10e8 instead of 1e8, causing us to
be off by an order of magnitude.
Adding 99 here didn’t really do anything but obfuscate when we were
trying to compute. We’re just using internet division to calculate 1%
of the channel capacity amount. This is the amount that the remote
party must remain above at all times.
In this commit, we add a new ResetState method to the channel state
machine which will reset the state of the channel to `channelOpen`. We
add this as before this commit, it was possible for a channel to shift
into the closing state, the closing negotiation be cancelled for
whatever reason, resulting the the channel held by the breachArbiter
unable to act to potential on-chain events.
In this commit, we fix an existing bug that had ramifications within
the operation of the lnd daemon. Before this commit, if the Stop()
method was called, then the closeObserver would exit as well. This
means that would no longer be watching for channel breaches on-chain,
and could miss either a cooperative channel closure or an actual
contract breach.
To fix this, we now introduce a new method to stop for closeObserver:
CancelObserver(). This should ONLY be called once either: the contract
has been fully settled on-chain, or whom ever is watching the relevant
signals has a newer version of the channel that it will watch instead.
In this commit, we modify CreateCloseProposal to no longer return the
same fee passed in. In the past, this method accepted a fee rat rather
than an absolute fee, and would return the computed absolute fee. Now
that the method takes the absolute fee directly, this is unnecessary.
In this commit, we modify the funding reservation workflow slightly to
allow callers to specify their own custom fee when initialization a
funding workflow. This gives power-users the ability to control exactly
how much in fees are paid for each new funding transaction.
In this commit, we extend the existing SendOutputs method on the
WalletController interface to be able to accept a custom fee. With
this, users are now able to specify their exact fee, allowing the
wallet to be fee estimation agnostic.
In this commit, we add a new implementation of the FeeEstimator
interface: the BtcdFeeEstimator. This implementation of the
FeeEstimator is backed by an active bcd instance. Any requests to query
for the current fee for a given confirmation target are proxied to this
active bcd instance.
In this commit, we extend the FeeEstimator methods to allow them to
return an error. This is required as most implementations aside from
the static fee estimator will want to be able to return errors to users
to indicate the inability to properly estimate fees.
In this commit, we move the FeeEstimator interface into a distinct file
as follow up commits will begin to flesh out the interface with
additional implementations.
Fix wrong calculation of overshot amount which causes coin select
function to go into infinite loop. If overshoot amount is calculated
by subtraction of totalSatoshis and amtNeeded than on the second
iteration of loop amtNeeded already include required fee inside, which
causes continuation of the coin selection loop.
In this commit, we add fully verification (other than checking the
commitment point matches after the fact) of the new optional fields
added to the lnwire.ChannelReestablish message. Two scenarios can
arise: we realize the remote party is on a prior state (and possibly
lost data), or we realize that *we* are on a prior state with the
remote party verifiably proving that they’re on a newer state.
In this commit we extend the set of fields populated within the
returned lnwire.ChannelReestablish to populate the optional data loss
fields. This entails included the commitment secret of the most
recently revoked remote commitment transaction and also our current
unrevoked commitment point.
In this commit, we update all the key derivation within the state
machine to account for the recent spec change which introduces a
distinct key for usages within all HTLC scripts. This change means that
the commitment payment and delay base points, are only required to be
online in the case that a party is forced to go to chain.
We introduce an additional local tweak to the keyring for the HTLC
tweak. Additionally, two new keys have been added: a local and a remote
HTLC key. Generation of sender/receiver HTLC scripts now use the local
and remote HTLC keys rather than the “payment” key for each party.
Finally, when creating/verifying signatures for second-level HTLC
transactions, we use these the distinct HTLC keys, rather than re-using
the payment keys.
In this commit, we modify the naming and comments of the routines that
create the sender/receiver HTLC scripts to denote that a set of
distinct keys are used. The scripts materially haven’t changed, but the
set of keys expected has.
In this commit we modify the primary InvoiceRegistry interface within
the package to instead return a direct value for LookupInvoice rather
than a pointer. This fixes an existing race condition wherein a caller
could modify or read the value of the returned invoice.
In this method we fix an existing deadlock within the unit tests when
running with the race condition detector on. We don’t need to grab the
mutex within the ProcessChanSyncMsg method as this should be the very
first method called when initializing the channel if a channel state
sync is needed.
In this commit we ensure that the channel is always able to exit by
adding a select statement with a quit case when we’re waiting on the
result of a job that was previously sent into the sigPool.
In this commit, we’ve added a set of unit tests to cover all enumerated
channel sync scenarios, including the case where both nodes deem that
they’re unable to synchronize properly.