The test assumed that transactions would be broadcast and confirmed at
incorrect heights. Due to timing issues, it was possible for the test to
still succeed, resulting in a flake.
The test assumes that Bob will sweep a pending outgoing HTLC and commit
output back to their wallet. This commit ensures that these operations
are done when expected, i.e.:
1. Bob force closes the channel due to the HTLC timing out.
2. Once the channel is confirmed, Bob broadcasts their HTLC timeout
transaction.
3. Bob broadcasts their commit output sweep transaction once its CSV
expires.
4. Bob broadcasts their second layer sweep transaction for the timed out
HTLC once its CSV expires.
Alice and Dave don't need to be connected in order to receive the node
announcement as we assume that she can receive it from Bob because they
are connected at the beginning of every test.
In this commit, we force Dave to use the legacy onion payload for the
multi-hop test to ensure that we're able to properly mix the old and new
formats, and have all nodes properly decode+forward the HTLC.
htlcs
config: Adding RejectHTLC field in config struct
This commit adds a RejectHTLC field in the config struct in config.go.
This allows the user to run lnd as a node that does not accept onward
HTLCs.
htlcswitch/switch: Adding a field RejectHTLC to the switch config
This commit adds a field RejectHTLC to the switch config. When the
switch receives an HTLC it will check this flag and if the HTLC is not
from the source hop, the HTLC will be rejected.
htlcswitch/switch: adding check for RejectHTLC flag and incomingChanID
This commit adds a check when receiving UpdateAddHTLC. The check looks
for the RejectHTLC flag set and whether the HTLC is from the sourceHop
(the local switch). If the HTLC is not from the sourceHop, then we
reject the HTLC and return a FailChannelDisabled error.
server: adding RejectHTLC field to initialization of switch
lnd_test: adding test for RejectHTLC
This commit adds a test which tests that a node with the --rejecthtlc
flag will reject any onward HTLCs but still can receive direct HTLCs and
can send HTLCs.
Previously a temporary channel failure was returning for unexpected
malformed htlc failures. This is not what we want to communicate to the
sender, because the sender may apply a penalty to us only.
Returning the temporary channel failure is especially problematic if we
ourselves are the sender and the malformed htlc failure comes from our
direct peer. When interpretating the failure, we aren't able to
distinguish anymore between our channel not having enough balance and
our peer sending an unexpected failure back.
Debug invoices are rarely used nowadays, but keep asking for maintenance
every time refactoring in primarily the invoice registry occurs. We have
passed the cost/benefit tipping point, so therefore the debug invoice
concept is removed in this commit.
Previously the debughtlc flag also controlled whether hodl masks were
active. It is safe to remove that additional condition because the hodl
masks are still guarded by the dev build tag.
Previously mission control tracked failures on a per node, per channel basis.
This commit changes this to tracking on the level of directed node pairs. The goal
of moving to this coarser-grained level is to reduce the number of required
payment attempts without compromising payment reliability.
Align naming better with the lightning spec. Not the full name of the
failure (FailIncorrectOrUnknownPaymentDetails) is used, because this
would cause too many long lines in the code.
With the introduction of the WatchtowerClient RPC subserver, the lnd
configuration flag to specify private watchtowers for the client is no
longer needed and can lead to confusion upon users. Therefore, we remove
the flag completely, and only rely on the watchtower client being active
through a new --wtclient.active flag.
This commit makes the outgoing link pipeline the settle to the
switch as soon as it receives it. Previously, it would wait for a
revocation before sending it, which caused increased latency on
payments as well as possibly never settling on the incoming link.
A duplicate settle is still sent to the switch, but it is handled
gracefully. A new AckEventTicker was added to the switch which
acknowledges any pending settle / fail entries in an outgoing
link's fwd pkgs in batch. This was needed in order to reduce the
number of db txn's which would have been incurred by acking whenever
we receive a duplicate settle without batching.
This flake was caused by the rpcserver receiving a CloseChannel request
before Alice's channel event subscription request, causing Alice to miss one
notification. As a result, we move Alice's subscription to the beginning of the
test.
Additionally, we add a check to ensure the opening notifications are
received in the right order.
Earlier versions of ListPayments only included completed payments. We
return to this behavior by ignore all other payments if the nonSucceeded
boolean is not set in the request.
testHoldInvoicePersistence tests that a sender to a hold-invoice, can be
restarted before the payment gets settled, and still be able to receive
the preimage.
Previously every payment had its own local mission control state which
was in effect only for that payment. In this commit most of the local
state is removed and payments all tap into the global mission control
probability estimator.
Furthermore the decay time of pruned edges and nodes is extended, so
that observations about the network can better benefit future payment
processes.
Last, the probability function is transformed from a binary output to a
gradual curve, allowing for a better trade off between candidate routes.
This commit gives the current chainbackend the ability to connect and
disconnect the chain backend at will. We do this to let the chain
backend initiate the connection to the miner, not the other way around.
This is a preparation for using Neutrino as a backend, as it only allows
making outbound connections.
We must also move the setup of the chainbackend to after to miner, to
know the address to connect to.
This race was possible due to us making a subscription request before
the ChannelRouter has started. We address it by creating a dummy
subscription before proceeding to the real one to ensure we can do so
successfully. We use a dummy one in order to not consume an update from
the real one. This addresses the common "timed out waiting for opened
channel" flake within the integration test suite since the subscription
was never properly created, so we'd never be notified of when new graph
updates were received.
In this commit, we modify the `RestoreNodeWithSeed` and `RestartNode`
methods to also accept an SCB. This will be useful in new integration
tests to properly exercise the various restore/restart scenarios using
static channel backups.
In this commit, we convert the Unlock method to accept the
`lnrpc.UnlockWalletRequest`. This makes things a bit more generic as we
no longer need to continue to add params to the method each time a new
field is added to the Unlock method.
We need to distinguish an lnd build for the purpose of integration
testing from a regular dev build. This makes it possible to adapt
parameters to let integration tests run faster (for example:
sweeper batch window).
Returns a brief json summary of each utxo found by calling
ListUnspentWitness in the wallet. The two arguments are the
minimum and maximum number of conrfirmations (0=include
unconfirmed)
In this commit, we add a new method to the network harness that allows
us to send funds to another party without confirming the transaction.
This will be useful for testing funding channels with outputs that have
not been confirmed yet.
This commit adds a poll 20 ms interval to WaitPredicate, similar to what
is done for WaitInvariant. This makes the predicate not being checked
super-rapidly, potentially filling the logs with useless info over the
wait predicate interval.
In this commit, we fix a race condition where at times we open a channel
between two parties and immediately try to send payments over it. At
times this would fail due to the channel link not being fully registered
in the HTLC switch.