In this commit, we remove the per channel `sigPool` within the
`lnwallet.LightningChannel` struct. With this change, we ensure that as
the number of channels grows, the number of gouroutines idling in the
sigPool stays constant. It's the case that currently on the daemon, most
channels are likely inactive, with only a hand full actually
consistently carrying out channel updates. As a result, this change
should reduce the amount of idle CPU usage, as we have less active
goroutines in select loops.
In order to make this change, the `SigPool` itself has been publicly
exported such that outside callers can make a `SigPool` and pass it into
newly created channels. Since the sig pool now lives outside the
channel, we were also able to do away with the Stop() method on the
channel all together.
Finally, the server is the sub-system that is currently responsible for
managing the `SigPool` within lnd.
In this commit, we fix an existing bug wherein we wouldn't set the short
channel ID for the close summary in the database in the case that the
remote party force closed. The fix is simple, ensure that within
NewUnilateralCloseSummary we properly set the short channel ID. A test
has also been added in this commit, which fails without the
modifications to lnwallet/channel.go.
Fixes#2072.
In this commit, we fix a slight bug by ensuring that the revocation info
at the final state of the channel, as well as the local chan config is
properly set within the channel close summary created within
NewUnilateralCloseSummary. Before this commit, for all cooperative close
transactions, this state would _only_ include the pubkey itself, which
in some cases may not be sufficient to re-derive the key if needed.
In this commit, we update the NewBreachRetribution method to include
pkScripts for htlc outputs. We do this now, as the breach arbiter will
need the raw pkScript when attempting to request spend notifications for
each HTLC.
In this commit, we export WitnessScriptHash and GenMultiSigScript as
external sub-systems may now need to use these methods in order to be
able to watch for confirmations based on the script of a transaction.
This commit adds a check for the LocalUnrevokedCommitPoint sent to us by
the remote during channel reestablishment, ensuring it is the same point
as they have previously sent us.
This commit enumerates the various error cases we can encounter when we
compare our remote commit chain to the view the remote communicates to us
via msg.NextLocalCommitHeight.
We now compare this height to our remote tail and tip height, returning
relevant error in case of a unrecoverable desync, and re-send a
commitment signature (including log updates) in case we owe one.
This commit enumerates the various error cases we can encounter when we
compare our local commit chain to the view the remote communicates to us
via msg.RemoteCommitTailHeight.
We now compare this height to our local tail height (note that there's
never a local "tip" at this point), returning relevant error in case of
a unrecoverable desync, and re-send a revocation in case we owe one.
This commit defines a few new errors that we can potentially encounter
during channel reestablishment:
* ErrInvalidLocalUnrevokedCommitPoint
* ErrCommitSyncLocalDataLoss
* ErrCommitSyncRemoteDataLoss
in addition to the already defined errors
* ErrInvalidLastCommitSecret
* ErrCannotSyncCommitChains
We check if the channel is FullySynced instead of comparing the local
and remote commit chain heights, as the heights might not be in sync.
Instead we call FullySynced which recently was modified to use compare
the message indexes instead, which is _should_ really be in sync between
the chains.
The test TestChanSyncOweRevocationAndCommitForceTransition is altered to
ensure the two chains at different heights before the test is started, to
trigger the case that would previously fail to resend the commitment
signature.
This commit fixes a bug which would cause the add heights of the HTLCs
in the update log to be set wrongly. At times, an add height could be
incorrecly set, leading to the HTLCs not being accounted for correctly
during evaluating the HTLC views. This was caused by the assumption that
if the HTLC was not on the pending remote commit, then it was locked in
on both the local and the remote commit, which is not always true.
Instead of making this assumption, we instead now inspect the three
commits: the local, remote and pending remote; and set the add heights
accordingly. This should ensure that HTLCs are subtracted from the
balances only when they are first added.
In this commit, we add a new index to the HTLC log. This new index is
meant to ensure that we don't attempt to modify and HTLC twice. An HTLC
modification is either a fail or a settle. This is the first in a series
of commits to fix an existing bug in the state machine that can cause a
panic if a remote node attempts to settle an HTLC twice.
In this commit, we add a precautionary assertion at the end of
createCommitmentTx. This assertion is meant to ensure that we don't
accept or propose a commitment transaction that attempts to send out
more than it was funded with.
In this commit, we move the check to CheckTransactionSanity into
createCommitmentTx. We do this as within wallet.go (during the funding
process) we actually end up calling this helper function twice, and also
moving it up until right when we create the fully commitment transaction
ensures we making our assertion against the final version.
This commit removes redundant HTLC restoring. We don't have to restore
outgoing HTLCs from the local commitment, as we _know_ they will always
be added to the remote commitment first. Also, when receiving
Settles/Fails, they will be removed from the local commitment first.
This way we can be sure that outgoing HTLCs found on the local
commitment always will be found on the remote commitment
Similarly we don't have to restore incoming HTLCs from the remote
commitment, as they will be added to the local commitment first.
This commit removes the stage during updateLog restoration where we
would attempt to restore incoming HLTCs from the pendingRemoteCommit, in
addition to update our log and htlc counter to reflect this state. The
reason we can safely remove this is to observe that a pending remote
commit is always created from a commitDiff which only contains updates
made by _us_, and thus only taken from the localUpdateLog. The same can
be said for the counters, when creating a commitDiff we'll always use
the remoteACKedIndex as the index into the remoteUpdateLog, meaning that
all potential updates will already be included in the remote commit that
has been ACKed.
remoteUpdateLog from localCommit
This commit fixes a bug within channel.go that would lead to the
content of the update logs and their indexes getting out of sync during
restores.
The scenario that could occur was that the localUpdateLog was initiated
with a log index taken from the localCommitment. Updates we send (which
are added to the localUpdateLog) will be added to the remote commitment
first. The problem happened when an update was sent and added to the
remote commitment, but not ACKed. Since it was not ACKed, we would not
add it to our local commitment. During a restart/restore we would init
the localUpdateLog with a height too low, such that when going through
the outgoing HTLCs on the remote commitment, we would restore an HTLC at
an index higher than our local log HTLC counter.
The symmetric change is done to the remoteUpdateLog.
This commit removes a faulty check we did to determine if the channel
commitments were fully synced. We assumed that if out local commitment
chain had a height higher than the remote, then we would have state
updates present in our chain but not in theirs, and owed a commitment.
However, there were cases where this wasn't true, and we would send a
new commitment even though we had no new updates to sign. This is a
protocol violation.
Now we don't longer check the heights to determine if we are fully
synced. A consequence of this is that we also need to check if we have
any pending fee updates that are nopt yet signed, as those are
considered non-empty updates.
This commit make us return an error in case a restored HTLC from a
pending remote commit has an index that is different from our local
update log index. It is appended with the assumption that these indexes
are the same, and if they are not we cannot really continue.
This commit adds a call to panic in case the HTLC we are looking for is
not found in the update log. It _should_ always be there, but we have
seen crashes resulting from it not being found. Since it will crash with
a nil pointer dereference below, we instead call panic giving us a bit
more information to work with.
In this commit, we modify the NewUnilateralCloseSummary to be able to
distinguish between a unilateral closure using the lowest+highest
commitment the remote party possesses. Before this commit, if the remote
party broadcast their highest commitment, when they have a lower
unrevoked commitment, then this function would fail to find the proper
output, leaving funds on the chain.
To fix this, it's now the duty of the caller to pass remotePendingCommit
with the proper value. The caller should use the lowest unrevoked
commitment, and the height hint of the broadcast commitment to discern
if this is a pending commitment or not.
This commit changes the bool `IsBorked` in OpenChannel to a `ChanStatus`
struct, of type ChannelStatus. This is used to indicated that a channel
that is technically still open, is either borked, or has had a
commitment broadcasted, but is not confirmed on-chain yet.
The ChannelStatus type has the value 1 for the status Borked, meaning it
is backwards compatible with the old database format.
This commit renames ForceCloseSummary to LocalForceCloseSummary, and
adds a new method NewLocalForceCloseSummary that can be used to derive a
LocalForceCloseSummary if our commitment transaction gets confirmed
in-chain. It is meant to accompany the NewUnilateralCloseSummary method,
which is used for the same purpose in the event of a remote commitment
being seen in-chain.
In this commit, we fix an existing bug in the NewBreachRetribution
method. Rather than creating the slice to the proper length, we instead
now create it to the proper _capacity_. As we'll now properly filter out
any dust HTLCs, before this commit, even if no HTLCs were added, then
the slice would still have a full length, meaning callers could actually
interact with _blank_ HtlcRetribution structs.
The fix is simple: create the slice with the proper capacity, and append
to the end of it.
In this commit, we fix an existing within lnd. Before this commit,
within NewBreachRetribution the order of the keys when generating the
sender HTLC script was incorrect. As in this case, the remote party is
the sender, their key should be first. However, the order was swapped,
meaning that at breach time, our transaction would be rejected as it had
the incorrect witness script.
The fix is simple: swap the ordering of the keys. After this commit, the
test extension added in the prior commit now passes.
In this commit we add a new error: InvalidHtlcSigError. This error will
be returned when we're unable to validate an HTLC signature sent by the
remote party. This will allow other nodes to more easily debug _why_ the
signature was rejected.
In this commit, we add an additional check within CreateCommitTx to
ensure that we will never create or accept a commitment transaction that
wasn't valid by consensus. To enforce this check, we use the
blockchain.CheckTransactionSanity method.
This commit adds a check that will make LightningChannel reject a
received commitment if it is accompanied with too many HTLC signatures.
This enforces the requirement in BOLT-2, saying:
if num_htlcs is not equal to the number of HTLC outputs in the local commitment transaction:
* MUST fail the channel.
A test exercising the behaviour is added.
This commit fixes an issue which would arise in some cases when the
local and remote dust limits would differ, resulting in lnd not
producing the expected number of HTLC signatures. This was a result of
checking dust against the local instead of the remote dust limit.
A test exercising the scenario is added.
This commit fixes an issue where we would blindly accept a commitment
which came without any accompanying HTLC signatures. A test exercising
the scenario is added.
This commit fixes an out of bounds error that would occur in the case
where we received a new commitment where the accompanying HTLC sigs were
too few. Now we'll just reject such an commitment.
A test exercising the behavior is also added.
In this commit, we add an additional check within
validateCommitmentSanity due to the recent change to unsigned integers
for peer balances in the channel state machine. If after evaluation
(just applying HTLC updates), the balances are negative, then we’ll
return ErrBelowChanReserve.
In this commit, we add logic to account for an edge case in the
protocol. If they initiator if unable to pay the fees for a commitment,
then their *entire* output is meant to go to fees. The recent change to
properly interpret balances as unsigned integers (within the protocol)
let to the discovery of this missed edge case.
This commit introduces changes to the validateCommitmentSanity
function to fully validate all channel constraints.
validateCommitmentSanity now validates that the
MaxPendingAmount, ChanReserve, MinHTLC, & MaxAcceptedHTLCs
limits are all adhered to during the lifetime of a channel.
When applying a set of updates, the channel constraints are
validated from the point-of-view of either the local or the
remote node, to make sure the updates will be accepted.
Co-authored-by: nsa <elzeigel@gmail.com>
This commit moves common logic used to calculate the state
of a commitment after applying a set of HTLC updates, into
the new method computeView. This method can be used when
calculating the available balance, validating the sanity
of a commitment after applying a set of updates, and also
when creating a new commitment, reducing the duplication
of this logic.
This commit adds a new boolean parameter mutateState to
evalueteHTLCView, that let us call it without neccessarily
mutating the addHeight/removeHeight of the HTLCs, which is
useful when evaluating the commitment validity without
mutating the state.
Appendix C of BOLT 03 contains a series of test vectors asserting that
commitment, HTLC success, and HTLC timeout transactions are created
correctly. Here the test cases are transcribed to Go structs and
verified.
We also break out some logic need to tests that bypass the constructor
and remove some redundant fields.
In this commit, we add the second level witness script to the
HtlcRetribution struct. We do this as it’s possible that we when
attempt to sweep funds after a channel breach, then the remote party
has already gone to the second layer. In this case, we’ll then need to
update our SignDesc and also the witness, in order to do that we need
this script that’ll get us pass the second layer P2WSH check.
In this commit, we add a new function that allows a caller to create a
UnilateralCloseSummary with the proper materials. This will be used
within a new sub-system to be added in a later commit to properly
dispatch notifications when on-chain events happen for a channel.
In this PR, we entirely remove the closeObserver from the channel state
machine. It was added very early on before most of the other aspects of
the daemon were built out. This goroutine was responsible for
dispatching notifications to outside parties if the commitment
transaction was spent at all. This had several issues, since it was
linked to the *lifetime* of the channel state machine itself. As a
result of this linkage, we had to do weird stuff like hand off in
memory pointers to the state machine in order to ensure notifications
were properly dispatched.
In this commit, we’ve added a new HtlcResolutions struct to house both
the incoming and outgoing HTLC resolutions. This struct will now be
coupled with the object that returns when we detect that a commitment
transaction was closed on chain. For incoming HTLC’s, we’ll check the
preimage cache to see if we can claim the HTLC on-chain. If we can,
then we’ll copy of the preimage, and make a proper incoming HTLC
resolution.
In this commit, we modify the OutgoingHtlcResolution struct to detect
if this is the remote party’s commitment transaction or not. With this
change, we’ll now be able to properly time out an HTLC that was
detected on the commitment transaction of the remote peer.
Additionally, we now populate the CsvDelay (if local commitment) and
the ClaimOutpoint (as we may be sweeping directly from the commitment
transaction now.
In this commit, we add a new IncomingHtlcResolution struct. This is the
opposite of the existing OutgoingHtlcResolution struct. The items in
this new struct allow callers to sweep an incoming HTLC that we know
the preimage to. These will always be created when a commitment goes
on-chain. However, if we know the preimage, then that will be populated
in place of all zeroes in the Preimage field.
In this commit, we modify both the ForceCloseSummary, and the
UnilateralClosureSummary to return the items needed to sweep the
commitment output distinctly. By doing this, it’s now possible to pass
a dedicated struct to a sub-system in order to allow it to sweep a
commitment output. As the maturity delay is a part of this new struct,
this tells the caller if this was on the local commitment (CSV
required) or on the remote commitment (no CSV required).
In this commit, we’ve added a new method to the channel state machine:
ActiveHtlcs. This method will allow callers to poll the state of the
channel to retrieve the set of HTLC’s active on *both* commitment
transactions.
In this commit, we modify the RevokeCurrentCommitment method to now
return the set of active HTLC’s. This will be used by callers in the
future to update other sub-systems when the set of HTLC’s on the
commitment changes, and can also be used on the RPC level to
synchronize systems level integration tests.
This commit fixes a nasty bug that has been lingering within lnd, and
has been noticed due to the added retransmission logic. Before this
commit, upon a restart, if we had an active HTLC and received a new
commitment update, then we would re-forward ALL active HTLC’s. This
could at times lead to a nasty cycle:
* We re-forward an HTLC already processed.
* We then notice that the time-lock is out of date (retransmitted
HTLC), so we go to fail it.
* This is detected as a replay attack, so we send an
UpdateMalformedHTLC
* This second failure ends up creating a nil entry in the log,
leading to a panic.
* Remote party disconnects.
* Upon reconnect we send again as we need to retransmit the changes,
this goes on forever.
In order to fix this, we now ensure that we only forward HTLC’s that
have been newly locked in at this next state. With this, we now avoid
the loop described above, and also ensure that we don’t accidentally
attempt an HTLC replay attack on our selves.
Fixes#528.
Fixes#545.
In this commit, we add a new detailed error that’s to be returned
when/if the remote peer sends us an invalid commit signature. The new
error contains the transaction that we attempted to validate the
signature over, the sighs, and the state number. Returning this
additional information will serve to aide in debugging any
cross-implementation issues.
In this commit, add an additional return value to
CompleteCooperativeClose. We’ll now report to the caller our final
balance in the cooperative closure transaction. We report this as
depending on if we’re the initiator or not, our final balance may not
exactly match the balance we had in the last state.