Align naming better with the lightning spec. Not the full name of the
failure (FailIncorrectOrUnknownPaymentDetails) is used, because this
would cause too many long lines in the code.
This commit adds the BlockPadding value (currently 3) to sendpayment
calls so that if some blocks are mined while the htlc is in-flight, the
exit hop won't reject it.
The current approach iterates all channels in the graph in order to
filter those in need. This approach is time consuming, several seconds
on my mobile device for ~40,000 channels, while during this time the
db is locked in a transaction.
The proposed change is to use an existing functionality that utilize the
fact that channel update are saved indexed by date. This method enables
us to go over only a small subset of the channels, only those that
were updated before the "channel expiry" time and further filter
them for our need.
The same graph that took several seconds to prune was pruned, after
the change, in several milliseconds.
In addition for testing purposes I added Initiator field to the
testChannel structure to reflect the channeldEdgePolicy direction.
If nodes return a channel policy related failure, they may get a second
chance. Our graph may not be up to date. Previously this logic was
contained in the payment session.
This commit moves that into global mission control and thereby removes
the last mission control state that was kept on the payment level.
Because mission control is not aware of the relation between payment
attempts and payments, the second chance logic is no longer based
tracking second chances given per payment.
Instead a time based approach is used. If a node reports a policy
failure that prevents forwarding to its peer, it will get a second
chance. But it will get it only if the previous second chance was
long enough ago.
Also those second chances are no longer dependent on whether an
associated channel update is valid. It will get the second chance
regardless, to prevent creating a dependency between mission control and
the graph. This would interfer with (future) replay of history, because
the graph may not be the same anymore at that point.
This commit adds the pubkeyIndices map to the distanceHeap to avoid
duplicate entries on the heap. This happened in the earlier iteration
of the findPath algorithm and would cause the driving loop to
evaluate already evaluated entries when there was no need.
This commit modifies the nodeWithDist struct to use a route.Vertex
instead of a *channeldb.LightningNode. This change, coupled with
the new ForEachNodeChannel function, allows the findPath Djikstra's
algorithm to cut down on database lookups since we no longer need
to call the FetchOtherNode function.
This commit moves the call to PruneGraph outside of the loop
that collates all of the spentOutputs. With this change, if
a node has been offline for a long period of time, resyncing
with the chain no longer takes up as much memory (1MB vs 200MB
in some cases) or time. Previously, PruneGraph was called
for every block and allocated a very large map further down
in the pruneGraphNodes function. Now, pruneGraphNodes is only
called once.
Since nilling the pubkey curve will lead to a nil-pointer exception if
the key is later used for signature verification, we make sure to make a
copy before nilling and spewing.
This commit moves the default timeout out of router and thereby fixes a
bug that caused SendToRoute to not return the actual error, but a
timeout result instead. SendToRoute only tries a single route, so a
timeout should never happen.
This commit exposes the three main parameters that influence mission
control and path finding to the user as command line or config file
flags. It allows for fine-tuning for optimal results.
This commit adds an assertion to the SendToRoute test that the payment
value stored to the DB during SendToRoute execution is the correct one.
This assertion would fail before the previous commit that fixed a
missing value initialization.
Previously we would mistakenly use the payment value from the dummy
LightningPayment struct, which would obviously be 0 always. Now we
instead calculate the value from the given route.
Previously every payment had its own local mission control state which
was in effect only for that payment. In this commit most of the local
state is removed and payments all tap into the global mission control
probability estimator.
Furthermore the decay time of pruned edges and nodes is extended, so
that observations about the network can better benefit future payment
processes.
Last, the probability function is transformed from a binary output to a
gradual curve, allowing for a better trade off between candidate routes.