This commit reduces the peer's write timeout to 5s.
Now that the peer catches write timeouts and doesn't
disconnect, this will ensure we spend less time blocking
in the write pool in case others also need to access the
workers concurrently. Slower peers will now only block
for 5s, after every reattempt w/ exponential backoff.
This commit modifies the writeHandler to catch timeout
errors, and retry writes to the socket after a small
backoff, which increases exponentially from 5s to 1m.
With the growing channel graph size, some lower-powered
devices can be slow to pull messages off the wire during
validation. The current behavior will cause us to
disconnect the peer, and resend all of the messages that
the remote peer is slow to validate. Catching the timeout
helps in preventing such expensive reconnection cycles,
especially as the network continues to grow.
This is also a preliminary step to reducing the
write timeout constant. This will allow concurrent usage
of the write pools w/out devoting excessive amounts of
time blocking the pool for slow peers.
- Remove TOC entries of removed docs sections
- Add hint about complete inbound connection docs section after command
examples for inbound connections to prevent people from overseeing the
listen=localhost flag
This commit increase the expiry grace delta to a value above the
broadcast delta. This prevents htlcs from being accepted that would
immediately trigger a channel force close.
A correct delta is generated in server.go where there is access to
the broadcast delta and passed via the peer to the links.
Co-authored-by: Jim Posen <jim.posen@gmail.com>
Previously there was no minimum remaining blocks requirement on
forwarded htlcs, which may cause channel arbitrator to force
close the channel directly after forwarding the htlc.
Co-authored-by: Jim Posen <jim.posen@gmail.com>
The multiplier doesn't make sense because funds may be equally at risk
by failing to broadcast to chain regardless of whether the HTLC is a
redeem or a timeout.
Commit ca28c0b removed the dep section,
so it shouldn't be mentioned as a target in other targets.
Also, Glide doesn't seem to be used anymore as well.
- Update Go version 1.11 to 1.12
- Fix broken link in GitHub PR template
- Fix inconsistent number of spaces after checkbox
- Add proper link to "Ideal Git Commit structure"
This is a better alternative than retrieving it from the graph as it's
possible that the channel is pruned from it doing to not having any
updates within the past two weeks.
This commit modifies the breach arbiter to monitor
all breached inputs for spends and remove them from
the set of inputs to be swept if they are spent to
a terminal state. Prior, we would only watch for
spends on htlcs that may need to transition and
sweep the corresponding second-level htlc.
With these changes, we will no monitor commitment
outputs for spends, as well as spends from the
second level htlcs themselves. If either of these
is detected, we remove them from the set of inputs
to sweep via the justice transaction because there
is nothing the breach arbiter can do.
This functionality will be needed when adding
watchtower support, as the breach arbiter must
detect the case when the tower sweeps on behalf of
the user and stop pursuing the sweep itself. In
addition, this now properly handles the potential
case where somehow the remote party is able to sweep
the their commitment or second-level htlc to their
wallet, and prevent the breach arbiter from trying
to sweep the outputs as it would now.
Note that in the latter event, the internal
accounting may still be incorrect, as it is assumed
that all breached funds return to the victim.
However, these issues will deferred and fixed at a
later date, as the more crucial aspect is that the
breach arbiter doesn't blow up as a result of towers
sweeping channels.
In this commit, we convert all the `Update` calls which are serial, to
use `Batch` calls which are optimistically batched together for
concurrent writers. This should increase performance slightly during the
initial graph sync, and also updates at tip as we can coalesce more of
these individual transactions into a single transaction.
In this commit, we simplify the existing `htlcTImeoutResolver` with some
newly refactored out methods from the `htlcTimeoutContestResolver`. The
resulting logic is easier to follow as it's more linear, and only deals
with spend notifications rather than both spend _and_ confirmation
notifications.