This commit renames ForceCloseSummary to LocalForceCloseSummary, and
adds a new method NewLocalForceCloseSummary that can be used to derive a
LocalForceCloseSummary if our commitment transaction gets confirmed
in-chain. It is meant to accompany the NewUnilateralCloseSummary method,
which is used for the same purpose in the event of a remote commitment
being seen in-chain.
In this commit, we fix an existing bug in the NewBreachRetribution
method. Rather than creating the slice to the proper length, we instead
now create it to the proper _capacity_. As we'll now properly filter out
any dust HTLCs, before this commit, even if no HTLCs were added, then
the slice would still have a full length, meaning callers could actually
interact with _blank_ HtlcRetribution structs.
The fix is simple: create the slice with the proper capacity, and append
to the end of it.
In this commit, we fix an existing within lnd. Before this commit,
within NewBreachRetribution the order of the keys when generating the
sender HTLC script was incorrect. As in this case, the remote party is
the sender, their key should be first. However, the order was swapped,
meaning that at breach time, our transaction would be rejected as it had
the incorrect witness script.
The fix is simple: swap the ordering of the keys. After this commit, the
test extension added in the prior commit now passes.
In this commit we add a new error: InvalidHtlcSigError. This error will
be returned when we're unable to validate an HTLC signature sent by the
remote party. This will allow other nodes to more easily debug _why_ the
signature was rejected.
In this commit we add a new command line option (and a sane default) to
allow users to specify the *smallest* inbound channel that they'll
accept. Having a higher-ish limit lets users limit their channels, and
also avoid a series of very low value "spam" channels.
The new option is --minchansize, and expressed in satoshis. If we
receive an inbound channel request for a value smaller than this, then
we'll immediately reject it.
In this commit, we add an additional check within CreateCommitTx to
ensure that we will never create or accept a commitment transaction that
wasn't valid by consensus. To enforce this check, we use the
blockchain.CheckTransactionSanity method.
In this commit, we fix an existing rounding related bug in the codebase.
The RPC interface for btcd and bitcoind return values in BTC rather than
in satoshis. So in several places, we're forced to convert ourselves
manually. The existing logic attempted to do this, but didn't properly
account for rounding. As a result, our values can be off due to not
rounding incorrectly.
The fix for this is easy: simply properly use btcutil.NewAmount
everywhere which does rounding properly.
Fixes#939.
This commit adds a check that will make LightningChannel reject a
received commitment if it is accompanied with too many HTLC signatures.
This enforces the requirement in BOLT-2, saying:
if num_htlcs is not equal to the number of HTLC outputs in the local commitment transaction:
* MUST fail the channel.
A test exercising the behaviour is added.
This commit fixes an issue which would arise in some cases when the
local and remote dust limits would differ, resulting in lnd not
producing the expected number of HTLC signatures. This was a result of
checking dust against the local instead of the remote dust limit.
A test exercising the scenario is added.
This commit fixes an issue where we would blindly accept a commitment
which came without any accompanying HTLC signatures. A test exercising
the scenario is added.
This commit fixes an out of bounds error that would occur in the case
where we received a new commitment where the accompanying HTLC sigs were
too few. Now we'll just reject such an commitment.
A test exercising the behavior is also added.
This commit extends the amount of time we wait
for transaction to enter the mempool from
10 to 30 seconds. The wallet's interface tests
seem to be particularly slow when run with the
race flag, a problem which is only exacerbated
by the slowness of travis.
With 10s and the race flag, I was able to repro
the issues locally fairly consistently.
In this commit, we add an additional check within
validateCommitmentSanity due to the recent change to unsigned integers
for peer balances in the channel state machine. If after evaluation
(just applying HTLC updates), the balances are negative, then we’ll
return ErrBelowChanReserve.
In this commit, we add logic to account for an edge case in the
protocol. If they initiator if unable to pay the fees for a commitment,
then their *entire* output is meant to go to fees. The recent change to
properly interpret balances as unsigned integers (within the protocol)
let to the discovery of this missed edge case.
lnwire.MilliSatoshi is now a signed integer, as a result, we’ll return
a different error if our balances go to negative due to the inability
to pay a the set fee.
In this commit, we fix a bug introduced by the recent change of
lnwire.MilliSatoshi to be an unsigned integer. After this change an
integer underflow was left undetected, as a result we’ll now
momentarily cast to a signed integer in order to ensure that both sides
can pay the proper fee.
In this commit, we modify the way we obtain the current best header
timestamp. In doing this, we fix an intermittent flake that would pop
up at times on the integration tests. This could occur as if the wallet
was lagging behind the chain backend for a re-org, then a hash that the
backend knew of, may not be known by the wallet.
To remedy this, we’ll take advantage of a recent change to btcwallet to
actually include the timestamp in its sync state.
In this commit, we modify the mechanics of the wallet to only allow
derivation of segwit-like addresses. Additionally, the ConfirmedBalance
method on the WalletController now only has a single argument, as it’s
assumed that the wallet is itself only concerned with segwit outputs.
In this commit, we modify the way we generate the secrets for
revocation roots to be fully deterministic. Rather than use a special
key and derive all sub-roots from that (mixing in some “salts”), we’ll
use the proper keychain.KeyFamily instead. This ensures that given a
static description of the channel, we’re able to re-derive our
revocation root properly.
In this commit, we modify the funding flow process to obtain all keys
necessary from the keychain.KeyRing interface. This ensure that all
keys we generate are fully deterministic.