In this commit, we make the internal channel funding flow aware of
frozen channels. We also update the testSingleFunderReservationWorkflow
method to ensure that the created channels have the proper type bit set.
In this commit, we fix a long standing bug within the newly created
`verifyFundingInputs` method. Before this commit, the method would
attempt to derive the pkScript by looking at the last items on the
witness stack, and making a p2wsh output script from that. This is
incorrect as typically non of these scripts will actually be p2wsh, and
instead will be p2wkh. We fix this by using the newly available
`txscript.ComputePkScript` method to derive the proper pkScript.
This resolves an issue w.r.t passing incorrect arguments for all
backends, but an issue still stands for the neutrino backend. As is, we
pass a height hint of zero into the `GetUtxo` method call. With the way
the current utxo scanner is set up for neutrino, this'll cause it to
never find the UTXO, as it takes the height hint as a UTXO birth height,
rather than a lower bound of the birth of the UTXO.
In this commit, we begin to integrate the new channel funding package
into the existing codebase. With this set of changes, we'll no longer
construct and sign the funding transaction within this package, instead
delegating it to the new chanfunding package. We use the new
chanfunding.WalletAssembler to carry out all channel funding, providing
it with an implementation of all its interfaces backed by the wallet.
In this commit, we create a new chainfee package, that houses all fee
related functionality used within the codebase. The creation of this new
package furthers our long-term goal of extracting functionality from the
bloated `lnwallet` package into new distinct packages. Additionally,
this new packages resolves a class of import cycle that could arise if a
new package that was imported by something in `lnwallet` wanted to use
the existing fee related functions in the prior `lnwallet` package.
In this commit, we convert the existing `channeldb.ChannelType` type
into a _bit field_. This doesn't require us to change the current
serialization or interpretation or the type as it is, since all the
current defined values us a distinct bit. This PR lays the ground work
for any future changes that may introduce new channel types (like anchor
outputs), and also any changes that may modify the existing invariants
around channels (if we're the initiator, we always have the funding
transaction).
In this commit, we update the funding workflow to be aware of the new
channel type that doesn't tweak the remote party's output within the
non-delay script on their commitment transaction. To do this, we now
allow the caller of `InnitChannelReservation` to signal if they want the
old or new (tweakless) commitment style.
The funding tests are also updated to test both funding variants, as
we'll still need to understand the legacy format for older nodes.
Checks that we get ErrDoubleSpend as expected when publishing a
conflicting mempool transaction with the same fee as the existing one,
and that we can publish a replacement with a higher fee successfully.
In this commit, we address an edge case that can happen a user rescans
w/ their seed, while retaining their existing `channel.db`. Once they
rescan, if they go to sign for a channel sweep for example, the
commitment key family (actually an account) may not yet have been
created, causing the signing attempt to fail.
We remedy this always creating the account if we go to sign, and the
account isn't found. The change has been structured to make this the
exception, so we'll avoid always needing to do 2 DB hits (check if
account exists, sign), each time we sign.
A new test has been added to exercise this behavior. If the diff from
the `signer.go` file is removed, then the test will fail.
In this commit, we fix a logic flaw in the testCreateSimpleTx test case
which emerged once we the bug fix for dust outputs landed. Before this
commit, we would erroneously fail during valid test execution.
In this commit, we add a new `LastUnusedAddress` method to the
`WalletController` interface. Callers can use this new method to graph
the last unused address, which can be useful for UIs that want to
refresh the address, but not cause nearly unbounded address generation.
The implementation for `btcwallet` uses the existing `CurrentAddress`
method. We've also added a new integration tests to exercise the new
functionality.
This commit is a step to split the lnwallet package. It puts the Input
interface and implementations in a separate package along with all their
dependencies from lnwallet.
This reverts commit 4aa52d267f000f84caf912c62fc14a5b8e7cacb5.
It turns out that the other implementations set values for this field
which aren't based on the actual capacity of the channel. As a result,
we'll no reject most of their channel offerings, since they may offer a
value of a max `uint64` or something else hard coded that's above the
size of the channel. As a result, we're reverting this check for now to
maintain proper compatibility.
In this commit, we add a new test to the existing set of wallet tests to
ensure we can properly detect the confirmation of transactions that
spend our change outputs. We do this as a measure to prevent future
regressions from happening where the wallet doesn't request its backend
to be notified of when an on-chain transaction pays to a change address,
like with the recently discovered SendOutputs bug.
As is, this test will not pass until we update the btcwallet dependency
in the next commit.
In this commit, we add a new test to ensure that all backends will
properly send out notifications when an unconfirmed transcation that we
send is inserted into the tx store. Before we updated the btcwallet
build commit in dep, this would fail for neutrino but now passes.
In this commit, we add a new test to the set of lnwallet integration
tests. In this new test, we aim to ensure that all backends are able to
display unconfirmed transactions in ListChainTransactions. As of this
commit, this test fails as no backends will return unconfirmed
transactions properly.
In this commit, we add an additional degree of isolation to the set of
integration tests. A bug was recently fixed to ensure that the wallet
always starts rescans from _after_ it's birthday. In the past it would
miss some funds that were deposited _right_ before the birthday of the
wallet. Fixing this bug exposed a test flake wherein the btcd node would
itself rescan back and collect some of the funds that were last sent to
the bitcoind node.
In order to fix this, we now ensure that each backend will use a unique
HD seed such that the tests are still deterministic for each backend and
role.