This update the wallet to implement the new single funder workflow
which uses revocation keys rather than revocation hashes for the
commitment transactions.
This unifies some inconstancies across the code-base with hashes being
32 vs 20 bytes. All hashes, whether payment or revocation are now
uniformly 32 bytes everywhere. As a result, only OP_SHA256 will be used
within commitment and HTLC scripts. The rationale for using sha256
instead of hash160 for the HTLC payment pre-image is that alternative
chains are more likely to have sha256 implemented, rather than
ripemd160.
A forthcoming commit will update the current commitment, and HTLC
scripts.
This commit adds additional test cases to test both cases (initiator vs
responder) for a single funder channel workflow. Additionally, the
previous dual funder tests have been extended in order to detect proper
funding channel broadcast, and the ChainNotifier’s role in notifying
upstream callers that a funding transaction has been embedded in the
chain at a sufficient depth.
At this point the tests certainly need to be cleaned up. bobNode should
be replaced with a second instance of the wallet modeling a remote
peer.
Only nested p2sh or pure witness outputs are used when selecting coins
for inputs to a funding transaction.
The funding transaction output now uses p2wsh rather than regular p2sh.
All tests have been updated accordingly.
* Previously, if the call to SetUp(..) returned an error, then the test
harness would fail to stop the running bcd process, and clean up the
test directories. This would cause any subsequent tests to fail. This
commit remedies this scenario.
Instead of creating “fake” utxos for bob, and alice. We now employ a
dedicated mining node to hand out utxos, and generate blocks with hand
picked transactions.
* As a result in order to not over-shadow the Start/Stop methods of
btcwallet.Wallet, the Start/Stop methods on LightningWallet have been
renamed to Startup/Shutdown.
* Initial draft of brain dump of chandler. Nothing yet set in stone.
* Will most likely move the storage of all structs to a more “column”
oriented approach. Such that, small updates like incrementing the total
satoshi sent don’t result in the entire struct being serialized and
written.
* Some skeleton structs for other possible data we might want to store
are also included.
* Seem valuable to record as much data as possible for record keeping,
visualization, debugging, etc. Will need to set up a time+space+dirty
cache to ensure performance isn’t impacted too much.