In this commit, we fix a bug that was uncovered by the recent change to
lnwire.MilliSatoshi. Rather than manually compute the diff in fees,
we’ll directly compare the fee that is given against the fee that we
expect.
In this commit, we extend the switch as is, to record details
concerning settled payment circuits. To do this, we introduce a new
interface to the package: the ForwardingLog. This is a tiny interface
that simply lets us abstract away the details of the storage backing of
the forwarding log.
Each time we receive a successful HTLC settle, we’ll log the full
details (chans, fees, time) as a pending forwarding log entry. Every 15
seconds, we’ll then batch flush out these entries to disk. When we’re
exiting, we’ll try to flush out all entries to ensure everything gets
recorded to disk.
We’ll need this value within the link+switch in order to fully populate
the forwarding event that will be generated if this HTLC circuit is
successfully completed.
In this commit, we add the incoming+outgoing amounts if the HTLC’s that
the payment circuit consists of. With these new fields, we’ll be able
to populate the forwarding event log once the payment circuit has been
successfully completed.
This commit fixes a deadlock scenario caused when some
switch methods are waiting for a response on the
command's done/err chan. However, no such response will
be delivered if the main event loop has already exited.
This is resolved by selecting on the command's done/err chan
and the server's quit chan simultaneously.
In this commit, we fix an existing bug that would result in some
payments getting “stuck”. This would happen if one side restarted
before the channel was fully locked in. In this case, since upon
re-connection, the link will get added to the switch with a *short
channel ID of zero*. If A then tries to make a multi-hop payment
through B, B will fail to forward the payment, as it’ll mistakenly
think that the payment originated from a local-subsystem as the channel
ID is zero. A short channel ID of zero is used to map local payments
back to their caller.
With fix this by allowing the funding manager to dynamically update the
short channel ID of a link after it discovers the short channel ID.
In this commit, we fix a second instance of reported “stuck” payments
by users.
This commit updates the tests for checking a links Bandwidth()
calculation, after the change that made us use the remoteACKedIndex
instead of the logIndex when calculating it. The main result of this
change is that we never consider incoming updates before they are
acked, when calculating the bandwidth. This is because this was
inconsistent with the state we actually end up signing later on.
This commit introduces a new Ticker interface, that can be used
to control when the batch timer should tick. This is done to be
able to more easily control the ticker during tests. The batch
timer is wrapped in the new BatchTicker struct, and made part
of the config together with BatchSize.
In this commit, we add 6 new integration tests to test the various
actions that may need to be performed when either side goes on-chain to
fully resolve HTLC’s. Many of the tests are mirrors of each other as
they test sweeping/resolving HTLC’s from both commitment transactions.
In this commit, we update the failure case within handleLocalDispatch
to handle locally sourced resolutions. This is the case that we send a
payment out, but before it can even get past the first hop, we need to
go to chain (may have been a cascading failure). Once the HTLC is fully
resolved, we’ll send back a resolution message, however, that message
doesn’t have a failure reason populated. To properly handle this, we’ll
send back a permanent channel failure to the router.
In this commit, we address a lingering TODO: before this if we had a
set of HTLC’s that we knew the pre-image to on our commitment
transaction after a restart, then we wouldn’t attempt to settle them.
With this new change, we’ll check that we didn’t already retransmit the
settles for them, and check the preimage cache to see if we already
know the preimage. If we do, then we’ll immediately settle them.
In this commit, we add some additional logic to the case when we
receive a pre-image from an upstream peer. We’ll immediately add it to
the witness cache, as an incoming HTLC might be waiting on-chain to
fully resolve the HTLC with knowledge of the newly discovered
pre-image.