In this commit, we move to explicitly storing a bit more information
within the invoice. Currently this information is already stored in the
payment request, but by storing it at this level, callers that may not
be in the state to fully decode a payment request can obtain this data.
We avoid a database migration by appending this data to the end of an
invoice. When decoding, we'll try to read out this extra information,
and simply return what we have if it isn't found.
This commit synchronizes the in-memory cache with the
on-disk state to ensure the waiting proof store is
externally consistent. Currently, there are scenarios
where the in-memory state is updated, and not reverted
if the write fails. The general fix is to wait to apply
modifications until the write succeeds, and use a
read/write lock to synchronize access with db operations.
In this commit, we fix an existing bug in the new graph query sync
feature. Before this commit, when a block is pruned, we would never
actually delete the update index entries. This is due to the fact that
we would attempt to delete the entries from the update index _after_ we
had already removed the edges from the update index.
We fix this by simply swapping the order: first we delete from the
update index, then we delete the edges themselves. A test ensuring that
the entires are cleared (which failed before this commit), has been
added.
In this commit, we go through the codebase looking for TCP address
assumptions and modifying them to include the recently introduced onion
addresses. This enables us to fully support onion addresses within the
daemon.
In this commit, we modify the waiting proof slightly to acept dupliacte
waiting proofs, rather than reject them. Otherwise, it's possible that
the remote node first sends us their half of the waiting proof (before
we do), we write that to disk, then upon restart, we'll try to add it
again, but be rejected by the system.
Fixes#1315.
In this commit, we ensure that all indexes for a particular channel have
any relevant keys deleted once a channel is removed from the database.
Before this commit, if we pruned a channel due to closing, then its
entry in the channel update index would ever be removed.
In this commit, we add a new database migration required to update old
database to the version of the database that tracks the update index for
the nodes and edge policies. The migration is straight forward, we
simply need to populate the new indexes for the all the nodes, and then
all the edges.
In this commit, we add a series of methods, and a new database index
that we'll use to implement the new discovery.ChannelGraphTimeSeries
interface interface. The primary change is that we now maintain two new
indexes tracking the last update time for each node, and the last update
time for each edge. These two indexes allow us to implement the
NodeUpdatesInHorizon and ChanUpdatesInHorizon methods. The remaining
methods added simply utilize the existing database indexes to allow us to
respond to any peer gossip range queries.
A set of new unit tests has been added to exercise the added logic.
The pending state definitin in ChannelCloseSummary was slightly changed
in such a way that channels that has had their commitment broadcasted
now is no longer considered "pending close". They now instead stay in
the open chan bucket with the ChanStatus "CommitmentBroadcasted" until
their commitment is confirmed. This commit updates the IsPending godoc
to reflect this.
In this commit, we modify the existing updateChanBucket function to no
longer auto-create buckets if they don't exist. We do this in order to
fix a class of bug that could arise wherein after a channel has actually
be closed (and the parent buckets removed) a method that mutates the
channel state is called, which then re-creates the relevant set of
buckets. As a result, subsequent calls to any RPCs which need to read
all the channels will fail as most of the fields won't actually be
populated.
After this commit, the fullSync method is the only one that's able to
create the full bucket hierarchy.
In this commit, we extend the CloseChannelSummary by also storing: the
current unrevoked revocation for the remote party, the next pending
unused revocation, and also the local channel config. We move to store
these as the provide an extra level of defense against bugs as we'll
always store information required to derive keys for any current and
prior states.
This commit adds a new method FetchWaitingCloseChannels to the database,
used for fetching OpenChannels that have a ChanStatus != Default. These
are channels that are borked, or have had a commitment broadcasted, and
is now waiting for it to confirm.
The fetchChannels method is rewritten to return channels exclusively
based on wheter they are pending or waitingClose.
This commit changes the bool `IsBorked` in OpenChannel to a `ChanStatus`
struct, of type ChannelStatus. This is used to indicated that a channel
that is technically still open, is either borked, or has had a
commitment broadcasted, but is not confirmed on-chain yet.
The ChannelStatus type has the value 1 for the status Borked, meaning it
is backwards compatible with the old database format.
Modifies TestFetchPendingChannels to verify that calls to
MarkAsOpen also modify the in-memory state. Previously we
only tested the persistent state loaded immediately after.
Modifies the MarkAsOpen operation to also update the
ShortChanID and IsPending fields in-memory. Before,
only the on-disk representation was updated, which
may have lead to stale data channel states being
passed in-memory.
In this commit, we remove references to raw keys from the main
ChannelConfig struct and instead replace it with usage of
keychain.KeyDescriptor. We do this, as the ChannelConfig as it stands
is a near complete static description of a channel. In the future, it
will be possible to export these static descriptions as backups. We
prefer the KeyDescriptor of a plain PublicKey, as the KeyLocator
portion of the struct allows a stateless signer to re-derive the keys
as needed when signing.
In this commit, we add a new storage namespace to channeldb: the
ForwardingLog. This log will be used by higher level sub-systems to log
each successfully completed HTLC. Each payment circuit will be
summarized as a “ForwardingEvent”. A series of events can then be
queried via a time slice query. In a time slice query, the caller
specifies a time range, a number of events to skip, and the max number
of events to return. Each query will return the index of the final
item. As we have a max number of events we’ll return in a response,
callers may need to use this last offset index to seek further by
skipping that number of entries. Combining these fields, callers are
able to query the time series, skipping an arbitrary amount of events,
and capping the max number of returned events.
In this commit, we made a series of modification to the way we handle
reading edges and vertexes from disk, in order to reduce the amount of
garbage generated:
1. Properly use PubKeyBytes are required rather than PubKey()
2. Return direct structs rather than pointers, and leave it to the
runtime to perform escape analysis.
3. In-line the former readSig() method when reading sigs from disk.
This commit changes the definition of the
constraints in the ChannelConstraints struct
to specify that these are all constraints the
*owner* of the set of constraints must *never
violate*.
This is done to make it easier to check that
a particular node is not violating any
constraint for a gien update, as before it
could violate constraints found both in its
local and the remote contraints.
In this commit, we make an API change that’s meant to reduce the amount
of garbage we generate when doing pathfinding or syncing nodes with our
latest graph state. Before this commit, we would always have to fully
decode the public key and signatures when reading a edge or vertex
struct. For the edges, we may need several EC operations to fully
decode all the pubkeys. This has been seen to generate a ton of
garbage, as well as slow down path finding a good bit.
To remedy this, we’ll now only ever read the *raw* bytes from disk. In
the event that we actually need to verify a signature (or w/e), only
*then* will we fully decode everything.